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Applications of GNNs

» GNNs enable scalable machine learning on graph-structured data in a variety of systems.
= Learning ratings in recommendation systems
= Resource allocation in communication systems
= Federated learning in distributed systems

= Protein property prediction in biological systems
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Learning Ratings in Recommendation Systems

» Formulate recommendation systems as ML problems that predict ratings that users give to items
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Recommendation Systems Duke @ Jorns Hopins

UNIVERSITY

v

In a recommendation system, we want to predict the rating a user would give to an item

v

Collect ratings that some users give to some items = These are rating histories

v

Exploit product similarities to predict ratings of unseen user-item pairs

v

Example 1 = In an online store items are products and users are customers

v

Example 2 =- In a movie repository items are movies and users are watchers
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Ratings and Sampled Ratings

» For all items /i and users u there exist ratings = y,i

= User rating vector y, has entries y,;

» We only observe a subset of ratings = x;
= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u
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Ratings and Sampled Ratings NS HOPKINS

IVERSITY

T 1T
» For all items /i and users u there exist ratings = y,i I :ﬁ

= User rating vector y, has entries y,;

T T

» We only observe a subset of ratings = x;

= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u
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Product Ratings as Graph Signals INS HOPKINS

IVERSITY

» Construct product similarity graph with weights w;; represent likelihood of similar scores

» Interpret vector of ratings y, of user u as a graph signal supported on the product similarity graph

» The observed ratings x, of user u are a subsampling of this graph signal.

v

Our goal is to learn to reconstruct the rating graph signal y, from the observed ratings x,

v

Build similarity graph using available ratings. Use of expert knowledge is common as well
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Product Similarity Graph &y JOHNS HOPKINS

IVERSITY

» Consider pair of products / and j. Restrict attention to set of users that rated both products = U;

» Mean ratings restricted to users that rated products i/ and j

1
a (uu) 2% =gy 2%

u€U;; u€U;;
N . , : L
» Similarity score = correlation restricted to users in U :!-
1y 2 (=) (o =) 2
ojj = - ui = Hij uj — Mji
#y) &

» Weights = normalized correlations = w; = (J'jj/\/(f,'j(fjj
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Loss for Measuring Rating Prediction Quality Duke & Jorns Horkins

> Given observed ratings x, the Al produces estimates ®(x,). We want ®(x,) to approximate y,

((r906) = vt |

» In reality, we want to predict the rating of specific item /
1 2
(v ®(x) ) = 5 (e yu el 0(x.) )

» Where e; is a vector in the canonical basis = (e;);i =1, (e;); =0 for j # i
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Training Set INS HOPKINS

IVERSITY

» For each item i let U; be the set of users that have rated i. Construct training pairs (x,y) with
y= (e,-Txu)e; X=X, —Y for all u e U;, for all i
» Extract the rating x,; of item /. Record into graph signal y

» Remove rating x,; from x,. Record to graph signal x

v

Repeat for all users in the set U/, of users that rated i

v

Repeat for all items = Training set T
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Learning Rating Predictions NS HOPKINS

IVERSITY

» Parameterized Al ®(x,) = ®(x,; H). We want to find solution of the supervised learning problem

2
H* = argmin Z (e,-Ty - e,-T¢(x;’H,))
"o (yeT

» Two bad ideas =- Linear regression. Fully connected neural networks

» Two good ideas =- Graph filters. Graph neural networks
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Duke & Jorins Horkins

Learning Ratings with Graph Filters and GNNs

» We use graph filters and graph neural networks to learn ratings in recommendation systems

» We contrast with the use of linear regression and fully connected neural networks
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Movie Ratings Dataset INS HOPKINS

IVERSITY

» Use MovieLens-100k as benchmark = 10° ratings given by U = 943 users to M = 1,682 movies

» The ratings for each movie are between 1 and 5. From one star to five starts

» Train and test several machine learning parametrizations.
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Empirical Risk Minimization INS HOPKINS

IVERSITY

» We predict ratings using Al that results from solving the ERM problem

2
H* = argmin Z (e,-Ty - e,-T¢(x;’H,))
M ()T

» Parameterizations that ignore data structure= =- Linear regression. Fully connected NNs

» Parameterizations that leverage data structure= = Graph filters. Graph NNs
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Linear Regression and Graph Filters NS HOPKINS

IVERSITY

> Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

» Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable
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» Graph filter outperforms linear regression = Leverages underlying permutation symmetries
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Linear Regression and Graph Filters INS HOPKINS

IVERSITY

» Linear regression works even worse in the test set

» The test MSE of the graph filter is about the same as the training MSE. It generalizes

o

@
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» Graph filter outperforms linear regression = Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs INS HOPKINS

IVERSITY

» The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

» Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

o o N o
[ SRR
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» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs INS HOPKINS

IVERSITY

» But the fully connected NN does not do well in the test set. It does not generalize

» The test MSE of the graph NN is about the same as the training MSE. It generalizes

o

@
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» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries
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Graph Filters and Graph Neural Networks INS HOPKINS

IVERSITY

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant

o

@
@
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» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff
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Graph Filters and Graph Neural Networks

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant

2.00
i \
1.75 ‘ \‘ ‘
) ‘
| “i

£
| 1.25 i
: |
i 1
I

il

| ”‘I }‘
A

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Iterations Iterations

» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff
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Transferability

» A GNN can be trained on a graph with a small number of nodes ...

= And transferred to a graph with a (much) larger number of nodes. Without retraining
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» In this recommendation system, transference incurs no MSE degradation =- MSE is further reduced
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Wireless Resource Management with GNNs

» GNNs can enable scalable resource management in autonomous wireless communication networks.
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Towards Next-Generation Wireless Networks JOHNS HOPKINS

NIVERSITY

» To address increasing complexity of wireless networks, we will make them autonomous — 6G, WiFi 7

= An autonomous wireless network makes (at least some) decisions without human intervention.

N. NaderiAlizadeh Graph Neural Network Applications 20



Autonomous Wireless Networks

JOHNb HOPKINS
U

NIVERSITY

» Making operational decisions in wireless networks entails solving large-scale constrained
optimization problems.

» Solving these problems is very challenging, leading to the design and use of heuristic methods

\ L5 S
e = Pt S
S

,l/‘%‘ X Ny \L B! \7(

e

» We can leverage data to learn better autonomous network management policies using machine
learning.
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Wireless Resource Allocation Under Requirements (@ JOHNS HOPKINS 5

NIVERSITY

f(He, p(H:))

f

Network-level
performance

max <? Zf(Ht,P(Ht))> T
0

He)} ot
{p( t)}t,o p(Ht)

1
st g<r f(Ht,p(Ht))> >0 1
t=0 { Resource Allocation J

policy

f

H:
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Policy Parameterization Duke & G Joris Hopkin

» In this classical formulation, resource allocation decisions must be recalculated for any given
network state H.

= This makes learning and deploying such a policy infeasible in practice.

» We parameterize the resource allocation policy, replacing p(H) with p(H; ).

» The advantage of parameterization is that we do not need to solve the problem online to find the

decisions.
Unparameterized Formulation Parameterized Formulation
T— 1=
max = (He, p(Hy) — —
{p(H)} 5 (T Z et ) e (T ; fHp(s ))>
— B
= =
st. g+ f(He,p(H:)) | =20 st. g <T f(HnP(Ht;B))) >0
t=0 t=0
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This is an Unsupervised Learning Problem (@ JOHNS HOPKINS

IVERSITY

Empirical Risk Minimization Parameterized Resource Allocation

N—1 T—
max f%ZE(w(x,—;O)) max Z/{( Z (He, p( Ht,O))>
i=0

0co

=

s.t. g( 5 f(th(Ht;O))) >0

t=0

» Sequential decision making over a time series sequence {Ht}th_O1 without access to ground-truth
labels.

» Inclusion of the constraints makes this problem fundamentally different from a regular learning
problem.
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Learning in the Dual Domain Duke & Jorns Horkins

» We move to the Lagrangian dual domain, and associate a set of non-negative dual variables u to
the constraints.

» The Lagrangian function can then be written as

T-1

L0, n)=U <; Z_f(HnP(H::G))> +u'g ( . f(He,p Hrv9))>

t=0 t=0

» We then seek to maximize the Lagrangian over 8, while minimizing it over p, i.e.,
D* = min magﬁ(@,u).

n>00¢
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UNIVERSITY

Iterative Unsupervised Primal-Dual Updates Duke & Jorns Horkins

» The primal model parameters 8 and the dual variables p can be iteratively updated using a
primal-dual method.

» We define an iteration duration Ty between consecutive updates, and an iteration index k.

1 (k+1)To—1 (k+1)To—1
_ il . T il .
0r = argmax |U | = tzk; f(H p(H:0)) | + g | - tzk; f(H:,p(H:; 0))
=Ko =Klo

k< k+1 1 (k+1)Tp—1
M1 = | By = NMug T Z f(He, p(H:; 6))
t=kTo
i

» Constraint slacks are the gradient or a subgradient of the Lagrangian with respect to the dual
variables.
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Theoretical Guarantees of Primal-Dual Updates HNS HOPKINS

NIVERSITY

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

. ] =
lim g <T Zf (He,p (Ht;OWTOJ))) >0, as.

T—oo
t=0

and near-optimal, i.e.,

lim E

T—o00

1 cn, G?
(3 (e (0 m) ) |2 -

» ¢ denotes the number of constraints, 7, denotes the dual step size, G upper-bounds the constraint
magnitudes.

» There are no restrictions on the convexity of f and the parameterization p(; 8).
» Issue: Training cannot be stopped at a finite iteration!
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IVERSITY

Proposed State-Augmented Algorithm Duke & Jorns Horkins

» We propose to use both network state H and dual variables v as input to the resource allocation
policy.

» We leverage a revised state-augmented parameterization p(H, 1t; ¢) to replace p(H; 0).

Regular Parameterization State-Augmented Parameterization

H.

]
Ho—  pHiO) [ o RHme)
Mk—T

N. NaderiAlizadeh Graph Neural Network Applications 28




NIVERSITY

State-Augmented Primal and Dual Dynamics Duke & &y JOHNS HOPKINS

» The revised parameterization leads to the augmented Lagrangian

Lu(d)=U <$ if(Hf,p(Ht,uw))) +uTg< S F(Hep(He, ¢>))>
t=0 t=0

» The optimal state-augmented policy parameters are found during training as

@ = arg B lLu(@)].

» This resolves the challenge of re-optimizing the model parameters for any given set of dual variables.
» The dual variables are updated during execution as

(k+1)To—1
L gx
b = (=g | = D F(Hep(He i 0"))
t=kTp
Constraint satisfaction over the k™ iteration +
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Theoretical Guarantees of State Augmentation Duke &plorins Horkins 28 Penn

Theorem (NaderiAlizadeh-Eisen-Ribeiro)
The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

T-1
. 1 *
#meg <T go f (an (Htaﬂlt/TOJ;({b ))) >0, as.

and near-optimal, i.e.,

u ( ff (Ht,p (Ht,utt/rﬂ;d)*)))

t=

> P —

lim E

T—o0

2
%—Me.

==

» c-universal parameterization p(H, t; @): For any H and 0(-), there exists ¢ s.t.
Ellp(H, p; @) — p(H; (1)), < e

» M-Lipschitz continuity of f: For any H, p: and p2, E|[f(H,p1) — f(H, p2)||., < ME |p: — p2||, -

» The decisions made by our method are close to those made by the original primal-dual iterations.
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Power Control in Interference Channels

Duke & Jorins Horkins

IVERSITY

» We focus on multi-user interference channels with m transmitter-receiver pairs.

» The performance function for the i*" receiver represents its Shannon capacity,

. pi |hii,:|2
fi(He,p) = log, | 1+ .

N m . L2
o T 21 jozi Pi | hiie

Ayt

00
» Considering a sum-rate utility and minimum-rate constraints leads to \\ S
.
T—1 m
1
max = % fi(He,p(H)), =3 e
{p(H)}, t=0 |

- i=1 %
s.t. f(He, p(H:)) > finL. o&%g
t=0 . Ko
=

Graph Neural Network Applications

-

nle
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Modeling Interference Channels as Graphs Duke &plorins Horkins 28 Penn

» We model the interference channel at each time step t as a graph G: = (V, &, Y, we).
=V ={1,2,...,m} denotes the set of transceiver nodes, and £ C V x V denotes the set of edges.
= Y, € R™! denotes the initial node features, which we set to the dual variables: Y, = B/l

= w; : £ = R denotes the edge weight function, which we define as w:(i, j) o log (Pmax|hij,c|*/N).
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Graph Neural Network (GNN) Parameterizations

HOPKINS

IVERSITY
» We leverage GNN architectures to parameterize the resource allocation policies.

» Final node features at the output of the GNN are converted to resource allocation decisions.

N. NaderiAlizadeh
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Scalability With Constant Network Density Duke & Jorns Horkins

UNIVERSITY VERSITY

» The network area size increases proportionally to the number of transmitter-receiver pairs.

» Policies are evaluated on the same network size that they have been trained on.
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Scalability With Variable Network Density Duke & Jorns Horkins

» The network area size is fixed regardless of the number of transmitter-receiver pairs.
» Policies are evaluated on the same network size that they have been trained on.

—— State-Augmented —¥— Vanilla Primal-Dual —e— [TLinQ —®— Full Reuse
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Transferability With Constant Network Density Duke & Jorns Horkins

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.
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Transferability With Variable Network Density Duke &y JOHNS HOPKINS

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.
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Federated Learning with GNNs

» GNNs can enable distributed training of models in a federated learning scenario.
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Federated Learning &y JOHNS HOPKINS

IVERSITY

» A group of agents attempt to learn a shared model w* with minimium average loss across agents:

w* = arg mm — ZE(x,y JO(fa(x), y)]-

» Considering a graph structure, we can have a constrained formulation:

min e g(W)=— ZE(xyND (fu; (), ¥)],

Wi,...,Wp€

s.t. P = i, foralli=1,...,N.
w |N|ZWJ or all i ;

"V jen;

» A major challenge: High communication cost between the agents (and a central server).
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Learning to Optimize via Algorithm Unrolling Duke & Jorns Horkins

» Instead of training the model W directly, we train a meta model ®(Wq, D; 6), whose output is W*:

W* = ®(Wo,D;0*) where 0 =arg 0’“1&31 E[g(®(Wo, D; 0))].
€R

» The meta model takes as input the initial model Wy and a set of local datasets D.
» We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

W, =¢)(W;_1,D;0)), I=1,..., L

s il ¢
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Stochastic UnRolled Federated learning (SURF) Duke &plorins Horkins 28 Penn

» Instead of the whole datasets D, we feed stochastic batches of data 3, to the meta model:

W, =¢(Wi-1,D;0)) — W, =¢(Wi—1,B,;6)).

» We encourage the model parameters to improve after every layer using descending constraints:

min B [g(®(Wo, 5;0))]

st. E[|Ve(W))| —(1-€) [Vg(Wi)[|] <0, foralll =1,....L,
W, = ¢/(W,_1,B,;60,), foralll=1,... L

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning
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Unrolling Distributed Gradient Descent via GNNs INS HOPKINS

IVERSITY

» Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

W,(/) = Z S,'J'Wj(/ - 1) - /BVg,-(w,-(/ - 1))7 i = ].7 ey N.
JEN;

» DGD relies on communication among agents, and local updates of the model using local data.

» We replace the first term with a GNN layer and the second term with a local FCNN:

K—1
W, = Z huS*W,_1 — & (W=1, BIM, + b))
k=0
‘! N/’ S\ f&‘-v ¥ "* 4
AR AT S A AN
o [ ] ’ .‘ 4 ” *'\\_.. A
¢ N g o

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning,
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Empirical Evaluation of SURF + DGD with GNNs Duke &plorins Horkins 28 Penn

» Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations
Centralized 25.81 +£13.92 10
FedAvg 15.53 +£12.29 10
SURF 4+ DGD + GNN | 90.83 +04.35 10
Centralized 92.71 + 03.26 300
FedAvg 90.35 4+ 03.69 300
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Transferability of SURF + DGD with GNNs Duke J()HNS HOPKINS

UNIVERSITY VERSITY

» The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.
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Protein Property Prediction with GNNs

» GNNs can enable learning over protein structures in biological systems.
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Protein Sequence — Structure — Function

IEQTEVL...SGSLE —
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Protein Structure vs. Sequence Data Growth Duke & Jorns Horkins

B Total Number of Protein Structures (PDB) [l Total Number of Protein Sequences (UniProt)
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AlphaFold: ML-Based Protein Structure Prediction Juke @ JOHNS HOPKINS

IVERSITY

Nterminus
Gterminus _% =
! % E
AphaFold_Experiment AphaFold_Experiment AphaFold Experiment . AlphaFold DB today
115,045 = 0.8A TW-score = 0.83 £msd.=059Awithin8Aof Zn £ms.dgs = 22A T-score = 0.96 200+ Structures

AlphaFold DB previously
tep High “IM Structures
&—m wiE) - confidence
- Experimental (PDB) today.
* 190K Structures

Jo
Grevees Evoformer. Structure. RARS
(48 blocks) Inodss —
Input sequence (8 blocks) 5 S
Spesss %
Lt 3D structure
s
Tempiates
v v
[ « Recycling (three times) ]

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature,
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doi.org/10.1038/s41586-021-03819-2

Modeling Protein Structures as Graphs INS HOPKINS

IVERSITY

» Each node in the protein graph represents the Carbon-a: atom of a residue (i.e., amino acid).
» 3D node coordinates given by X € R"** could be used as input node features.

» Graph adjacency matrix S can be derived via proximity in the sequence and/or structure.

Sequential edge (d=1)

Sequential edge (d=-1)
=== K-nearest neighbor edge
=== Radius edge

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR
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GNNs Trained as Foundation Models for Protein Structures Duke &Joms Horkins 7§ Penn

VERSITY UNIVERSITY

» A GNN ®(X;S, H) can be pre-trained to minimize a contrastive loss on protein graph embeddings.

Protein Structure

G8e0) , glse
ur r
Subsequence cropping ~ Random edge masking \ _

1
. I
Subspace cropping Identity o 2 ) \
ace) ace) 4 X
VPO = eVl - il <4} G0 gm0 LA z
— Sequential edge (d=1) ‘.
= el g 01) g

— Kenearest neighbor edge
—> Radius edge

Method ining EC Fold Classification Reaction
Dataset (Size) BP MF  CC_ Fold Super. Fam. A
(CNN (Shanehsazzadeh et nl 2020) - 0545 0244 0354 0287 13 134 534 260 517
ResNet (Rao et al., 2019) - 0.605 0280 0405 0304 10.1 721 235 136 24.1
TM (Rao et al 2019) - 0425 0225 0321 0283 641 433 18.1 9.61 1.0
“Transformer (Rao et al., 2019) - 0238 0264 0211 0405 922 8.81 404 194 26.6
GCN (Kipf & Welling, 2017) - 0320 0252 0195 0329 16.8* 21.3* 82.8* 403* 67.3*
GAT (Velickovi¢ et al., 2018) - 0368 0284' 0317' 0385" 124 165 727 338 556
GVP (Jing etal., 2021) - 0489 0.326' 0426' 0.420" 16.0 225 838 407 65.5
3DCNN_MQA (Derevyanko et al., 2018) - 0077 0240 0.147 0305 31.6* 454*  925* 56.5* 22
GraphQA (Baldassarre et al., 2021) - 0509 0308 0329 0413 237%  32.5% 844% 469* 60.8*
New [EConv (Hermosilla & Ropinski, 2022) - 0735 0374 0544 0444 47.6*  702*  992% 723% 87.2%
prﬁl (Gligorijevi¢ etal., 2021) Pfam (10M) 0631 0399 0465 0460 153* 206 732* 364* 63.3%
-1b (Rives et al., 2021) UniRef50 (24M) 0.864 0452 0.657 0477 268 60.1 978 615 83.1
Pm(BE‘.RT -BFD (Elnaggar et al., 2021) BFD (2.1B) 0838 0279' 0456' 0.408" 26.6* 558* 97.6* 60.0* 1722
P (Wang et al., 2022b) UniRefl00 216M)  0.664 0417' 0.545' 0527" - - - - -
New IEConv (Hermosilla & Ropinski, 2022) PDB (476K) - - - - 50.3*  80.6* 99.7* 76.9* 87.6*
Multiview Contrast AlphaFoldDB (805K) 0.874 0.490 0.654 0488 54.1 80.5 9.9 8.1 875

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR
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Graph Transformers Trained on Protein Structures Duke &y JOHNS HOPKINS

NIVERSITY NIVERSITY

» Graph Transformers enable learning on multiple protein graph structures simultaneously.

Amino Acid Attention Bias Matrix | Regression Head AAG
Likellnoods. 1 1 per Attention Head

Classifier |
Clssitcaton ;

8A Distance Pooing |

ToAA
Subtract
MLP Linear - Activation - Linear| ) X4 - cLs
Extactor I
Matmul Weight Sharin,
| Transformer Transformer

MLP:Linear - Activation - Linear’

From Environment To Environment

Backbone
| Graph Transformer Feature Extractor

RBF Distance Matrices Distance Type Matrices |
(Continous) (Discrete)

Atom Coordinates

Atom Elements. Atom Elements
Atom Coordinates |

Embed and Add

Atom Physical Properties Microenvironment | Microenvironment Atom Physical Properties

Diaz et al., Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations, Nature
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» PLM architectures are pre-trained using millions of sequences via the unsupervised masking objective

N
1
Lwvm(0) = N E log po(sij|si ;)
i=1 jeM;

» This leads to intermediate embeddings E € R“*? that can be used for downstream tasks.

L
—_— MEQTES—LENN
IBEREEEEEER'
( Protein Language Model )
UniProt
Embeddings E € RL*4
) -
— 0.03 0.46 0.07 om

Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science

Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, IEEE TPAMI
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Fusing Sequence and Structure Information via PLMs and GNNs Duke & Jorins Horkins

Method PLM SIt:lfl;:t. EC GO-BP GO-MF
© Fax Frnax Finax
ProtBERT-BFD! v/ X 0838 0.279 0456
ESM-2-650M" v X 0880 0.460 0.661
YRR GearNet X v 0730 0.356 0.503
ESM-GearNet v v 0.890 0.488 0.681
Multi-Head Attention
NN
(E)®C-)
Zhang et al., A Systematic Study of Joint Representation Learning on Protein Sequences and Structures, ICLR MLDD
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GNN-Based Constraints Can Make PLMs Structure-Aware Duke & Jorns Horkins

» Unsupervised GNN-based losses can be used for enforcing structural constraints on PLMs.

min Lseq(OpLm),
OpLm;Henn
s.t. Cstr(xi,S/;QPLm,HGNN) < €, forall i = 1,...,N.

tt + 4

tEtr e

Mali-Head Atiention

IEQTEVL...SGSLE

trtt

ol “‘f,
9%

Wang-Heinzinger-NaderiAlizadeh, Fusing Protein Structures and Sequences: A Constrained Learning Approach, In Preparation
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