Graph Neural Networks
Architectures, Fundamental Properties and Applications

Navid NaderiAlizadeh, Alejandro Ribeiro, Luana Ruiz, Zhiyang Wang

Web:

Feb 26 2025

N. NaderiAlizadeh Graph Neural Networks: Architectures, Fundamental Properties and Applications

gnn.seas.upenn.edu/aaai-2025/

N. NaderiAlizadeh

ERSITY

Duke & Jorns Horkins. 78 Penn

Graph Neural Network Applications

Navid NaderiAlizadeh

Dept. of Biostatistics & Bioinformatics
Duke University

TH15: Graph Neural Networks: Architectures, Fundamental Properties and Applications
gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

Graph Neural Network Applications

navid.naderi@duke.edu
sites.duke.edu/navid

Applications of GNNs

» GNNs enable scalable machine learning on graph-structured data in a variety of systems.
= Learning ratings in recommendation systems
= Resource allocation in communication systems
= Federated learning in distributed systems

= Protein property prediction in biological systems

N. NaderiAlizadeh Graph Neural Network Applications)

ERSITY

Duke & Jorns Horkins. 78 Penn

Learning Ratings in Recommendation Systems

» Formulate recommendation systems as ML problems that predict ratings that users give to items

N. NaderiAlizadeh Graph Neural Network Applications 4

Recommendation Systems Duke @ Jorns Hopins

UNIVERSITY

v

In a recommendation system, we want to predict the rating a user would give to an item

v

Collect ratings that some users give to some items = These are rating histories

v

Exploit product similarities to predict ratings of unseen user-item pairs

v

Example 1 = In an online store items are products and users are customers

v

Example 2 =- In a movie repository items are movies and users are watchers

N. NaderiAlizadeh Graph Neural Network Applications 5

Ratings and Sampled Ratings

» For all items /i and users u there exist ratings = y,i

= User rating vector y, has entries y,;

» We only observe a subset of ratings = x;
= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u

N. NaderiAlizadeh Graph Neural Network Applications

Ratings and Sampled Ratings NS HOPKINS

IVERSITY

T 1T
» For all items /i and users u there exist ratings = y,i I :ﬁ

= User rating vector y, has entries y,;

T T

» We only observe a subset of ratings = x;

= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u

N. NaderiAlizadeh Graph Neural Network Applications 6

Product Ratings as Graph Signals INS HOPKINS

IVERSITY

» Construct product similarity graph with weights w;; represent likelihood of similar scores

» Interpret vector of ratings y, of user u as a graph signal supported on the product similarity graph

» The observed ratings x, of user u are a subsampling of this graph signal.

v

Our goal is to learn to reconstruct the rating graph signal y, from the observed ratings x,

v

Build similarity graph using available ratings. Use of expert knowledge is common as well

N. NaderiAlizadeh Graph Neural Network Applications 7

Product Similarity Graph &y JOHNS HOPKINS

IVERSITY

» Consider pair of products / and j. Restrict attention to set of users that rated both products = U;

» Mean ratings restricted to users that rated products i/ and j

1
a (uu) 2% =gy 2%

u€U;; u€U;;
N . , : L
» Similarity score = correlation restricted to users in U :!-
1y 2 (=) (o =) 2
ojj = - ui = Hij uj — Mji
#y) &

» Weights = normalized correlations = w; = (J'jj/\/(f,'j(fjj

N. NaderiAlizadeh Graph Neural Network Applications 8

UNIVERSITY

Loss for Measuring Rating Prediction Quality Duke & Jorns Horkins

> Given observed ratings x, the Al produces estimates ®(x,). We want ®(x,) to approximate y,

((r906) = vt |

» In reality, we want to predict the rating of specific item /
1 2
(v ®(x)) = 5 (e yu el 0(x.))

» Where e; is a vector in the canonical basis = (e;);i =1, (e;); =0 for j # i

N. NaderiAlizadeh Graph Neural Network Applications 9

Training Set INS HOPKINS

IVERSITY

» For each item i let U; be the set of users that have rated i. Construct training pairs (x,y) with
y= (e,-Txu)e; X=X, —Y for all u e U;, for all i
» Extract the rating x,; of item /. Record into graph signal y

» Remove rating x,; from x,. Record to graph signal x

v

Repeat for all users in the set U/, of users that rated i

v

Repeat for all items = Training set T

N. NaderiAlizadeh Graph Neural Network Applications 10

Learning Rating Predictions NS HOPKINS

IVERSITY

» Parameterized Al ®(x,) = ®(x,; H). We want to find solution of the supervised learning problem

2
H* = argmin Z (e,-Ty - e,-T¢(x;’H,))
"o (yeT

» Two bad ideas =- Linear regression. Fully connected neural networks

» Two good ideas =- Graph filters. Graph neural networks

N. NaderiAlizadeh Graph Neural Network Applications 11

ERSITY

Duke & Jorins Horkins

Learning Ratings with Graph Filters and GNNs

» We use graph filters and graph neural networks to learn ratings in recommendation systems

» We contrast with the use of linear regression and fully connected neural networks

N. NaderiAlizadeh Graph Neural Network Applications 12

Movie Ratings Dataset INS HOPKINS

IVERSITY

» Use MovieLens-100k as benchmark = 10° ratings given by U = 943 users to M = 1,682 movies

» The ratings for each movie are between 1 and 5. From one star to five starts

» Train and test several machine learning parametrizations.

N. NaderiAlizadeh Graph Neural Network Applications 13

Empirical Risk Minimization INS HOPKINS

IVERSITY

» We predict ratings using Al that results from solving the ERM problem

2
H* = argmin Z (e,-Ty - e,-T¢(x;’H,))
M ()T

» Parameterizations that ignore data structure= =- Linear regression. Fully connected NNs

» Parameterizations that leverage data structure= = Graph filters. Graph NNs

N. NaderiAlizadeh Graph Neural Network Applications 14

Linear Regression and Graph Filters NS HOPKINS

IVERSITY

> Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

» Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

Mean Square Error
I)
Mean Square Error
I

o
o

°
@
2

100 150 200 250 300 100 150 200 250 300
Iterations Iterations

°
@
2

» Graph filter outperforms linear regression = Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 15

Linear Regression and Graph Filters INS HOPKINS

IVERSITY

» Linear regression works even worse in the test set

» The test MSE of the graph filter is about the same as the training MSE. It generalizes

o

@

Mean Square Error
PN

Mean Square Error

~

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» Graph filter outperforms linear regression = Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 15

Fully Connected NNs and Graph NNs INS HOPKINS

IVERSITY

» The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

» Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

o o N o
[SRR

Mean Square Error
IS

Mean Square Error
PN

~
~

o
o

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 16

Fully Connected NNs and Graph NNs INS HOPKINS

IVERSITY

» But the fully connected NN does not do well in the test set. It does not generalize

» The test MSE of the graph NN is about the same as the training MSE. It generalizes

o

@

Mean Square Error
PN

Mean Square Error

~

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 16

Graph Filters and Graph Neural Networks INS HOPKINS

IVERSITY

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant

o

@
@

w

Mean Square Error
PN

Mean Square Error
IS

~

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff

N. NaderiAlizadeh Graph Neural Network Applications 17

Graph Filters and Graph Neural Networks

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant

2.00
i \
1.75 ‘ \‘ ‘
) ‘
| “i

£
| 1.25 i
: |
i 1
I

il

| ”‘I }‘
A

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Iterations Iterations

» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff

N. NaderiAlizadeh Graph Neural Network Applications 17

Transferability

» A GNN can be trained on a graph with a small number of nodes ...

= And transferred to a graph with a (much) larger number of nodes. Without retraining

0.975

0.970

0.965

0.960 -

Mean Square Error

0.955

0.950

200 300 400 500 600 700 800
Nodes of the Graph

» In this recommendation system, transference incurs no MSE degradation =- MSE is further reduced

N. NaderiAlizadeh Graph Neural Network Applications 18

ERSITY

Duke & Jorins Horkins

Wireless Resource Management with GNNs

» GNNs can enable scalable resource management in autonomous wireless communication networks.

N. NaderiAlizadeh Graph Neural Network Applications 19

Towards Next-Generation Wireless Networks JOHNS HOPKINS

NIVERSITY

» To address increasing complexity of wireless networks, we will make them autonomous — 6G, WiFi 7

= An autonomous wireless network makes (at least some) decisions without human intervention.

N. NaderiAlizadeh Graph Neural Network Applications 20

Autonomous Wireless Networks

JOHNb HOPKINS
U

NIVERSITY

» Making operational decisions in wireless networks entails solving large-scale constrained
optimization problems.

» Solving these problems is very challenging, leading to the design and use of heuristic methods

\ L5 S
e = Pt S
S

,l/‘%‘ X Ny \L B! \7(

e

» We can leverage data to learn better autonomous network management policies using machine
learning.

N. NaderiAlizadeh Graph Neural Network Applications

Wireless Resource Allocation Under Requirements (@ JOHNS HOPKINS 5

NIVERSITY

f(He, p(H:))

f

Network-level
performance

max <? Zf(Ht,P(Ht))> T
0

He)} ot
{p(t)}t,o p(Ht)

1
st g<r f(Ht,p(Ht))> >0 1
t=0 { Resource Allocation J

policy

f

H:

N. NaderiAlizadeh Graph Neural Network Applications 22

Policy Parameterization Duke & G Joris Hopkin

» In this classical formulation, resource allocation decisions must be recalculated for any given
network state H.

= This makes learning and deploying such a policy infeasible in practice.

» We parameterize the resource allocation policy, replacing p(H) with p(H;).

» The advantage of parameterization is that we do not need to solve the problem online to find the

decisions.
Unparameterized Formulation Parameterized Formulation
T— 1=
max = (He, p(Hy) — —
{p(H)} 5 (T Z et) e (T ; fHp(s))>
— B
= =
st. g+ f(He,p(H:)) | =20 st. g <T f(HnP(Ht;B))) >0
t=0 t=0

N. NaderiAlizadeh Graph Neural Network Applications 23

This is an Unsupervised Learning Problem (@ JOHNS HOPKINS

IVERSITY

Empirical Risk Minimization Parameterized Resource Allocation

N—1 T—
max f%ZE(w(x,—;O)) max Z/{(Z (He, p(Ht,O))>
i=0

0co

=

s.t. g(5 f(th(Ht;O))) >0

t=0

» Sequential decision making over a time series sequence {Ht}th_O1 without access to ground-truth
labels.

» Inclusion of the constraints makes this problem fundamentally different from a regular learning
problem.

N. NaderiAlizadeh Graph Neural Network Applications 24

NIVERSITY

Learning in the Dual Domain Duke & Jorns Horkins

» We move to the Lagrangian dual domain, and associate a set of non-negative dual variables u to
the constraints.

» The Lagrangian function can then be written as

T-1

L0, n)=U <; Z_f(HnP(H::G))> +u'g (. f(He,p Hrv9))>

t=0 t=0

» We then seek to maximize the Lagrangian over 8, while minimizing it over p, i.e.,
D* = min magﬁ(@,u).

n>00¢

N. NaderiAlizadeh Graph Neural Network Applications 25

UNIVERSITY

Iterative Unsupervised Primal-Dual Updates Duke & Jorns Horkins

» The primal model parameters 8 and the dual variables p can be iteratively updated using a
primal-dual method.

» We define an iteration duration Ty between consecutive updates, and an iteration index k.

1 (k+1)To—1 (k+1)To—1
_ il . T il .
0r = argmax |U | = tzk; f(H p(H:0)) | + g | - tzk; f(H:,p(H:; 0))
=Ko =Klo

k< k+1 1 (k+1)Tp—1
M1 = | By = NMug T Z f(He, p(H:; 6))
t=kTo
i

» Constraint slacks are the gradient or a subgradient of the Lagrangian with respect to the dual
variables.

N. NaderiAlizadeh Graph Neural Network Applications 26

Theoretical Guarantees of Primal-Dual Updates HNS HOPKINS

NIVERSITY

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

.] =
lim g <T Zf (He,p (Ht;OWTOJ))) >0, as.

T—oo
t=0

and near-optimal, i.e.,

lim E

T—o00

1 cn, G?
(3 (e (0 m)) |2 -

» ¢ denotes the number of constraints, 7, denotes the dual step size, G upper-bounds the constraint
magnitudes.

» There are no restrictions on the convexity of f and the parameterization p(; 8).
» Issue: Training cannot be stopped at a finite iteration!

N. NaderiAlizadeh Graph Neural Network Applications 27

arxiv.org/abs/2207.02242

IVERSITY

Proposed State-Augmented Algorithm Duke & Jorns Horkins

» We propose to use both network state H and dual variables v as input to the resource allocation
policy.

» We leverage a revised state-augmented parameterization p(H, 1t; ¢) to replace p(H; 0).

Regular Parameterization State-Augmented Parameterization

H.

]
Ho— pHiO) [o RHme)
Mk—T

N. NaderiAlizadeh Graph Neural Network Applications 28

NIVERSITY

State-Augmented Primal and Dual Dynamics Duke & &y JOHNS HOPKINS

» The revised parameterization leads to the augmented Lagrangian

Lu(d)=U <$ if(Hf,p(Ht,uw))) +uTg< S F(Hep(He, ¢>))>
t=0 t=0

» The optimal state-augmented policy parameters are found during training as

@ = arg B lLu(@)].

» This resolves the challenge of re-optimizing the model parameters for any given set of dual variables.
» The dual variables are updated during execution as

(k+1)To—1
L gx
b = (=g | = D F(Hep(He i 0"))
t=kTp
Constraint satisfaction over the k™ iteration +

N. NaderiAlizadeh Graph Neural Network Applications pL)

Theoretical Guarantees of State Augmentation Duke &plorins Horkins 28 Penn

Theorem (NaderiAlizadeh-Eisen-Ribeiro)
The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

T-1
. 1 *
#meg <T go f (an (Htaﬂlt/TOJ;({b))) >0, as.

and near-optimal, i.e.,

u (ff (Ht,p (Ht,utt/rﬂ;d)*)))

t=

> P —

lim E

T—o0

2
%—Me.

==

» c-universal parameterization p(H, t; @): For any H and 0(-), there exists ¢ s.t.
Ellp(H, p; @) — p(H; (1)), < e

» M-Lipschitz continuity of f: For any H, p: and p2, E|[f(H,p1) — f(H, p2)||., < ME |p: — p2||, -

» The decisions made by our method are close to those made by the original primal-dual iterations.

N. NaderiAlizadeh Graph Neural Network Applications 30

arxiv.org/abs/2207.02242

Power Control in Interference Channels

Duke & Jorins Horkins

IVERSITY

» We focus on multi-user interference channels with m transmitter-receiver pairs.

» The performance function for the i*" receiver represents its Shannon capacity,

. pi |hii,:|2
fi(He,p) = log, | 1+ .

N m . L2
o T 21 jozi Pi | hiie

Ayt

00
» Considering a sum-rate utility and minimum-rate constraints leads to \\ S
.
T—1 m
1
max = % fi(He,p(H)), =3 e
{p(H)}, t=0 |

- i=1 %
s.t. f(He, p(H:)) > finL. o&%g
t=0 . Ko
=

Graph Neural Network Applications

-

nle

N. NaderiAlizadeh

31

Modeling Interference Channels as Graphs Duke &plorins Horkins 28 Penn

» We model the interference channel at each time step t as a graph G: = (V, &, Y, we).
=V ={1,2,...,m} denotes the set of transceiver nodes, and £ C V x V denotes the set of edges.
= Y, € R™! denotes the initial node features, which we set to the dual variables: Y, = B/l

= w; : £ = R denotes the edge weight function, which we define as w:(i, j) o log (Pmax|hij,c|*/N).

N. NaderiAlizadeh Graph Neural Network Applications 32

Graph Neural Network (GNN) Parameterizations

HOPKINS

IVERSITY
» We leverage GNN architectures to parameterize the resource allocation policies.

» Final node features at the output of the GNN are converted to resource allocation decisions.

N. NaderiAlizadeh

Graph Neural Network Applications

33

Scalability With Constant Network Density Duke & Jorns Horkins

UNIVERSITY VERSITY

» The network area size increases proportionally to the number of transmitter-receiver pairs.

» Policies are evaluated on the same network size that they have been trained on.

—&— State-Augmented —¥— Vanilla Primal-Dual —e— [TLinQ —®— Full Reuse

62 o5, —— R
N N

u I P
I > g
S a k)
260 804 °
& s 21
° © o
0. =

g F
§ 58 g 8
b3 £ g
= <

£ o,

50 100 150 200 50 100 150 200
Number of users

——— :
S r3h pties
= _’-*’J?.f',.-é%? % 5 g‘&%% ’
AL e RRkad| S
-&/&ffﬁ o X 2 Lo 17
=My o Xin

Lpat Sad]

N. NaderiAlizadeh Graph Neural Network Applications 34

VERSITY

Scalability With Variable Network Density Duke & Jorns Horkins

» The network area size is fixed regardless of the number of transmitter-receiver pairs.
» Policies are evaluated on the same network size that they have been trained on.

—— State-Augmented —¥— Vanilla Primal-Dual —e— [TLinQ —®— Full Reuse

o
o

Q0.5 §12
Te6o < 2
: 81
855 8 8
a o ©
g o © 08
£ g £
845 £ 8o6
b % 2
4.0 S04
©
20 30 40 50 20 30 40 50
Number of users Number of users
% Perp og we P 198 o i
O e I) | RdRT
LY © -0 b Gy R
L Sy .5‘ 3 &::E;” e ﬁﬁ% ,l\
U P &Sy 2eacts
0oB & D&“azin;n > @!“' .<§2¢' 1 Gt
L OIN P e fooy - iy

N. NaderiAlizadeh Graph Neural Network Applications 35

Transferability With Constant Network Density Duke & Jorns Horkins

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.

Emm Trained on m=200
0.10 Bmm Trained on m=50
0.08
Z
2 0.06
3
)
0.04
|| I
000 | [T —
‘ 0.0 25 50 75 10.0 125 15.0 17.5 200
Ergodic average rate (bps/Hz)
/% *'0{6 }‘ 5]
%
il %’f 4 o
52;5'?"’:\;3 > O&%ﬁa : ¥
nedt o ~ %e) §§ g
% D8 o m
i \4% p ?gg ﬁq
2
m =50 7 5] =

N. NaderiAlizadeh Graph Neural Network Applications 36

Transferability With Variable Network Density Duke &y JOHNS HOPKINS

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.

0.20 B Trained on m=50
mmm Trained on m-20
015
o
G
&
& o010
- | ‘ |||| I
0.00 I IIII'IlIll.-_-,_ -
0.0 25 5.0 75 10.0 125 15.0 175 20.0
Ergodic average rate (bps/Hz)
A)i) > a§
| oz XA 1\)
) N Pt &
LS > > (\\)\ io
5) g g
& o A i "‘ﬁ, X
¢ “ g’ 'Y
% 1 ~
m =20 m = 50

N. NaderiAlizadeh Graph Neural Network Applications 37

ERSITY

Duke & Jorns Horkins. 78 Penn

Federated Learning with GNNs

» GNNs can enable distributed training of models in a federated learning scenario.

N. NaderiAlizadeh Graph Neural Network Applications 38

Federated Learning &y JOHNS HOPKINS

IVERSITY

» A group of agents attempt to learn a shared model w* with minimium average loss across agents:

w* = arg mm — ZE(x,y JO(fa(x), y)]-

» Considering a graph structure, we can have a constrained formulation:

min e g(W)=— ZE(xyND (fu; (), ¥)],

Wi,...,Wp€

s.t. P = i, foralli=1,...,N.
w |N|ZWJ or all i ;

"V jen;

» A major challenge: High communication cost between the agents (and a central server).

N. NaderiAlizadeh Graph Neural Network Applications 39

UNIVERSITY

Learning to Optimize via Algorithm Unrolling Duke & Jorns Horkins

» Instead of training the model W directly, we train a meta model ®(Wq, D; 6), whose output is W*:

W* = ®(Wo,D;0*) where 0 =arg 0’“1&31 E[g(®(Wo, D; 0))].
€R

» The meta model takes as input the initial model Wy and a set of local datasets D.
» We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

W, =¢)(W;_1,D;0)), I=1,..., L

s il ¢

N. NaderiAlizadeh Graph Neural Network Applications 40

UNIVERSITY

Stochastic UnRolled Federated learning (SURF) Duke &plorins Horkins 28 Penn

» Instead of the whole datasets D, we feed stochastic batches of data 3, to the meta model:

W, =¢(Wi-1,D;0)) — W, =¢(Wi—1,B,;6)).

» We encourage the model parameters to improve after every layer using descending constraints:

min B [g(®(Wo, 5;0))]

st. E[|Ve(W))| —(1-€) [Vg(Wi)[|] <0, foralll =1,....L,
W, = ¢/(W,_1,B,;60,), foralll=1,... L

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning

N. NaderiAlizadeh Graph Neural Network Applications 41

arxiv.org/abs/2305.15371

Unrolling Distributed Gradient Descent via GNNs INS HOPKINS

IVERSITY

» Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

W,(/) = Z S,'J'Wj(/ - 1) - /BVg,-(w,-(/ - 1))7 i =].7 ey N.
JEN;

» DGD relies on communication among agents, and local updates of the model using local data.

» We replace the first term with a GNN layer and the second term with a local FCNN:

K—1
W, = Z huS*W,_1 — & (W=1, BIM, + b))
k=0
‘! N/’ S\ f&‘-v ¥ "* 4
AR AT S A AN
o [] ’ .‘ 4 ” *'_.. A
¢ N g o

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning,

N. NaderiAlizadeh Graph Neural Network Applications 42

arxiv.org/abs/2305.15371

Empirical Evaluation of SURF + DGD with GNNs Duke &plorins Horkins 28 Penn

» Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations
Centralized 25.81 +£13.92 10
FedAvg 15.53 +£12.29 10
SURF 4+ DGD + GNN | 90.83 +04.35 10
Centralized 92.71 + 03.26 300
FedAvg 90.35 4+ 03.69 300

N. NaderiAlizadeh Graph Neural Network Applications 43

Transferability of SURF + DGD with GNNs Duke J()HNS HOPKINS

UNIVERSITY VERSITY

» The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.

©
o
5}
©
a

R g R o2 X
> > 3 90
© © 90.0 ©
O a5 c e
S 35 87.5 3
3 3 3 85
< 80 < 85.0 <
82.5
75
100 200 400 800 10 20 30 40 50 60 1 2 3 4 5 6
n dataset size/agent node degree

N. NaderiAlizadeh Graph Neural Network Applications 44

ERSITY

Duke & Jorns Horkins. 78 Penn

Protein Property Prediction with GNNs

» GNNs can enable learning over protein structures in biological systems.

N. NaderiAlizadeh Graph Neural Network Applications 45

Protein Sequence — Structure — Function

IEQTEVL...SGSLE —

N. NaderiAlizadeh Graph Neural Network Applications 46

Protein Structure vs. Sequence Data Growth Duke & Jorns Horkins

B Total Number of Protein Structures (PDB) [l Total Number of Protein Sequences (UniProt)

1,000,000 250,000,000
800,000 200,000,000
%) 0
© 600,000 150,000,000 &
2 c
& &
+ 400,000 100,000,000 g
200,000 50,000,000

2016 2017 2018 2019 2020 2021 2022

N. NaderiAlizadeh Graph Neural Network Applications

AlphaFold: ML-Based Protein Structure Prediction Juke @ JOHNS HOPKINS

IVERSITY

Nterminus
Gterminus _% =
! % E
AphaFold_Experiment AphaFold_Experiment AphaFold Experiment . AlphaFold DB today
115,045 = 0.8A TW-score = 0.83 £msd.=059Awithin8Aof Zn £ms.dgs = 22A T-score = 0.96 200+ Structures

AlphaFold DB previously
tep High “IM Structures
&—m wiE) - confidence
- Experimental (PDB) today.
* 190K Structures

Jo
Grevees Evoformer. Structure. RARS
(48 blocks) Inodss —
Input sequence (8 blocks) 5 S
Spesss %
Lt 3D structure
s
Tempiates
v v
[« Recycling (three times)]

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature,

N. NaderiAlizadeh aph Neural Network Applications

doi.org/10.1038/s41586-021-03819-2

Modeling Protein Structures as Graphs INS HOPKINS

IVERSITY

» Each node in the protein graph represents the Carbon-a: atom of a residue (i.e., amino acid).
» 3D node coordinates given by X € R"** could be used as input node features.

» Graph adjacency matrix S can be derived via proximity in the sequence and/or structure.

Sequential edge (d=1)

Sequential edge (d=-1)
=== K-nearest neighbor edge
=== Radius edge

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR

N. NaderiAlizadeh Graph Neural Network Applications 49

arxiv.org/abs/2203.06125

GNNs Trained as Foundation Models for Protein Structures Duke &Joms Horkins 7§ Penn

VERSITY UNIVERSITY

» A GNN ®(X;S, H) can be pre-trained to minimize a contrastive loss on protein graph embeddings.

Protein Structure

G8e0) , glse
ur r
Subsequence cropping ~ Random edge masking \ _

1
. I
Subspace cropping Identity o 2) \
ace) ace) 4 X
VPO = eVl - il <4} G0 gm0 LA z
— Sequential edge (d=1) ‘.
= el g 01) g

— Kenearest neighbor edge
—> Radius edge

Method ining EC Fold Classification Reaction
Dataset (Size) BP MF CC_ Fold Super. Fam. A
(CNN (Shanehsazzadeh et nl 2020) - 0545 0244 0354 0287 13 134 534 260 517
ResNet (Rao et al., 2019) - 0.605 0280 0405 0304 10.1 721 235 136 24.1
TM (Rao et al 2019) - 0425 0225 0321 0283 641 433 18.1 9.61 1.0
“Transformer (Rao et al., 2019) - 0238 0264 0211 0405 922 8.81 404 194 26.6
GCN (Kipf & Welling, 2017) - 0320 0252 0195 0329 16.8* 21.3* 82.8* 403* 67.3*
GAT (Velickovi¢ et al., 2018) - 0368 0284' 0317' 0385" 124 165 727 338 556
GVP (Jing etal., 2021) - 0489 0.326' 0426' 0.420" 16.0 225 838 407 65.5
3DCNN_MQA (Derevyanko et al., 2018) - 0077 0240 0.147 0305 31.6* 454* 925* 56.5* 22
GraphQA (Baldassarre et al., 2021) - 0509 0308 0329 0413 237% 32.5% 844% 469* 60.8*
New [EConv (Hermosilla & Ropinski, 2022) - 0735 0374 0544 0444 47.6* 702* 992% 723% 87.2%
prﬁl (Gligorijevi¢ etal., 2021) Pfam (10M) 0631 0399 0465 0460 153* 206 732* 364* 63.3%
-1b (Rives et al., 2021) UniRef50 (24M) 0.864 0452 0.657 0477 268 60.1 978 615 83.1
Pm(BE‘.RT -BFD (Elnaggar et al., 2021) BFD (2.1B) 0838 0279' 0456' 0.408" 26.6* 558* 97.6* 60.0* 1722
P (Wang et al., 2022b) UniRefl00 216M) 0.664 0417' 0.545' 0527" - - - - -
New IEConv (Hermosilla & Ropinski, 2022) PDB (476K) - - - - 50.3* 80.6* 99.7* 76.9* 87.6*
Multiview Contrast AlphaFoldDB (805K) 0.874 0.490 0.654 0488 54.1 80.5 9.9 8.1 875

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR

N. NaderiAlizadeh

raph Neural Network Applications

arxiv.org/abs/2203.06125

Graph Transformers Trained on Protein Structures Duke &y JOHNS HOPKINS

NIVERSITY NIVERSITY

» Graph Transformers enable learning on multiple protein graph structures simultaneously.

Amino Acid Attention Bias Matrix | Regression Head AAG
Likellnoods. 1 1 per Attention Head

Classifier |
Clssitcaton ;

8A Distance Pooing |

ToAA
Subtract
MLP Linear - Activation - Linear|) X4 - cLs
Extactor I
Matmul Weight Sharin,
| Transformer Transformer

MLP:Linear - Activation - Linear’

From Environment To Environment

Backbone
| Graph Transformer Feature Extractor

RBF Distance Matrices Distance Type Matrices |
(Continous) (Discrete)

Atom Coordinates

Atom Elements. Atom Elements
Atom Coordinates |

Embed and Add

Atom Physical Properties Microenvironment | Microenvironment Atom Physical Properties

Diaz et al., Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations, Nature

N. NaderiAlizadeh ph Neural Network Applications 51

doi.org/10.1038/s41467-024-49780-2

» PLM architectures are pre-trained using millions of sequences via the unsupervised masking objective

N
1
Lwvm(0) = N E log po(sij|si ;)
i=1 jeM;

» This leads to intermediate embeddings E € R“*? that can be used for downstream tasks.

L
—_— MEQTES—LENN
IBEREEEEEER'
(Protein Language Model)
UniProt
Embeddings E € RL*4
) -
— 0.03 0.46 0.07 om

Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science

Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, IEEE TPAMI

N. NaderiAlizadeh Graph Neural Network Applications 52

science.org/doi/10.1126/science.ade2574
arxiv.org/abs/2007.06225

Fusing Sequence and Structure Information via PLMs and GNNs Duke & Jorins Horkins

Method PLM SIt:lfl;:t. EC GO-BP GO-MF
© Fax Frnax Finax
ProtBERT-BFD! v/ X 0838 0.279 0456
ESM-2-650M" v X 0880 0.460 0.661
YRR GearNet X v 0730 0.356 0.503
ESM-GearNet v v 0.890 0.488 0.681
Multi-Head Attention
NN
(E)®C-)
Zhang et al., A Systematic Study of Joint Representation Learning on Protein Sequences and Structures, ICLR MLDD

N. NaderiAlizadeh Graph Neural Network Applications 53

arxiv.org/abs/2303.06275

GNN-Based Constraints Can Make PLMs Structure-Aware Duke & Jorns Horkins

» Unsupervised GNN-based losses can be used for enforcing structural constraints on PLMs.

min Lseq(OpLm),
OpLm;Henn
s.t. Cstr(xi,S/;QPLm,HGNN) < €, forall i = 1,...,N.

tt + 4

tEtr e

Mali-Head Atiention

IEQTEVL...SGSLE

trtt

ol “‘f,
9%

Wang-Heinzinger-NaderiAlizadeh, Fusing Protein Structures and Sequences: A Constrained Learning Approach, In Preparation

N. NaderiAlizadeh

Graph Neural Network Applications

54

N. NaderiAlizadeh Graph Neural Network Applications 55

	Applications of GNNs
	Learning Ratings in Recommendation Systems
	Learning Ratings with Graph Filters and GNNs
	Wireless Resource Management with GNNs
	Federated Learning with GNNs
	Protein Property Prediction with GNNs

