

Graph Neural Networks Architectures, Fundamental Properties and Applications

Navid NaderiAlizadeh, Alejandro Ribeiro, Luana Ruiz, Zhiyang Wang

Web: gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

Graph Neural Network Applications

Navid NaderiAlizadeh

Dept. of Biostatistics & Bioinformatics Duke University

navid.naderi@duke.edu
sites.duke.edu/navid

TH15: Graph Neural Networks: Architectures, Fundamental Properties and Applications gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

Applications of GNNs

▶ GNNs enable scalable machine learning on graph-structured data in a variety of systems.

- \Rightarrow Learning ratings in recommendation systems
- \Rightarrow Resource allocation in communication systems
- \Rightarrow Federated learning in distributed systems
- \Rightarrow Protein property prediction in biological systems

Learning Ratings in Recommendation Systems

▶ Formulate recommendation systems as ML problems that predict ratings that users give to items

▶ In a recommendation system, we want to predict the rating a user would give to an item

- ▶ Collect ratings that some users give to some items ⇒ These are rating histories
- Exploit product similarities to predict ratings of unseen user-item pairs
- Example $1 \Rightarrow$ In an online store items are products and users are customers
- Example 2 \Rightarrow In a movie repository items are movies and users are watchers

For all items *i* and users *u* there exist ratings $\Rightarrow y_{ui}$

 \Rightarrow User rating vector \mathbf{y}_u has entries y_{ui}

• We only observe a subset of ratings $\Rightarrow x_{ui}$

 \Rightarrow Observed user rating vector \mathbf{x}_u has entries x_{ui}

 \Rightarrow We assume $x_{ui} = 0$ if item *i* is unrated by user *u*

Duke Johns Hopkins Renn

For all items *i* and users *u* there exist ratings $\Rightarrow y_{ui}$

 \Rightarrow User rating vector \mathbf{y}_u has entries y_{ui}

• We only observe a subset of ratings $\Rightarrow x_{ui}$

 \Rightarrow Observed user rating vector \mathbf{x}_u has entries x_{ui}

 \Rightarrow We assume $x_{ui} = 0$ if item *i* is unrated by user *u*

Duke Tohns Hopkins Renn

- Construct product similarity graph with weights w_{ij} represent likelihood of similar scores
- lnterpret vector of ratings y_u of user u as a graph signal supported on the product similarity graph
- The observed ratings x_u of user u are a subsampling of this graph signal.
- Our goal is to learn to reconstruct the rating graph signal y_u from the observed ratings x_u
- ▶ Build similarity graph using available ratings. Use of expert knowledge is common as well

• Consider pair of products i and j. Restrict attention to set of users that rated both products $\Rightarrow U_{ij}$

Mean ratings restricted to users that rated products i and j

$$\mu_{ij} = rac{1}{\#(\mathcal{U}_{ij})} \sum_{u \in \mathcal{U}_{ij}} x_{ui} \qquad \mu_{ji} = rac{1}{\#(\mathcal{U}_{ij})} \sum_{u \in \mathcal{U}_{ji}} x_{uj}$$

• Similarity score = correlation restricted to users in U_{ij}

$$\sigma_{ij} = \frac{1}{\#(\mathcal{U}_{ij})} \sum_{u \in \mathcal{U}_{ij}} \left(x_{ui} - \mu_{ij} \right) \left(x_{uj} - \mu_{ji} \right)$$

• Weights = normalized correlations $\Rightarrow w_{ij} = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$

• Given observed ratings \mathbf{x}_u the AI produces estimates $\Phi(\mathbf{x}_u)$. We want $\Phi(\mathbf{x}_u)$ to approximate \mathbf{y}_u

$$\ell\Big(\mathbf{y}_{u}, \Phi(\mathbf{x}_{u})\Big) = rac{1}{2}\Big\|\mathbf{y}_{u} - \Phi(\mathbf{x}_{u})\Big\|^{2}$$

In reality, we want to predict the rating of specific item i

$$\ell\left(\mathbf{y}_{u}, \Phi(\mathbf{x}_{u})\right) = \frac{1}{2} \left(\mathbf{e}_{i}^{\mathsf{T}} \mathbf{y}_{u} - \mathbf{e}_{i}^{\mathsf{T}} \Phi(\mathbf{x}_{u})\right)^{2}$$

• Where \mathbf{e}_i is a vector in the canonical basis $\Rightarrow (\mathbf{e}_i)_i = 1$, $(\mathbf{e}_i)_j = 0$ for $j \neq i$

Duke Johns Hopkins Renn

• For each item *i* let U_i be the set of users that have rated *i*. Construct training pairs (x, y) with

$$\mathbf{y} = \left(\mathbf{e}_i^\mathsf{T} \mathbf{x}_u\right) \mathbf{e}_i \qquad \mathbf{x} = \mathbf{x}_u - \mathbf{y} \qquad \text{for all } u \in \mathcal{U}_i, \text{ for all } i$$

Extract the rating x_{ui} of item *i*. Record into graph signal y

- Remove rating x_{ui} from x_u . Record to graph signal x
- Repeat for all users in the set U_i of users that rated *i*
- Repeat for all items \Rightarrow Training set T

▶ Parameterized AI $\Phi(\mathbf{x}_u) = \Phi(\mathbf{x}_u; \mathcal{H})$. We want to find solution of the supervised learning problem

$$\mathcal{H}^* = \operatorname{argmin}_{\mathcal{H}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \left(\mathbf{e}_i^T \mathbf{y} - \mathbf{e}_i^T \Phi(\mathbf{x}; \mathcal{H}) \right)^2$$

▶ Two bad ideas ⇒ Linear regression. Fully connected neural networks

Two good ideas \Rightarrow Graph filters. Graph neural networks

Learning Ratings with Graph Filters and GNNs

We use graph filters and graph neural networks to learn ratings in recommendation systems

► We contrast with the use of linear regression and fully connected neural networks

• Use MovieLens-100k as benchmark $\Rightarrow 10^6$ ratings given by U = 943 users to M = 1,682 movies

The ratings for each movie are between 1 and 5. From one star to five starts

Train and test several machine learning parametrizations.

▶ We predict ratings using AI that results from solving the ERM problem

$$\mathcal{H}^* = \operatorname{argmin}_{\mathcal{H}} \sum_{(\mathbf{x}, y) \in \mathcal{T}} \left(\mathbf{e}_i^T \mathbf{y} - \mathbf{e}_i^T \Phi(\mathbf{x}; \mathcal{H}) \right)^2$$

▶ Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

▶ Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs

Duke Johns Hopkins Renn

- ▶ Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5
- Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

► Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

Duke 🗑 Johns Hopkins 👼 Penn

- Linear regression works even worse in the test set
- ▶ The test MSE of the graph filter is about the same as the training MSE. It generalizes

► Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

- The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.
- Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

► Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

Duke Johns Hopkins ZPenn

- ▶ But the fully connected NN does not do well in the test set. It does not generalize
- The test MSE of the graph NN is about the same as the training MSE. It generalizes

• Graph NN outperforms fully connected NN \Rightarrow Leverages underlying permutation symmetries

Duke 🗑 Johns Hopkins 👼 Penn

- ▶ The graph filter and the GNN do well in the training and test set. They generalize well
- ▶ The GNN does a little better. Not by much. But an extra 10% is not irrelevant

▶ GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

Penn

Duke 🐨 Johns Hopkins

- ▶ The graph filter and the GNN do well in the training and test set. They generalize well
- ▶ The GNN does a little better. Not by much. But an extra 10% is not irrelevant

▶ GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

Penn

Duke 🗑 Johns Hopkins

- ► A GNN can be trained on a graph with a small number of nodes ...
 - \Rightarrow And transferred to a graph with a (much) larger number of nodes. Without retraining

▶ In this recommendation system, transference incurs no MSE degradation \Rightarrow MSE is further reduced

Wireless Resource Management with GNNs

GNNs can enable scalable resource management in autonomous wireless communication networks.

• Wireless networks are growing beyond humans' ability to design and manage them \rightarrow 5G, WiFi 6

• To address increasing complexity of wireless networks, we will make them autonomous \rightarrow 6G, WiFi 7

 \Rightarrow An autonomous wireless network makes (at least some) decisions without human intervention.

- Making operational decisions in wireless networks entails solving large-scale constrained optimization problems.
- Solving these problems is very challenging, leading to the design and use of heuristic methods.

We can leverage data to learn better autonomous network management policies using machine learning.

Duke 🗑 JOHNS HOPKINS 👼 Penn

Duke 🗑 Johns Hopkins 👼 Penn

- In this classical formulation, resource allocation decisions must be recalculated for any given network state H.
 - \Rightarrow This makes learning and deploying such a policy infeasible in practice.
- We parameterize the resource allocation policy, replacing $\mathbf{p}(\mathbf{H})$ with $\mathbf{p}(\mathbf{H}; \boldsymbol{\theta})$.
- The advantage of parameterization is that we do not need to solve the problem online to find the decisions.

Unparameterized Formulation

$$\max_{\{\mathbf{p}(\mathbf{H}_t)\}_{t=0}^{T-1}} \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t))\right) \xrightarrow{P^{\star} = \max_{\boldsymbol{\theta} \in \Theta}} \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta}))\right)$$
s.t. $\mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t))\right) \ge \mathbf{0}$
s.t. $\mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta}))\right) \ge \mathbf{0}$

Penn

Duke 🗑 Johns Hopkins

Empirical Risk Minimization

$$\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \quad -\frac{1}{N} \sum_{i=0}^{N-1} \ell\left(\psi\left(\mathbf{x}_{i}; \boldsymbol{\theta}\right)\right)$$

Parameterized Resource Allocation

$$\begin{split} \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \quad \mathcal{U} \Bigg(\frac{1}{T} \sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta})) \Bigg) \\ \text{s.t.} \quad \mathbf{g} \Bigg(\frac{1}{T} \sum_{t=0}^{T-1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta})) \Bigg) \geq \mathbf{0} \end{split}$$

- Sequential decision making over a time series sequence {H_t}^{T-1}_{t=0} without access to ground-truth labels.
- Inclusion of the constraints makes this problem fundamentally different from a regular learning problem.

- > We move to the Lagrangian dual domain, and associate a set of non-negative dual variables μ to the constraints.
- The Lagrangian function can then be written as

$$\mathcal{L}(\boldsymbol{\theta}, \mu) = \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} f(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta}))\right) + \mu^T \mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} f(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t; \boldsymbol{\theta}))\right).$$

► We then seek to maximize the Lagrangian over θ , while minimizing it over μ , i.e., $D^* = \min_{\mu > 0} \max_{\theta \in \Theta} \mathcal{L}(\theta, \mu).$

Duke Tohns Hopkins Renn

- The primal model parameters θ and the dual variables μ can be iteratively updated using a primal-dual method.
- We define an iteration duration T_0 between consecutive updates, and an iteration index k.

$$\boldsymbol{\theta}_{k} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left[\mathcal{U} \left(\frac{1}{T_{0}} \sum_{t=kT_{0}}^{(k+1)T_{0}-1} \mathbf{f}(\mathbf{H}_{t}, \mathbf{p}(\mathbf{H}_{t}; \boldsymbol{\theta})) \right) + \mu_{k}^{T} \mathbf{g} \left(\frac{1}{T_{0}} \sum_{t=kT_{0}}^{(k+1)T_{0}-1} \mathbf{f}(\mathbf{H}_{t}, \mathbf{p}(\mathbf{H}_{t}; \boldsymbol{\theta})) \right) \right]$$

$$\mu_{k+1} = \left[\mu_{k} - \eta_{\mu} \mathbf{g} \left(\frac{1}{T_{0}} \sum_{t=kT_{0}}^{(k+1)T_{0}-1} \mathbf{f}(\mathbf{H}_{t}, \mathbf{p}(\mathbf{H}_{t}; \boldsymbol{\theta}_{k})) \right) \right]_{+}$$

Constraint slacks are the gradient or a subgradient of the Lagrangian with respect to the dual variables.

Duke 🐨 Johns Hopkins 👼 Penn

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

$$\lim_{T\to\infty} \mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}\left(\mathbf{H}_t, \mathbf{p}\left(\mathbf{H}_t; \frac{\boldsymbol{\theta}_{\lfloor t/T_0 \rfloor}}{}\right)\right)\right) \geq 0, \quad a.s.$$

and near-optimal, i.e.,

$$\lim_{T \to \infty} \mathbb{E}\left[\mathcal{U}\left(\frac{1}{T} \sum_{t=0}^{T-1} f\left(\mathbf{H}_{t}, \mathbf{p}\left(\mathbf{H}_{t}; \frac{\boldsymbol{\theta}_{\lfloor t/T_{0} \rfloor}}{2}\right)\right) \right) \right] \geq P^{\star} - \frac{c\eta_{\mu} G^{2}}{2}$$

- c denotes the number of constraints, η_{μ} denotes the dual step size, G upper-bounds the constraint magnitudes.
- There are no restrictions on the convexity of **f** and the parameterization $\mathbf{p}(\cdot; \boldsymbol{\theta})$.
- Issue: Training cannot be stopped at a finite iteration!

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

Duke 🐨 Johns Hopkins

- We propose to use both network state H and dual variables μ as input to the resource allocation policy.
- We leverage a revised state-augmented parameterization $\mathbf{p}(\mathbf{H}, \mu; \phi)$ to replace $\mathbf{p}(\mathbf{H}; \theta)$.

Regular Parameterization

State-Augmented Parameterization

The revised parameterization leads to the augmented Lagrangian

$$\mathcal{L}_{\mu}(\boldsymbol{\phi}) = \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathsf{f}(\mathsf{H}_{t}, \mathsf{p}(\mathsf{H}_{t}, \mu; \boldsymbol{\phi}))\right) + \mu^{T} \mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathsf{f}(\mathsf{H}_{t}, \mathsf{p}(\mathsf{H}_{t}, \mu; \boldsymbol{\phi}))\right).$$

The optimal state-augmented policy parameters are found during training as

$$oldsymbol{\phi}^{\star} = rg\max_{oldsymbol{\phi}\inoldsymbol{\Phi}} \mathbb{E}_{\mu}\left[\mathcal{L}_{\mu}(oldsymbol{\phi})
ight].$$

This resolves the challenge of re-optimizing the model parameters for any given set of dual variables.
 The dual variables are updated during execution as

$$\mu_{k+1} = \left[\mu_k - \eta_{\mu} \underbrace{\mathbf{g}\left(\frac{1}{T_0} \sum_{t=kT_0}^{(k+1)T_0 - 1} \mathbf{f}(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t, \mu_k; \boldsymbol{\phi}^*))\right)}_{\text{Constraint satisfaction over the } k^{\text{th} iteration}} \right]_+$$

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

$$\lim_{T\to\infty} \mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathsf{f}\left(\mathsf{H}_t, \mathsf{p}\left(\mathsf{H}_t, \boldsymbol{\mu}_{\lfloor t/T_0 \rfloor}; \boldsymbol{\phi}^\star\right)\right)\right) \geq 0, \quad a.s.$$

and near-optimal, i.e.,

$$\lim_{T\to\infty} \mathbb{E}\left[\mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}\left(\mathbf{H}_{t}, \mathbf{p}\left(\mathbf{H}_{t}, \boldsymbol{\mu}_{\lfloor t/T_{0} \rfloor}; \boldsymbol{\phi}^{\star}\right)\right)\right)\right] \geq P^{\star} - \frac{c\eta_{\mu}G^{2}}{2} - M\epsilon$$

• ϵ -universal parameterization $\mathbf{p}(\mathbf{H}, \mu; \phi)$: For any **H** and $\theta(\cdot)$, there exists ϕ s.t.

 $\mathbb{E} \left\| \mathsf{p}(\mathsf{H},\mu; oldsymbol{\phi}) - \mathsf{p}(\mathsf{H}; oldsymbol{ heta}(\mu))
ight\|_{\infty} \leq \epsilon.$

- ▶ *M*-Lipschitz continuity of f: For any H, \mathbf{p}_1 and \mathbf{p}_2 , $\mathbb{E} \| \mathbf{f}(\mathbf{H}, \mathbf{p}_1) \mathbf{f}(\mathbf{H}, \mathbf{p}_2) \|_{\infty} \leq M \mathbb{E} \| \mathbf{p}_1 \mathbf{p}_2 \|_{\infty}$.
- The decisions made by our method are close to those made by the original primal-dual iterations.

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

- ▶ We focus on multi-user interference channels with *m* transmitter-receiver pairs.
- ▶ The performance function for the *i*th receiver represents its Shannon capacity,

$$f_i(\mathbf{H}_t, \mathbf{p}) = \log_2 \left(1 + rac{p_i \left| h_{ii,t}
ight|^2}{rac{N}{P_{ ext{max}}} + \sum_{j=1, j
eq i}^m p_j \left| h_{ji,t}
ight|^2}
ight)$$

Considering a sum-rate utility and minimum-rate constraints leads to

$$\max_{\substack{\{\mathbf{p}(\mathbf{H}_t)\}_{t=0}^{T-1} \\ \text{s.t.}} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{i=1}^{m} f_i(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t)),$$
$$\frac{1}{T} \sum_{t=0}^{T-1} f(\mathbf{H}_t, \mathbf{p}(\mathbf{H}_t)) \geq f_{\min} \mathbf{1}_m.$$

Duke 🗑 Johns Hopkins 👼 Penn

Modeling Interference Channels as Graphs

- We model the interference channel at each time step t as a graph $\mathcal{G}_t = (\mathcal{V}, \mathcal{E}, \mathbf{Y}_t, w_t)$. $\Rightarrow \mathcal{V} = \{1, 2, \dots, m\}$ denotes the set of transceiver nodes, and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ denotes the set of edges.
 - $\Rightarrow \mathbf{Y}_t \in \mathbb{R}^{m \times 1}$ denotes the initial node features, which we set to the dual variables: $\mathbf{Y}_t = \boldsymbol{\mu}_{\lfloor t/T_0 \rfloor}$.
 - $\Rightarrow w_t : \mathcal{E} \to \mathbb{R}$ denotes the edge weight function, which we define as $w_t(i,j) \propto \log (P_{\max}|h_{ij,t}|^2/N)$.

Duke 🗑 Johns Hopkins 🔀 Penn

- ▶ We leverage GNN architectures to parameterize the resource allocation policies.
- ▶ Final node features at the output of the GNN are converted to resource allocation decisions.

Duke 🗑 Johns Hopkins 👼 Penn

- > The network area size increases proportionally to the number of transmitter-receiver pairs.
- Policies are evaluated on the same network size that they have been trained on.

Renn

Duke 🗑 Johns Hopkins

- > The network area size is fixed regardless of the number of transmitter-receiver pairs.
- Policies are evaluated on the same network size that they have been trained on.

Penn

Duke 🗑 Johns Hopkins

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.

Federated Learning with GNNs

GNNs can enable distributed training of models in a federated learning scenario.

▶ A group of agents attempt to learn a shared model w* with minimium average loss across agents:

$$\mathbf{w}^{\star} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{(\mathbf{x}, y) \sim \mathfrak{D}_i}[\ell(f_{\mathbf{w}}(\mathbf{x}), y)].$$

Considering a graph structure, we can have a constrained formulation:

$$\begin{split} \min_{\mathbf{w}_1, \dots, \mathbf{w}_n \in \mathbb{R}^d} \quad g(\mathbf{W}) &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{(\mathbf{x}, y) \sim \mathfrak{D}_i} [\ell(f_{\mathbf{w}_i}(\mathbf{x}), y)], \\ \text{s.t.} \qquad \mathbf{w}_i &= \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{w}_j, \quad \text{for all } i = 1, \dots, N. \end{split}$$

A major challenge: High communication cost between the agents (and a central server).

▶ Instead of training the model W directly, we train a meta model $\Phi(W_0, D; \theta)$, whose output is W^{*}:

$$\mathbf{W}^{\star} = \mathbf{\Phi}(\mathbf{W}_{0}, \mathcal{D}; \boldsymbol{\theta}^{\star}) \quad \text{where} \quad \boldsymbol{\theta}^{\star} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}P} \quad \mathbb{E}\big[g(\mathbf{\Phi}(\mathbf{W}_{0}, \mathcal{D}; \boldsymbol{\theta}))\big].$$

- The meta model takes as input the initial model W_0 and a set of local datasets \mathcal{D} .
- We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

 $\mathbf{W}_{l} = \phi_{l}(\mathbf{W}_{l-1}, \mathcal{D}; \boldsymbol{\theta}_{l}), \quad l = 1, \ldots, L.$

Duke Johns Hopkins Repair

▶ Instead of the whole datasets D, we feed stochastic batches of data B_l to the meta model:

$$\mathbf{W}_{I} = \phi_{I}(\mathbf{W}_{I-1}, \mathcal{D}; \boldsymbol{\theta}_{I}) \quad \rightarrow \quad \mathbf{W}_{I} = \phi_{I}(\mathbf{W}_{I-1}, \boldsymbol{\beta}_{I}; \boldsymbol{\theta}_{I}).$$

We encourage the model parameters to improve after every layer using descending constraints:

$$\begin{split} \min_{\boldsymbol{\theta} \in \mathbb{R}^{\rho}} & \mathbb{E} \big[g(\boldsymbol{\Phi}(\mathbf{W}_{0}, \boldsymbol{\mathcal{B}}; \boldsymbol{\theta})) \big] \\ \text{s.t.} & \mathbb{E} \Big[\| \nabla g(\mathbf{W}_{l}) \| - (1 - \epsilon) \| \nabla g(\mathbf{W}_{l-1}) \| \Big] \leq 0, \text{ for all } l = 1, \dots, L, \\ & \mathbf{W}_{l} = \phi_{l}(\mathbf{W}_{l-1}, \boldsymbol{\mathcal{B}}_{l}; \boldsymbol{\theta}_{l}), \quad \text{for all } l = 1, \dots, L. \end{split}$$

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

$$\mathbf{w}_i(l) = \sum_{j \in \mathcal{N}_i} s_{ij} \mathbf{w}_j(l-1) - \beta \nabla g_i(\mathbf{w}_i(l-1)), \quad i = 1, \dots, N.$$

- DGD relies on communication among agents, and local updates of the model using local data.
- ▶ We replace the first term with a GNN layer and the second term with a local FCNN:

$$\mathbf{W}_{l} = \sum_{k=0}^{K-1} h_{kl} \mathbf{S}^{k} \mathbf{W}_{l-1} - \sigma \left(\left[\mathbf{W}_{l-1}, \mathcal{B}_{l} \right] \mathbf{M}_{l} + \mathbf{b}_{l} \right)$$

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

Penn

Duke 🗑 Johns Hopkins

► Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm	Accuracy	#Layers/Iterations		
Centralized	25.81 ± 13.92	10		
FedAvg	15.53 ± 12.29	10		
SURF + DGD + GNN	$\textbf{90.83} \pm \textbf{04.35}$	10		
Centralized	$\textbf{92.71} \pm \textbf{03.26}$	300		
FedAvg	90.35 ± 03.69	300		

Duke 🗑 Johns Hopkins 👼 Penn

The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.

Renn

Duke 🗑 Johns Hopkins

Protein Property Prediction with GNNs

• GNNs can enable learning over protein structures in biological systems.

MEQTEVL...SGSLENN → (

Duke Johns Hopkins Renn

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, doi.org/10.1038/s41586-021-03819-2

Duke Tohns Hopkins Renn

- Each node in the protein graph represents the Carbon- α atom of a residue (i.e., amino acid).
- ▶ 3D node coordinates given by $X \in \mathbb{R}^{n \times 3}$ could be used as input node features.
- ▶ Graph adjacency matrix S can be derived via proximity in the sequence and/or structure.

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125

Renn

Duke 🐨 Johns Hopkins

► A GNN $\Phi(\mathbf{X}; \mathbf{S}, \mathbf{H})$ can be pre-trained to minimize a contrastive loss on protein graph embeddings.

Method	Pretraining EC		GO		Fold Classification				Reaction	
	Dataset (Size)		BP	MF	CC	Fold	Super.	Fam.	Avg.	
CNN (Shanehsazzadeh et al., 2020)		0.545	0.244	0.354	0.287	11.3	13.4	53.4	26.0	51.7
ResNet (Rao et al., 2019)	-	0.605	0.280	0.405	0.304	10.1	7.21	23.5	13.6	24.1
LSTM (Rao et al., 2019)	-	0.425	0.225	0.321	0.283	6.41	4.33	18.1	9.61	11.0
Transformer (Rao et al., 2019)		0.238	0.264	0.211	0.405	9.22	8.81	40.4	19.4	26.6
GCN (Kipf & Welling, 2017)		0.320	0.252	0.195	0.329	16.8*	21.3*	82.8*	40.3*	67.3*
GAT (Veličković et al., 2018)		0.368	0.284^{+}	0.317 [†]	0.385	12.4	16.5	72.7	33.8	55.6
GVP (Jing et al., 2021)	-	0.489	0.326 ⁺	0.426^{+}	0.420^{+}	16.0	22.5	83.8	40.7	65.5
3DCNN_MQA (Derevyanko et al., 2018)	-	0.077	0.240	0.147	0.305	31.6*	45.4*	92.5*	56.5*	72.2*
GraphQA (Baldassarre et al., 2021)	-	0.509	0.308	0.329	0.413	23.7*	32.5*	84.4*	46.9*	60.8*
New IEConv (Hermosilla & Ropinski, 2022)		0.735	0.374	0.544	0.444	47.6*	70.2*	99.2*	72.3*	87.2*
DeepFRI (Gligorijević et al., 2021)	Pfam (10M)	0.631	0.399	0.465	0.460	15.3*	20.6*	73.2*	36.4*	63.3*
ESM-1b (Rives et al., 2021)	UniRef50 (24M)	0.864	0.452	0.657	0.477	26.8	60.1	97.8	61.5	83.1
ProtBERT-BFD (Elnaggar et al., 2021)	BFD (2.1B)	0.838	0.279	0.456 [†]	0.408^{\dagger}	26.6*	55.8*	97.6*	60.0*	72.2*
LM-GVP (Wang et al., 2022b)	UniRef100 (216M)	0.664	0.417^{+}	0.545	0.527					
New IEConv (Hermosilla & Ropinski, 2022)	PDB (476K)	-	-	-		50.3*	80.6*	99.7*	76.9*	87.6*
Multiview Contrast	AlphaFoldDB (805K)	0.874	0.490	0.654	0.488	54.1	80.5	99.9	78.1	87.5

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125

N. NaderiAlizadeh

Renn

Duke 🗑 Johns Hopkins

▶ Graph Transformers enable learning on multiple protein graph structures simultaneously.

Diaz et al., Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations, Nature, doi.org/10.1038/s41467-024-49780-2

N. NaderiAlizadeh

Duke 🗑 Johns Hopkins 👼 Penn

Protein Language Models (PLMs) as Sequence Feature ExtractorsDuke 🐨 OHNS HOPKINS 😿 Penn

PLM architectures are pre-trained using millions of sequences via the unsupervised masking objective

$$\mathcal{L}_{\mathsf{MLM}}(heta) = -rac{1}{N}\sum_{i=1}^{N}\sum_{j\in\mathcal{M}_{i}}\log p_{ heta}(s_{ij}|s_{i,igvee\mathcal{M}_{i}})$$

▶ This leads to intermediate embeddings $E \in R^{L \times d}$ that can be used for downstream tasks.

Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science, science.org/doi/10.1126/science.ade2574 Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, IEEE TPAMI, arxiv.org/abs/2007.06225 PLM-generated embeddings can be used as input graph signals for subsequent GNN models.

Method	PLM	Struct. Info.	EC	GO-BP	GO-MF	
			Fmax	F _{max}	Fmax	
ProtBERT-BFD ¹	~	×	0.838	0.279	0.456	
ESM-2-650M ¹	\checkmark	×	0.880	0.460	0.661	
GearNet	×	1	0.730	0.356	0.503	
ESM-GearNet	\checkmark	\checkmark	<u>0.890</u>	<u>0.488</u>	<u>0.681</u>	

Zhang et al., A Systematic Study of Joint Representation Learning on Protein Sequences and Structures, ICLR MLDD, arxiv.org/abs/2303.06275

Unsupervised GNN-based losses can be used for enforcing structural constraints on PLMs.

Wang-Heinzinger-NaderiAlizadeh, Fusing Protein Structures and Sequences: A Constrained Learning Approach, In Preparation.

Penn

Duke 🐨 Johns Hopkins

Summary: GNNs Enable Scalable ML Applications on Graphs

