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Applications of GNNs

▶ GNNs enable scalable machine learning on graph-structured data in a variety of systems.

⇒ Learning ratings in recommendation systems

⇒ Resource allocation in communication systems

⇒ Federated learning in distributed systems

⇒ Protein property prediction in biological systems
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Learning Ratings in Recommendation Systems

▶ Formulate recommendation systems as ML problems that predict ratings that users give to items
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Recommendation Systems

▶ In a recommendation system, we want to predict the rating a user would give to an item

▶ Collect ratings that some users give to some items ⇒ These are rating histories

▶ Exploit product similarities to predict ratings of unseen user-item pairs

▶ Example 1 ⇒ In an online store items are products and users are customers

▶ Example 2 ⇒ In a movie repository items are movies and users are watchers

N. NaderiAlizadeh Graph Neural Network Applications 5



Ratings and Sampled Ratings

▶ For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

▶ We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u
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Product Ratings as Graph Signals

▶ Construct product similarity graph with weights wij represent likelihood of similar scores

▶ Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

▶ The observed ratings xu of user u are a subsampling of this graph signal.

▶ Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

▶ Build similarity graph using available ratings. Use of expert knowledge is common as well
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Product Similarity Graph

▶ Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

▶ Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑
u∈Uij

xui µji =
1

#(U ij)

∑
u∈Uji

xuj

▶ Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑
u∈Ui j

(
xui − µij

)(
xuj − µji

)
▶ Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj
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Loss for Measuring Rating Prediction Quality

▶ Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

ℓ
(
yu,Φ(xu)

)
=

1

2

∥∥∥ yu − Φ(xu)
∥∥∥2

▶ In reality, we want to predict the rating of specific item i

ℓ
(
yu,Φ(xu)

)
=

1

2

(
eTi yu − eTi Φ(xu)

)2

▶ Where ei is a vector in the canonical basis ⇒ (ei )i = 1, (ei )j = 0 for j ̸= i
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Training Set

▶ For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(
eTi xu

)
ei x = xu − y for all u ∈ U i , for all i

▶ Extract the rating xui of item i . Record into graph signal y

▶ Remove rating xui from xu. Record to graph signal x

▶ Repeat for all users in the set U i of users that rated i

▶ Repeat for all items ⇒ Training set T
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Learning Rating Predictions

▶ Parameterized AI Φ(xu) = Φ(xu;H). We want to find solution of the supervised learning problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

▶ Two bad ideas ⇒ Linear regression. Fully connected neural networks

▶ Two good ideas ⇒ Graph filters. Graph neural networks
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Learning Ratings with Graph Filters and GNNs

▶ We use graph filters and graph neural networks to learn ratings in recommendation systems

▶ We contrast with the use of linear regression and fully connected neural networks
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Movie Ratings Dataset

▶ Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

▶ The ratings for each movie are between 1 and 5. From one star to five starts

▶ Train and test several machine learning parametrizations.
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Empirical Risk Minimization

▶ We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

▶ Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

▶ Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs
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Linear Regression and Graph Filters

▶ Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

▶ Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable
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▶ Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries
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Linear Regression and Graph Filters

▶ Linear regression works even worse in the test set

▶ The test MSE of the graph filter is about the same as the training MSE. It generalizes
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Fully Connected NNs and Graph NNs

▶ The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

▶ Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN
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▶ Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs

▶ But the fully connected NN does not do well in the test set. It does not generalize

▶ The test MSE of the graph NN is about the same as the training MSE. It generalizes
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▶ Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries
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Graph Filters and Graph Neural Networks

▶ The graph filter and the GNN do well in the training and test set. They generalize well

▶ The GNN does a little better. Not by much. But an extra 10% is not irrelevant
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▶ GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff
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Transferability

▶ A GNN can be trained on a graph with a small number of nodes ...

⇒ And transferred to a graph with a (much) larger number of nodes. Without retraining
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▶ In this recommendation system, transference incurs no MSE degradation ⇒ MSE is further reduced
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Wireless Resource Management with GNNs

▶ GNNs can enable scalable resource management in autonomous wireless communication networks.
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Towards Next-Generation Wireless Networks

▶ Wireless networks are growing beyond humans’ ability to design and manage them → 5G, WiFi 6

▶ To address increasing complexity of wireless networks, we will make them autonomous→ 6G, WiFi 7

⇒ An autonomous wireless network makes (at least some) decisions without human intervention.
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Autonomous Wireless Networks

▶ Making operational decisions in wireless networks entails solving large-scale constrained
optimization problems.

▶ Solving these problems is very challenging, leading to the design and use of heuristic methods.

▶ We can leverage data to learn better autonomous network management policies using machine
learning.
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Wireless Resource Allocation Under Requirements

0 1 2 T − 1. . .t

f(Ht , p(Ht))

Network-level
performance

p(Ht)

Resource Allocation
policy

Ht

1

T

T−1∑
t=0

f(Ht , p(Ht))max
{p(Ht )}T−1

t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
max

{p(Ht )}T−1
t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
≥ 0
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Policy Parameterization

▶ In this classical formulation, resource allocation decisions must be recalculated for any given
network state H.

⇒ This makes learning and deploying such a policy infeasible in practice.

▶ We parameterize the resource allocation policy, replacing p(H) with p(H;θ).

▶ The advantage of parameterization is that we do not need to solve the problem online to find the
decisions.

Unparameterized Formulation

max
{p(Ht )}T−1

t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
≥ 0

Parameterized Formulation

P⋆ = max
θ∈Θ

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
≥ 0
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This is an Unsupervised Learning Problem

Empirical Risk Minimization

max
θ∈Θ

− 1

N

N−1∑
i=0

ℓ (ψ (xi ;θ))

Parameterized Resource Allocation

max
θ∈Θ

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
≥ 0

▶ Sequential decision making over a time series sequence {Ht}T−1
t=0 without access to ground-truth

labels.

▶ Inclusion of the constraints makes this problem fundamentally different from a regular learning
problem.
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Learning in the Dual Domain

▶ We move to the Lagrangian dual domain, and associate a set of non-negative dual variables µ to
the constraints.

▶ The Lagrangian function can then be written as

L(θ,µ) = U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
+ µTg

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
.

▶ We then seek to maximize the Lagrangian over θ, while minimizing it over µ, i.e.,

D⋆ = min
µ≥0

max
θ∈Θ
L(θ,µ).
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Iterative Unsupervised Primal-Dual Updates

▶ The primal model parameters θ and the dual variables µ can be iteratively updated using a
primal-dual method.

▶ We define an iteration duration T0 between consecutive updates, and an iteration index k.

θk = argmax
θ∈Θ

U
 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θ))

+ µk
Tg

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θ))


µk+1 =

µk − ηµg

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θk))


+

k ← k + 1

▶ Constraint slacks are the gradient or a subgradient of the Lagrangian with respect to the dual
variables.
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Theoretical Guarantees of Primal-Dual Updates

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ;θ⌊t/T0⌋

)))
≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ;θ⌊t/T0⌋

)))]
≥ P⋆ − cηµG

2

2
.

▶ c denotes the number of constraints, ηµ denotes the dual step size, G upper-bounds the constraint
magnitudes.

▶ There are no restrictions on the convexity of f and the parameterization p(·;θ).
▶ Issue: Training cannot be stopped at a finite iteration!

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242
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Proposed State-Augmented Algorithm

▶ We propose to use both network state H and dual variables µ as input to the resource allocation
policy.

▶ We leverage a revised state-augmented parameterization p(H,µ;ϕ) to replace p(H;θ).

Ht p(H;θ) pt p(H,µ;ϕ) pt

Ht

µk

Regular Parameterization State-Augmented Parameterization
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State-Augmented Primal and Dual Dynamics

▶ The revised parameterization leads to the augmented Lagrangian

Lµ(ϕ) = U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ,µ;ϕ))

)
+ µTg

(
1

T

T−1∑
t=0

f(Ht , p(Ht ,µ;ϕ))

)
.

▶ The optimal state-augmented policy parameters are found during training as

ϕ⋆ = argmax
ϕ∈Φ

Eµ [Lµ(ϕ)] .

▶ This resolves the challenge of re-optimizing the model parameters for any given set of dual variables.
▶ The dual variables are updated during execution as

µk+1 =

µk − ηµ g

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ,µk ;ϕ
⋆))


︸ ︷︷ ︸

Constraint satisfaction over the kth iteration


+

.
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Theoretical Guarantees of State Augmentation

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ,µ⌊t/T0⌋;ϕ

⋆
)))

≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ,µ⌊t/T0⌋;ϕ

⋆
)))]

≥ P⋆ − cηµG
2

2
−Mϵ.

▶ ϵ-universal parameterization p(H,µ;ϕ): For any H and θ(·), there exists ϕ s.t.

E ∥p(H,µ;ϕ)− p(H;θ(µ))∥∞ ≤ ϵ.

▶ M-Lipschitz continuity of f: For any H, p1 and p2, E ∥f(H, p1)− f(H, p2)∥∞ ≤ ME ∥p1 − p2∥∞ .

▶ The decisions made by our method are close to those made by the original primal-dual iterations.

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242
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Power Control in Interference Channels

▶ We focus on multi-user interference channels with m transmitter-receiver pairs.

▶ The performance function for the i th receiver represents its Shannon capacity,

fi (Ht , p) = log2

(
1 +

pi |hii,t |2
N

Pmax
+
∑m

j=1,j ̸=i pj |hji,t |
2

)
.

▶ Considering a sum-rate utility and minimum-rate constraints leads to

max
{p(Ht )}T−1

t=0

1

T

T−1∑
t=0

m∑
i=1

fi (Ht , p(Ht)),

s.t.
1

T

T−1∑
t=0

f(Ht , p(Ht)) ≥ fmin1m.
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Modeling Interference Channels as Graphs

▶ We model the interference channel at each time step t as a graph Gt = (V, E ,Yt ,wt).

⇒ V = {1, 2, . . . ,m} denotes the set of transceiver nodes, and E ⊆ V ×V denotes the set of edges.

⇒ Yt ∈ Rm×1 denotes the initial node features, which we set to the dual variables: Yt = µ⌊t/T0⌋.

⇒ wt : E → R denotes the edge weight function, which we define as wt(i , j) ∝ log
(
Pmax|hij,t |2/N

)
.
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Graph Neural Network (GNN) Parameterizations

▶ We leverage GNN architectures to parameterize the resource allocation policies.

▶ Final node features at the output of the GNN are converted to resource allocation decisions.
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Scalability With Constant Network Density

▶ The network area size increases proportionally to the number of transmitter-receiver pairs.

▶ Policies are evaluated on the same network size that they have been trained on.
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Scalability With Variable Network Density

▶ The network area size is fixed regardless of the number of transmitter-receiver pairs.

▶ Policies are evaluated on the same network size that they have been trained on.
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Transferability With Constant Network Density

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.
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Transferability With Variable Network Density

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.
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Federated Learning with GNNs

▶ GNNs can enable distributed training of models in a federated learning scenario.

N. NaderiAlizadeh Graph Neural Network Applications 38



Federated Learning

▶ A group of agents attempt to learn a shared model w⋆ with minimium average loss across agents:

w⋆ = arg min
w∈Rd

1

N

N∑
i=1

E(x,y)∼Di
[ℓ(fw(x), y)].

▶ Considering a graph structure, we can have a constrained formulation:

min
w1,...,wn∈Rd

g(W) =
1

N

N∑
i=1

E(x,y)∼Di
[ℓ(fwi (x), y)],

s.t. wi =
1

|Ni |
∑
j∈Ni

wj , for all i = 1, . . . ,N.

▶ A major challenge: High communication cost between the agents (and a central server).
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Learning to Optimize via Algorithm Unrolling

▶ Instead of training the model W directly, we train a meta model Φ(W0,D; θ), whose output is W⋆:

W⋆ = Φ(W0,D; θ⋆) where θ⋆ = arg min
θ∈Rp

E
[
g(Φ(W0,D; θ))

]
.

▶ The meta model takes as input the initial model W0 and a set of local datasets D.
▶ We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

Wl = ϕl(Wl−1,D;θl), l = 1, . . . , L.

3434

Learning to Optimize via Algorithm Unrolling

⋯
Initial model𝐖0 Meta model𝚽(𝐖0, 𝒟; 𝜽) Final model𝐖⋆ = 𝐖𝐿
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Stochastic UnRolled Federated learning (SURF)

▶ Instead of the whole datasets D, we feed stochastic batches of data Bl to the meta model:

Wl = ϕl(Wl−1,D;θl) → Wl = ϕl(Wl−1,Bl ;θl).

▶ We encourage the model parameters to improve after every layer using descending constraints:

min
θ∈Rp

E
[
g(Φ(W0,B; θ))

]
s.t. E

[
∥∇g(Wl)∥ − (1− ϵ) ∥∇g(Wl−1)∥

]
≤ 0, for alll = 1, . . . , L,

Wl = ϕl(Wl−1,Bl ;θl), for all l = 1, . . . , L.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371
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Unrolling Distributed Gradient Descent via GNNs

▶ Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

wi (l) =
∑
j∈Ni

sijwj(l − 1)− β∇gi (wi (l − 1)), i = 1, . . . ,N.

▶ DGD relies on communication among agents, and local updates of the model using local data.

▶ We replace the first term with a GNN layer and the second term with a local FCNN:

Wl =
K−1∑
k=0

hklS
kWl−1 − σ ([Wl−1,Bl ]Ml + bl)

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371
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Empirical Evaluation of SURF + DGD with GNNs

▶ Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations

Centralized 25.81± 13.92 10

FedAvg 15.53± 12.29 10

SURF + DGD + GNN 90.83± 04.35 10

Centralized 92.71± 03.26 300

FedAvg 90.35± 03.69 300
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Transferability of SURF + DGD with GNNs

▶ The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.
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Protein Property Prediction with GNNs

▶ GNNs can enable learning over protein structures in biological systems.
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Protein Sequence – Structure – Function

MEQTEVL…SGSLENN

Sequence Structure Function
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Protein Structure vs. Sequence Data Growth
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AlphaFold: ML-Based Protein Structure Prediction

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, doi.org/10.1038/s41586-021-03819-2
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Modeling Protein Structures as Graphs

▶ Each node in the protein graph represents the Carbon-α atom of a residue (i.e., amino acid).

▶ 3D node coordinates given by X ∈ Rn×3 could be used as input node features.

▶ Graph adjacency matrix S can be derived via proximity in the sequence and/or structure.

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125
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GNNs Trained as Foundation Models for Protein Structures

▶ A GNN Φ(X;S,H) can be pre-trained to minimize a contrastive loss on protein graph embeddings.

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125
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Graph Transformers Trained on Protein Structures

▶ Graph Transformers enable learning on multiple protein graph structures simultaneously.

Diaz et al., Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations, Nature, doi.org/10.1038/s41467-024-49780-2
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Protein Language Models (PLMs) as Sequence Feature Extractors

▶ PLM architectures are pre-trained using millions of sequences via the unsupervised masking objective

LMLM(θ) = −
1

N

N∑
i=1

∑
j∈Mi

log pθ(sij |si,\Mi
)

▶ This leads to intermediate embeddings E ∈ RL×d that can be used for downstream tasks.

M E Q T E S — L E N N

L

UniProt
Protein Language Model

Embeddings E ∈ ℝL×d

A C W Y

0.03 0.46 0.07 0.11

…

Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science, science.org/doi/10.1126/science.ade2574

Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, IEEE TPAMI, arxiv.org/abs/2007.06225
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Fusing Sequence and Structure Information via PLMs and GNNs

▶ PLM-generated embeddings can be used as input graph signals for subsequent GNN models.

Zhang et al., A Systematic Study of Joint Representation Learning on Protein Sequences and Structures, ICLR MLDD, arxiv.org/abs/2303.06275
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GNN-Based Constraints Can Make PLMs Structure-Aware

▶ Unsupervised GNN-based losses can be used for enforcing structural constraints on PLMs.

min
θPLM,HGNN

LSeq(θPLM),

s.t. LStr(Xi ,Si ; θPLM,HGNN) ≤ ϵi , for all i = 1, . . . ,N.

MEQTEVL…SGSLENN

Wang-Heinzinger-NaderiAlizadeh, Fusing Protein Structures and Sequences: A Constrained Learning Approach, In Preparation.
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Summary: GNNs Enable Scalable ML Applications on Graphs
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