
Graph Neural Networks

Architectures, Fundamental Properties and Applications

Navid NaderiAlizadeh, Alejandro Ribeiro, Luana Ruiz, Zhiyang Wang

Web: gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

N. NaderiAlizadeh Graph Neural Networks: Architectures, Fundamental Properties and Applications 1

gnn.seas.upenn.edu/aaai-2025/

Graph Neural Network Applications

Navid NaderiAlizadeh

Dept. of Biostatistics & Bioinformatics
Duke University

navid.naderi@duke.edu

sites.duke.edu/navid

TH15: Graph Neural Networks: Architectures, Fundamental Properties and Applications
gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

N. NaderiAlizadeh Graph Neural Network Applications 2

navid.naderi@duke.edu
sites.duke.edu/navid

Applications of GNNs

▶ GNNs enable scalable machine learning on graph-structured data in a variety of systems.

⇒ Learning ratings in recommendation systems

⇒ Resource allocation in communication systems

⇒ Federated learning in distributed systems

⇒ Protein property prediction in biological systems

N. NaderiAlizadeh Graph Neural Network Applications 3

Learning Ratings in Recommendation Systems

▶ Formulate recommendation systems as ML problems that predict ratings that users give to items

N. NaderiAlizadeh Graph Neural Network Applications 4

Recommendation Systems

▶ In a recommendation system, we want to predict the rating a user would give to an item

▶ Collect ratings that some users give to some items ⇒ These are rating histories

▶ Exploit product similarities to predict ratings of unseen user-item pairs

▶ Example 1 ⇒ In an online store items are products and users are customers

▶ Example 2 ⇒ In a movie repository items are movies and users are watchers

N. NaderiAlizadeh Graph Neural Network Applications 5

Ratings and Sampled Ratings

▶ For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

▶ We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

N. NaderiAlizadeh Graph Neural Network Applications 6

Ratings and Sampled Ratings

▶ For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

▶ We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

N. NaderiAlizadeh Graph Neural Network Applications 6

Product Ratings as Graph Signals

▶ Construct product similarity graph with weights wij represent likelihood of similar scores

▶ Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

▶ The observed ratings xu of user u are a subsampling of this graph signal.

▶ Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

▶ Build similarity graph using available ratings. Use of expert knowledge is common as well

N. NaderiAlizadeh Graph Neural Network Applications 7

Product Similarity Graph

▶ Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

▶ Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑
u∈Uij

xui µji =
1

#(U ij)

∑
u∈Uji

xuj

▶ Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑
u∈Ui j

(
xui − µij

)(
xuj − µji

)
▶ Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj

N. NaderiAlizadeh Graph Neural Network Applications 8

Loss for Measuring Rating Prediction Quality

▶ Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

ℓ
(
yu,Φ(xu)

)
=

1

2

∥∥∥ yu − Φ(xu)
∥∥∥2

▶ In reality, we want to predict the rating of specific item i

ℓ
(
yu,Φ(xu)

)
=

1

2

(
eTi yu − eTi Φ(xu)

)2

▶ Where ei is a vector in the canonical basis ⇒ (ei)i = 1, (ei)j = 0 for j ̸= i

N. NaderiAlizadeh Graph Neural Network Applications 9

Training Set

▶ For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(
eTi xu

)
ei x = xu − y for all u ∈ U i , for all i

▶ Extract the rating xui of item i . Record into graph signal y

▶ Remove rating xui from xu. Record to graph signal x

▶ Repeat for all users in the set U i of users that rated i

▶ Repeat for all items ⇒ Training set T

N. NaderiAlizadeh Graph Neural Network Applications 10

Learning Rating Predictions

▶ Parameterized AI Φ(xu) = Φ(xu;H). We want to find solution of the supervised learning problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

▶ Two bad ideas ⇒ Linear regression. Fully connected neural networks

▶ Two good ideas ⇒ Graph filters. Graph neural networks

N. NaderiAlizadeh Graph Neural Network Applications 11

Learning Ratings with Graph Filters and GNNs

▶ We use graph filters and graph neural networks to learn ratings in recommendation systems

▶ We contrast with the use of linear regression and fully connected neural networks

N. NaderiAlizadeh Graph Neural Network Applications 12

Movie Ratings Dataset

▶ Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

▶ The ratings for each movie are between 1 and 5. From one star to five starts

▶ Train and test several machine learning parametrizations.

N. NaderiAlizadeh Graph Neural Network Applications 13

Empirical Risk Minimization

▶ We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

▶ Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

▶ Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs

N. NaderiAlizadeh Graph Neural Network Applications 14

Linear Regression and Graph Filters

▶ Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

▶ Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

▶ Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 15

Linear Regression and Graph Filters

▶ Linear regression works even worse in the test set

▶ The test MSE of the graph filter is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

▶ Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 15

Fully Connected NNs and Graph NNs

▶ The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

▶ Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

▶ Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 16

Fully Connected NNs and Graph NNs

▶ But the fully connected NN does not do well in the test set. It does not generalize

▶ The test MSE of the graph NN is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

▶ Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

N. NaderiAlizadeh Graph Neural Network Applications 16

Graph Filters and Graph Neural Networks

▶ The graph filter and the GNN do well in the training and test set. They generalize well

▶ The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

▶ GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

N. NaderiAlizadeh Graph Neural Network Applications 17

Graph Filters and Graph Neural Networks

▶ The graph filter and the GNN do well in the training and test set. They generalize well

▶ The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

▶ GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

N. NaderiAlizadeh Graph Neural Network Applications 17

Transferability

▶ A GNN can be trained on a graph with a small number of nodes ...

⇒ And transferred to a graph with a (much) larger number of nodes. Without retraining

200 300 400 500 600 700 800
Nodes of the Graph

0.950

0.955

0.960

0.965

0.970

0.975

M
ea

n
Sq

ua
re

 E
rr

or

▶ In this recommendation system, transference incurs no MSE degradation ⇒ MSE is further reduced

N. NaderiAlizadeh Graph Neural Network Applications 18

Wireless Resource Management with GNNs

▶ GNNs can enable scalable resource management in autonomous wireless communication networks.

N. NaderiAlizadeh Graph Neural Network Applications 19

Towards Next-Generation Wireless Networks

▶ Wireless networks are growing beyond humans’ ability to design and manage them → 5G, WiFi 6

▶ To address increasing complexity of wireless networks, we will make them autonomous→ 6G, WiFi 7

⇒ An autonomous wireless network makes (at least some) decisions without human intervention.

N. NaderiAlizadeh Graph Neural Network Applications 20

Autonomous Wireless Networks

▶ Making operational decisions in wireless networks entails solving large-scale constrained
optimization problems.

▶ Solving these problems is very challenging, leading to the design and use of heuristic methods.

▶ We can leverage data to learn better autonomous network management policies using machine
learning.

N. NaderiAlizadeh Graph Neural Network Applications 21

Wireless Resource Allocation Under Requirements

0 1 2 T − 1. . .t

f(Ht , p(Ht))

Network-level
performance

p(Ht)

Resource Allocation
policy

Ht

1

T

T−1∑
t=0

f(Ht , p(Ht))max
{p(Ht)}T−1

t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
max

{p(Ht)}T−1
t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
≥ 0

N. NaderiAlizadeh Graph Neural Network Applications 22

Policy Parameterization

▶ In this classical formulation, resource allocation decisions must be recalculated for any given
network state H.

⇒ This makes learning and deploying such a policy infeasible in practice.

▶ We parameterize the resource allocation policy, replacing p(H) with p(H;θ).

▶ The advantage of parameterization is that we do not need to solve the problem online to find the
decisions.

Unparameterized Formulation

max
{p(Ht)}T−1

t=0

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht))

)
≥ 0

Parameterized Formulation

P⋆ = max
θ∈Θ

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
≥ 0

N. NaderiAlizadeh Graph Neural Network Applications 23

This is an Unsupervised Learning Problem

Empirical Risk Minimization

max
θ∈Θ

− 1

N

N−1∑
i=0

ℓ (ψ (xi ;θ))

Parameterized Resource Allocation

max
θ∈Θ

U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
≥ 0

▶ Sequential decision making over a time series sequence {Ht}T−1
t=0 without access to ground-truth

labels.

▶ Inclusion of the constraints makes this problem fundamentally different from a regular learning
problem.

N. NaderiAlizadeh Graph Neural Network Applications 24

Learning in the Dual Domain

▶ We move to the Lagrangian dual domain, and associate a set of non-negative dual variables µ to
the constraints.

▶ The Lagrangian function can then be written as

L(θ,µ) = U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
+ µTg

(
1

T

T−1∑
t=0

f(Ht , p(Ht ;θ))

)
.

▶ We then seek to maximize the Lagrangian over θ, while minimizing it over µ, i.e.,

D⋆ = min
µ≥0

max
θ∈Θ
L(θ,µ).

N. NaderiAlizadeh Graph Neural Network Applications 25

Iterative Unsupervised Primal-Dual Updates

▶ The primal model parameters θ and the dual variables µ can be iteratively updated using a
primal-dual method.

▶ We define an iteration duration T0 between consecutive updates, and an iteration index k.

θk = argmax
θ∈Θ

U
 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θ))

+ µk
Tg

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θ))

µk+1 =

µk − ηµg

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ;θk))

+

k ← k + 1

▶ Constraint slacks are the gradient or a subgradient of the Lagrangian with respect to the dual
variables.

N. NaderiAlizadeh Graph Neural Network Applications 26

Theoretical Guarantees of Primal-Dual Updates

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ;θ⌊t/T0⌋

)))
≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ;θ⌊t/T0⌋

)))]
≥ P⋆ − cηµG

2

2
.

▶ c denotes the number of constraints, ηµ denotes the dual step size, G upper-bounds the constraint
magnitudes.

▶ There are no restrictions on the convexity of f and the parameterization p(·;θ).
▶ Issue: Training cannot be stopped at a finite iteration!

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

N. NaderiAlizadeh Graph Neural Network Applications 27

arxiv.org/abs/2207.02242

Proposed State-Augmented Algorithm

▶ We propose to use both network state H and dual variables µ as input to the resource allocation
policy.

▶ We leverage a revised state-augmented parameterization p(H,µ;ϕ) to replace p(H;θ).

Ht p(H;θ) pt p(H,µ;ϕ) pt

Ht

µk

Regular Parameterization State-Augmented Parameterization

N. NaderiAlizadeh Graph Neural Network Applications 28

State-Augmented Primal and Dual Dynamics

▶ The revised parameterization leads to the augmented Lagrangian

Lµ(ϕ) = U

(
1

T

T−1∑
t=0

f(Ht , p(Ht ,µ;ϕ))

)
+ µTg

(
1

T

T−1∑
t=0

f(Ht , p(Ht ,µ;ϕ))

)
.

▶ The optimal state-augmented policy parameters are found during training as

ϕ⋆ = argmax
ϕ∈Φ

Eµ [Lµ(ϕ)] .

▶ This resolves the challenge of re-optimizing the model parameters for any given set of dual variables.
▶ The dual variables are updated during execution as

µk+1 =

µk − ηµ g

 1

T0

(k+1)T0−1∑
t=kT0

f(Ht , p(Ht ,µk ;ϕ
⋆))

︸ ︷︷ ︸

Constraint satisfaction over the kth iteration

+

.

N. NaderiAlizadeh Graph Neural Network Applications 29

Theoretical Guarantees of State Augmentation

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ,µ⌊t/T0⌋;ϕ

⋆
)))

≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U

(
1

T

T−1∑
t=0

f
(
Ht , p

(
Ht ,µ⌊t/T0⌋;ϕ

⋆
)))]

≥ P⋆ − cηµG
2

2
−Mϵ.

▶ ϵ-universal parameterization p(H,µ;ϕ): For any H and θ(·), there exists ϕ s.t.

E ∥p(H,µ;ϕ)− p(H;θ(µ))∥∞ ≤ ϵ.

▶ M-Lipschitz continuity of f: For any H, p1 and p2, E ∥f(H, p1)− f(H, p2)∥∞ ≤ ME ∥p1 − p2∥∞ .

▶ The decisions made by our method are close to those made by the original primal-dual iterations.

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

N. NaderiAlizadeh Graph Neural Network Applications 30

arxiv.org/abs/2207.02242

Power Control in Interference Channels

▶ We focus on multi-user interference channels with m transmitter-receiver pairs.

▶ The performance function for the i th receiver represents its Shannon capacity,

fi (Ht , p) = log2

(
1 +

pi |hii,t |2
N

Pmax
+
∑m

j=1,j ̸=i pj |hji,t |
2

)
.

▶ Considering a sum-rate utility and minimum-rate constraints leads to

max
{p(Ht)}T−1

t=0

1

T

T−1∑
t=0

m∑
i=1

fi (Ht , p(Ht)),

s.t.
1

T

T−1∑
t=0

f(Ht , p(Ht)) ≥ fmin1m.

N. NaderiAlizadeh Graph Neural Network Applications 31

Modeling Interference Channels as Graphs

▶ We model the interference channel at each time step t as a graph Gt = (V, E ,Yt ,wt).

⇒ V = {1, 2, . . . ,m} denotes the set of transceiver nodes, and E ⊆ V ×V denotes the set of edges.

⇒ Yt ∈ Rm×1 denotes the initial node features, which we set to the dual variables: Yt = µ⌊t/T0⌋.

⇒ wt : E → R denotes the edge weight function, which we define as wt(i , j) ∝ log
(
Pmax|hij,t |2/N

)
.

N. NaderiAlizadeh Graph Neural Network Applications 32

Graph Neural Network (GNN) Parameterizations

▶ We leverage GNN architectures to parameterize the resource allocation policies.

▶ Final node features at the output of the GNN are converted to resource allocation decisions.

N. NaderiAlizadeh Graph Neural Network Applications 33

Scalability With Constant Network Density

▶ The network area size increases proportionally to the number of transmitter-receiver pairs.

▶ Policies are evaluated on the same network size that they have been trained on.

50 100 150 200
Number of users

5.8

6.0

6.2

M
ea

n
ra

te
 (b

ps
/H

z)

50 100 150 200
Number of users

0.2

0.3

0.4

0.5

M
in

im
um

 ra
te

 (b
ps

/H
z)

State-Augmented Vanilla Primal-Dual ITLinQ Full Reuse

50 100 150 200
Number of users

0.90

0.95

1.00

1.05

5t
h

pe
rc

en
til

e
ra

te
 (b

ps
/H

z)

N. NaderiAlizadeh Graph Neural Network Applications 34

Scalability With Variable Network Density

▶ The network area size is fixed regardless of the number of transmitter-receiver pairs.

▶ Policies are evaluated on the same network size that they have been trained on.

20 30 40 50
Number of users

4.0

4.5

5.0

5.5

6.0

6.5

M
ea

n
ra

te
 (b

ps
/H

z)

20 30 40 50
Number of users

0.0

0.1

0.2

0.3

0.4

0.5

M
in

im
um

 ra
te

 (b
ps

/H
z)

State-Augmented Vanilla Primal-Dual ITLinQ Full Reuse

20 30 40 50
Number of users

0.4

0.6

0.8

1.0

1.2

5t
h

pe
rc

en
til

e
ra

te
 (b

ps
/H

z)

N. NaderiAlizadeh Graph Neural Network Applications 35

Transferability With Constant Network Density

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ergodic average rate (bps/Hz)

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

Trained on m=200
Trained on m=50

m = 50

m = 200

N. NaderiAlizadeh Graph Neural Network Applications 36

Transferability With Variable Network Density

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ergodic average rate (bps/Hz)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Trained on m=50
Trained on m=20

m = 20 m = 50

N. NaderiAlizadeh Graph Neural Network Applications 37

Federated Learning with GNNs

▶ GNNs can enable distributed training of models in a federated learning scenario.

N. NaderiAlizadeh Graph Neural Network Applications 38

Federated Learning

▶ A group of agents attempt to learn a shared model w⋆ with minimium average loss across agents:

w⋆ = arg min
w∈Rd

1

N

N∑
i=1

E(x,y)∼Di
[ℓ(fw(x), y)].

▶ Considering a graph structure, we can have a constrained formulation:

min
w1,...,wn∈Rd

g(W) =
1

N

N∑
i=1

E(x,y)∼Di
[ℓ(fwi (x), y)],

s.t. wi =
1

|Ni |
∑
j∈Ni

wj , for all i = 1, . . . ,N.

▶ A major challenge: High communication cost between the agents (and a central server).

N. NaderiAlizadeh Graph Neural Network Applications 39

Learning to Optimize via Algorithm Unrolling

▶ Instead of training the model W directly, we train a meta model Φ(W0,D; θ), whose output is W⋆:

W⋆ = Φ(W0,D; θ⋆) where θ⋆ = arg min
θ∈Rp

E
[
g(Φ(W0,D; θ))

]
.

▶ The meta model takes as input the initial model W0 and a set of local datasets D.
▶ We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

Wl = ϕl(Wl−1,D;θl), l = 1, . . . , L.

3434

Learning to Optimize via Algorithm Unrolling

⋯
Initial model𝐖0 Meta model𝚽(𝐖0, 𝒟; 𝜽) Final model𝐖⋆ = 𝐖𝐿

N. NaderiAlizadeh Graph Neural Network Applications 40

Stochastic UnRolled Federated learning (SURF)

▶ Instead of the whole datasets D, we feed stochastic batches of data Bl to the meta model:

Wl = ϕl(Wl−1,D;θl) → Wl = ϕl(Wl−1,Bl ;θl).

▶ We encourage the model parameters to improve after every layer using descending constraints:

min
θ∈Rp

E
[
g(Φ(W0,B; θ))

]
s.t. E

[
∥∇g(Wl)∥ − (1− ϵ) ∥∇g(Wl−1)∥

]
≤ 0, for alll = 1, . . . , L,

Wl = ϕl(Wl−1,Bl ;θl), for all l = 1, . . . , L.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

N. NaderiAlizadeh Graph Neural Network Applications 41

arxiv.org/abs/2305.15371

Unrolling Distributed Gradient Descent via GNNs

▶ Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

wi (l) =
∑
j∈Ni

sijwj(l − 1)− β∇gi (wi (l − 1)), i = 1, . . . ,N.

▶ DGD relies on communication among agents, and local updates of the model using local data.

▶ We replace the first term with a GNN layer and the second term with a local FCNN:

Wl =
K−1∑
k=0

hklS
kWl−1 − σ ([Wl−1,Bl]Ml + bl)

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

N. NaderiAlizadeh Graph Neural Network Applications 42

arxiv.org/abs/2305.15371

Empirical Evaluation of SURF + DGD with GNNs

▶ Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations

Centralized 25.81± 13.92 10

FedAvg 15.53± 12.29 10

SURF + DGD + GNN 90.83± 04.35 10

Centralized 92.71± 03.26 300

FedAvg 90.35± 03.69 300

N. NaderiAlizadeh Graph Neural Network Applications 43

Transferability of SURF + DGD with GNNs

▶ The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.

100 200 400 800
n

75

80

85

90

95

Ac
cu

ra
cy

 %

10 20 30 40 50 60
dataset size/agent

82.5

85.0

87.5

90.0

92.5

95.0

Ac
cu

ra
cy

 %
1 2 3 4 5 6

node degree

85

90

95

Ac
cu

ra
cy

 %

N. NaderiAlizadeh Graph Neural Network Applications 44

Protein Property Prediction with GNNs

▶ GNNs can enable learning over protein structures in biological systems.

N. NaderiAlizadeh Graph Neural Network Applications 45

Protein Sequence – Structure – Function

MEQTEVL…SGSLENN

Sequence Structure Function

N. NaderiAlizadeh Graph Neural Network Applications 46

Protein Structure vs. Sequence Data Growth

Se

qu
en

ce
s

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

St
ru

ct
ur

es

200,000

400,000

600,000

800,000

1,000,000

2016 2017 2018 2019 2020 2021 2022

Total Number of Protein Structures (PDB) Total Number of Protein Sequences (UniProt)

N. NaderiAlizadeh Graph Neural Network Applications 47

AlphaFold: ML-Based Protein Structure Prediction

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, doi.org/10.1038/s41586-021-03819-2

N. NaderiAlizadeh Graph Neural Network Applications 48

doi.org/10.1038/s41586-021-03819-2

Modeling Protein Structures as Graphs

▶ Each node in the protein graph represents the Carbon-α atom of a residue (i.e., amino acid).

▶ 3D node coordinates given by X ∈ Rn×3 could be used as input node features.

▶ Graph adjacency matrix S can be derived via proximity in the sequence and/or structure.

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125

N. NaderiAlizadeh Graph Neural Network Applications 49

arxiv.org/abs/2203.06125

GNNs Trained as Foundation Models for Protein Structures

▶ A GNN Φ(X;S,H) can be pre-trained to minimize a contrastive loss on protein graph embeddings.

Zhang et al., Protein Representation Learning by Geometric Structure Pretraining, ICLR, arxiv.org/abs/2203.06125

N. NaderiAlizadeh Graph Neural Network Applications 50

arxiv.org/abs/2203.06125

Graph Transformers Trained on Protein Structures

▶ Graph Transformers enable learning on multiple protein graph structures simultaneously.

Diaz et al., Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations, Nature, doi.org/10.1038/s41467-024-49780-2

N. NaderiAlizadeh Graph Neural Network Applications 51

doi.org/10.1038/s41467-024-49780-2

Protein Language Models (PLMs) as Sequence Feature Extractors

▶ PLM architectures are pre-trained using millions of sequences via the unsupervised masking objective

LMLM(θ) = −
1

N

N∑
i=1

∑
j∈Mi

log pθ(sij |si,\Mi
)

▶ This leads to intermediate embeddings E ∈ RL×d that can be used for downstream tasks.

M E Q T E S — L E N N

L

UniProt
Protein Language Model

Embeddings E ∈ ℝL×d

A C W Y

0.03 0.46 0.07 0.11

…

Lin et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science, science.org/doi/10.1126/science.ade2574

Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, IEEE TPAMI, arxiv.org/abs/2007.06225

N. NaderiAlizadeh Graph Neural Network Applications 52

science.org/doi/10.1126/science.ade2574
arxiv.org/abs/2007.06225

Fusing Sequence and Structure Information via PLMs and GNNs

▶ PLM-generated embeddings can be used as input graph signals for subsequent GNN models.

Zhang et al., A Systematic Study of Joint Representation Learning on Protein Sequences and Structures, ICLR MLDD, arxiv.org/abs/2303.06275

N. NaderiAlizadeh Graph Neural Network Applications 53

arxiv.org/abs/2303.06275

GNN-Based Constraints Can Make PLMs Structure-Aware

▶ Unsupervised GNN-based losses can be used for enforcing structural constraints on PLMs.

min
θPLM,HGNN

LSeq(θPLM),

s.t. LStr(Xi ,Si ; θPLM,HGNN) ≤ ϵi , for all i = 1, . . . ,N.

MEQTEVL…SGSLENN

Wang-Heinzinger-NaderiAlizadeh, Fusing Protein Structures and Sequences: A Constrained Learning Approach, In Preparation.

N. NaderiAlizadeh Graph Neural Network Applications 54

Summary: GNNs Enable Scalable ML Applications on Graphs

N. NaderiAlizadeh Graph Neural Network Applications 55

	Applications of GNNs
	Learning Ratings in Recommendation Systems
	Learning Ratings with Graph Filters and GNNs
	Wireless Resource Management with GNNs
	Federated Learning with GNNs
	Protein Property Prediction with GNNs

