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Visit my course website: https://gnn.seas.upenn.edu

Graph Neural Networks

"Cring  esestao

How to use this site (I am not at Penn)

If you are a not a student at Penn, the instructors are honored that you consider the materials worth
checking. We wish we had the time to work with you, alas, we do not. However, we think there is quite
a lot that you can learn by watching the recorded video lectures and by working on the lab
assignments. We have designed the materials with the goal of making them useable in self directed
learning. How much we have succeeded at that is for you to decide.

When you check the video lectures you will see that they come with a handout and a script. The
handout and the script are designed to be used in conjunction with the videos. The videos are the
union of the handout and the script. In addition to video lectures, you will find lab assignments and
their solutions accessible through the lab webpage. The labs are designed with a complexity
progression in mind. Start from Lab 1 if you have never worked in machine learning. Start from Lab 2 if
you have ever encountered GNNs. Labs 3 and onwards are serious applications of GNN to practical
problems.

If you are hardcore and would rather read papers, this post has links to the papers that have inspired
this course. These papers are part of the work on graph neural networks going on at Alelab. They are
not a comprehensive literature review. You can find a lttle bit of that in this tutorial article in the signal
processing magazine and in this more comprehensive review in the Proceedings of the IEEE.

If there is something you think we could to to help. We are happy to hear suggestions.

Graph Neural Networks: Arcl

ectures, Stabi

Duke @ Jorns Hopkins
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Video 1.2 - Machine Learning on Graphs: The Why

We care about GNNs because they enable machine learning on graphs. But why should we care
about machine learning on graphs? We dwell here on the whys of machine learning on graphs. Why
is it interesting? Why do we care? The reason we care is simple: Because graphs are pervasive in
information processing.

+ Covers Slides 6-10 in the handout.

Video 1.3 - Machine Learning on Graphs: The How

Having discussed the why, we tackle the how. How do we do machine learning on graphs? The
answer to this question is pretty easy: We should use a neural network. We should do this, because
we have overwhelming empirical and theoretical evidence for the value of neural networks
Understanding this evidence is one of the objectives of this course. But before we are ready to do
that, there is a dealbreaker challenge potentially lurking in the shadows: Neural Networks must
exploit structure to be scalable.

e

+ Covers Slides 11-13 in the handout.

y, and Transferability
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Why Are Graphs so Common in Information Processing?

Duke &y Jorns Hopkins w7

R RIS UNIVERSITY

» Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

Recommendation Systems

= \‘\»;<4///'
Identify the author of a text of unknown provenance

Predict the rating a customer would give to a product
Segarra et al '16,

Ruiz et al '18,

» In both cases there exists a graph that contains meaningful information about the problem to solve

A. Ribeiro
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arxiv.org/abs/1805.00165
arxiv.org/abs/1903.12575

Authorship Attribution with Word Adjacency Networks (WANs) — Duke &Jorns Hopkins

UNIVERSITY

» Nodes represent different function words and edges how often words appear close to each other

= A proxy for the different ways in which different authors use the English language grammar

William Shakespeare Christopher Marlowe

» WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016

A. Ribeiro Graph Neural Networks: Architectures, Stabi and Transferability


doi.org/10.1353/shq.2016.0024

Recommendation System with Collaborative Filtering

» Nodes represent different customers and edges their average similarity in product ratings

= The graph informs the completion of ratings when some are unknown and are to be predicted
Variation Diagram for Original (sampled) ratings

Variation Diagram for Reconstructed (predicted) ratings
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> Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

A. Ribeiro

Graph Neural Networks: Architectures, Stability, and Transferability


arxiv.org/abs/1903.12575

Brain Networks: Brain Age Scoring Duke & Jorns Hopkins

T RIS UNIVERSITY

Ageing is a risk factor for neurodegeneration and biological age (brain age) is elevated compared to chronological age in pathology.
Hence, Age-Gap (brain age — chronological age) is a biomarker of interest.

Cortical thickness data
(s features)

Anatomical covariance

matrx (size my x 1) : Interpretable regional profile to elevated brain age.
Interpretability:
Isolate brain Regions with elevated age-gap in Alzheimer’s Disease
regions with

whole brain cortical elevated

thickness dataset

(m parcellations) L shem

‘”M‘ - a @ @ @

< o p o
oo atein arw Evaluate spatial QJ k—v . )
(::)! ‘ robustness of @ \_&
e i age-gap effects

whole brain cortical
thickness dataset
(my parcellations)

GNN can be transferred across different graphs

Readout
(unwe
mean)

Data x,1, (m features)

Representation of discrete
VNN output on interval [0, 1

Anstomiesl covaiance Cortical thickness data
matrx (e ma xm2) (o features)

Cortical Thickness Brain Signals. GNN on anatomical covariance matrix leverages
cortical thickness (CT) features to predict brain age.

Regional age-gap is defined by the difference between GNN prediction and outputs at
the final layer of GNN.

Elevated brain age gap effect is driven by regional age-gap effects in impacted regions.

" Data s fenures)

Tz partitions

Sihag-Mateos-McMillan-Ribeiro, coVariance Neural Networ

A. Ribeiro
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arxiv.org/abs/2205.15856

Graphs in Multiagent Physical Systems

» Graphs are more than data structures = They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems Wireless Communications Networks

Coordinate a team of agents without central coordination Manage resources in wireless communications

Tolstaya et al '19, Eisen-Ribeiro '19,

» The graph is the source of the problem = Challenge is that goals are global but information is local

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability


arxiv.org/abs/1903.10527
arxiv.org/abs/1909.01865

Graphs in Multiagent Physical Systems

» Graphs are more than data structures = They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems Wireless Communications Networks

 Points of interest &9
| Robots

)
¥

Collaborative navigation of roads with a team of agents Mobile infrastructure on demand to support a task team

Tolstaya et al '21, Mox et al '22,

» The graph is the source of the problem = Challenge is that goals are global but information is local

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 11


arxiv.org/abs/2011.01119
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Machine Learning on Graphs: How?
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Neural Networks and Convolutional Neural Networks JOHNS HOPKINS

UNIVERSITY

» There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this
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» Generic NNs do not scale to large dimensions =- Convolutional Neural Networks (CNNs) do scale

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 13



JOHNS HOPKINS

UNIVERSITY

Convolutional Neural Networks and Graph Neural Networks

» CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs
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» Generalize convolutions to graphs =- Compose graph filter banks with pointwise nonlinearities

» Stack in layers to create a graph (convolutional) Neural Network (GNN)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 14
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Convolutions in Time, in Space, and on Graphs

» How do we generalize convolutions in time and space to operate on graphs?

= Even though we do not often think of them as such, convolutions are operations on graphs

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Time and Space are Representable by Graphs JOHNS HOPKINS

UNIVERSITY

» We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph

T 00 T 01 T 02 T 03 T X04 T 05 T 06 T 07
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00 -0 -0 -0 -0 -0 vl lwiwlowle el
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i *30 i 31 i x32 i 33 i *34 i X35 i *36 i 37
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v v v v v v v v

» Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 16



Convolutions in Time and Space Dulke & Jorins Hopkns

UNIVERSITY

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

-070"6"0"0"0"0 0"
e 670"6"9"0" 69”0’
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DA A A A 40 S 4 &

> Filter with coefficients i, = Output z = ho S"x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Convolutions in Time and Space Dulke & Jorins Hopkns

UNIVERSITY

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

méwéwéwéwéwéwé»
19085898

-0-0-0-0-0-0-0- nlul-lol.lo

H@
i X30 i 31 i x32 i X33 i X34 i X35 i *36 i x37

DA A A A 4 S 4 &

> Filter with coefficients i, = Output z=hoS°x + h; S'x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Convolutions in Time and Space Dulke & jorins Hopkins

UNIVERSITY

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

00 x01 x02 x03 04
<> <> <> <> <>
x13 x14 x15
<> <> <> <> <>
x2 x3
ﬁo—>a—> —&P)—> ﬂ°—>°—> %20 01 2 x03 x4 x5 x26 x7

PSSP X SPLP I
i X30 i x31 i 32 i X33 i X34 i X35 i 36 i x37

009900

> Filter with coefficients iy = Output z= hoS°x + h1 S'x + hy S°x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17



Convolutions in Time and Space (@ JOHNS HOPKINS

UNIVERSITY

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients by = Output z = hoS’x + h1 S'x + h2 S°x + h3 $°x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17
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» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients i, = Output z= hoS°x +h1 S'x +hS’x +h3S’x +...= Z hi S*x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17



Convolutions on Graphs Dulke @ Jorns Hopix

UNIVERSITY

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

w24 x4 W,
w2

X2 46 X6
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> Filter with coefficients i, = Output z= o S"x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18



Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS e x3 X
o 0 O >
x| m N xg x4 / \
w23 wer °
Nows o QMK
7 7 x5 X

3 w35 x5 w57 7

> Filter with coefficients i, = Output z=hoS°x + h; S'x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18



Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS e x3 X
x| N N xg x4 / \
w23 wer °
Nows e% -
7 7 x5 X6

3 w35 x5 w57 7

> Filter with coefficients iy = Output z= hoS°x + h1 S'x + hy S°x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18



Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
x
*2 A 4 A *6 x3 X0 xg xg
fw (& — 1
X1 w34, w5 W w47 xg u_/ N\ x0_/ x7
w23 wer °
k 4/"‘{' ] -
x3 '735/7 5 '¥W57/7 X7 X5 X6 x11 x12

> Filter with coefficients by = Output z = hoS’x + h S'x + h2 S°x + h3 $°x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS VS *3 *2 9 *8
fw (& — —1
AT B & = ® )
w23 wer
\ 4/‘/ \ / \
w13 8 — —
x3 ~__ 7 ~__ 7 > X5 X6 X11 Xx12
w35 x5 w57 7
oo
. . .. 0 1 2 3 k
> Filter with coefficients hy = Outputz= hyS'x +hS'x +hSx +h3Sx +...= thS X
k=0

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Graph Convolutional Filters as Diffusion Operators Duke @ Jorxs Hopkin:

UNIVERSITY

» A graph convolution is a weighted linear combination of the elements of the diffusion sequence

» Can represent graph convolutions with a shift register = Convolution = Shift. Scale. Sum

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Algebraic Convolutions

Definition (Convolution)

A convolutional filter is a polynomial on a shift operator with coefficients hy = z = Z hi S*x
k=0

» It is the same algebraic object whether we consider time, space, or graphs
» They all have compositionality (operator powers) and some kind of equivariance
» They all admit a frequency representation

= Filters are pointwise operators in the eigenvector basis of the shift operator

ity to Deformations

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stabi

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability


arxiv.org/abs/2009.01433

Convolutions with Multiple Features > (@ JOHNS HOPKINS

UNIVERSITY

Definition (Algebraic Convolutions with Multiple Features)
Input signal X € RM*F with F features. Output signal Z € RY*C® with G features. Filter

coefficients H, are F x G matrices. The convolutional filter with coefficients Hy is

Z = ZS"xXka
k=0

» It has the same algebraic structure of a regular filter with scalar coefficients.
» Retains compositionality, equivariance, and existence of a frequency representation

» Filters with multiple features are more expressive. The ones we use to build GNNs and CNNs

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



UNIVERSITY

Dulke & Jorns HopkiNs

Convolutional Neural Networks and Graph Neural Networks

» CNNs and GNNe are minor variations of linear convolutional filters

= Compose filters with pointwise nonlinearities and compose these compositions into several layers

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Neural Networks (NNs) Dulke & jorins Hopkins

X = Xo
v
a1
z; = Hy xg xlzo[zl]
T Layer 1
» A neural network composes a cascade of layers lxl
X1
» Each of which are themselves compositions of -
2z = Hyxg XQZU{Zz]
linear maps with pointwise nonlinearities T Layer 2
[
X2
» Does not scale to large dimensional signals x
z3
23 = H3, xp X3:a[z3:|
Layer 3

b x3 = ®(x; H)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Convolutional Neural Networks (CNNs)

X = Xg
v
» A convolutional NN composes a cascade of layers 7
z; =h; *x x xlzo[zl]
. . T Layer 1
» Each of which are themselves compositions of l
X1
convolutions with pointwise nonlinearities 1
. 2
» Scales well. The Deep Learning workhorse 2 =hy % x1 X = U[Zz]
T Layer 2
» A CNNs are minor variation of convolutional filters [x2
X2
= Just add nonlinearity and compose
. z3
= They scale because convolutions scale z3 =h3 x xp x3 =0z
Layer 3

L x3 = ®(x; H)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



» Those convolutions are polynomials on the

adjacency matrix of a line graph
X0 X1 X2 X3 X4 X5
-0—0—0—-0-0-0-

» Just another way of writing convolutions and

Just another way of writing CNNs

» But one that lends itself to generalization

A. Ribeiro Graph Neural Networks: Architectures,

K—1 7
zlfzhlks Xg xlzo[zl]
k=0
T Layer 1
[
X1
K—1
2
zzzzhzkskxl XQZU{Zz]
k=0
T Layer 2
[
X2
K—1 23
13:Zh3k5kx2 X3:0[Z3:|
k=0
Layer 3

Stability, and Transferability

L x3 = ®(x; H)
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Graph Neural Networks (GNNs) Dulke & Jorins Horkins 73

X = Xg
¥
» The graph can be any arbitrary graph K1 . zn
21:Zh1k5 Xq xlzo[zl]
k=0
. . . T Layer 1
» The polynomial on the matrix representation S l
X1
becomes a graph convolutional filter X
K—1 2
zZ:thks"xl XQZU{Zz]
k=0
w24 iz T Layer 2
U U
@O Qs E
//’ \ .
w34 w25 Wse, wa7
o - &
K—1 P 23
—Q._0._0 5= 3 s x =l
k=0
A S 4 A S 4
Wi Ws7 Layer 3

L x3 = ®(x; S, H)

Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019,

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability


arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

» A graph NN composes a cascade of layers

» Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

» A NN with linear maps restricted to convolutions

» Recovers a CNN if S describes a line graph

X = Xg
¥
K—1 7
21:Zh1k5 Xg xlzo[zl]
k=0
T Layer 1
[
X1
K—1
2
zZ:thks"xl XQZU{Zz]
k=0
T Layer 2
[
X2
K—1 23
13:Zh3k5kx2 X3:0[Z3:|
k=0
Layer 3

A. Ribeiro Graph Neural Networks: Architectures,

Stability, and Transferability

L x3 = ®(x; S, H)



arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

Duke

JOHNS HOPKINS
SITY

UNIVER

X = Xg
¥
K—1 n 71
T . a=3 mstxo n=ola]
» There is growing evidence of scalability. e
T Layer 1
[
» A GNN is a minor variation of a graph filter Xl
dd | . d K—1 z
= Just add nonlinearity and compose n=3 hx F s = U{ZZ]
k=0
T Layer 2
» Both are scalable because they leverage the l"z
X2
signal structure codified by the graph
K—1
z3
13:Zh3k5kx2 X3:0[Z3:|
k=0
Layer 3
L x3 = ®(x; S, H)
Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019

A. Ribeiro
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Graph Neural Networks with Multiple Features

X = Xq
|
M
K—1 72
73 = > sFxgHy, X; = o[2]
k=0
Layer 1
. . . X
» In practice we use layers with multiple features « !
1
K—1 2,
. . . . 2= > 5" xqHy X2=0[22}
» This is to increase representation power but it does k=0
Layer 2
not affect our fundamental observations X2
X2
K—1 3
z3= > sKxyHg X3 = o[23]
k=0
Layer 3

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability
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Collaborative Filtering with
Graph Neural Networks

Juan Elenter, Tatiana Guevara, Ignacio Hounie,
Charilaos Kanatsoulis, and Alejandro Ribeiro*

March 5, 2023

1 Collaborative Filtering

The abjective of this lab is to design a recommendation system that pre-
dicts the ratings that customers would give to a certain product. Say,
the rating that a moviegoer would give to a specific movie, or the rating
that an online shopper would give to a particular offering. A possible
approach to making these predictions is to leverage the ratings that cus-
tomers have given to this or similar products in the past. This is called
collaborative filtering.

A schematic representation of collaborative filtering is shown in Figure 1.
The underlying assumption is that there is a true set of ratings that dif-
ferent customers would give to specific products. These ratings remain
unobserved and are denoted by X in Figure 1. What we do have avail-
able are a subset of these ratings. They are represented by X in Figure 1
where all of the missing ratings are represented by a blank space. This
is a reasonable model of reality. Each of us has seen a small number of
movies or bought a small number of offerings. Thus, the ratings matrix
X, contains only a few entries that correspond to rated products. Our
goal is to recover estimates Y of the unobserved ratings X.

“In alphabetical order.

Unobserved true ratings (X7) Observed ratings (X7) Reconstructed ratings (

)
B T '
-

Figure 1. Recommendation with Collaborative Filtering,

As a specific example, we use the MovieLens-100k dataset. The MovieLens-
100k dataset consists of ratings given by U users to P movies (products).
The existing movie ratings are integer values between 1 and 5. Therefore,
the data are represented by a U x P matrix X where x,, is the rating that
user u gives to movie p. If user u has not rated movie p, we adopt the
convention that x,;, = 0. We see that each row of this matrix corresponds
to a vector of ratings x, of a particular user.

1.1 Product Similarity Graph

To build the collaborative filtering system, we use the rating history of all
movies and all users to compute a graph of product similarities. This is
a graph in which nodes p represent different movies and weighted edges
Spg denote similarities between products p and g. The edges of the graph
are grouped in the adjacency matrix

To compute the entries S of the product similarity graph we use the raw
U x P movie rating matrix to evaluate crosscorrelations between movie
ratings of products p and q. To make matters simpler we have constructed
this graph already and are making it available as part of the dataset.




Figure 2. Adjacency Matrix of the Movie Similarity Graph. Brighter dots corre-
spond to pairs of movies that different watchers tend to score with similar ratings,

Task 1 Download the movie rating data to your computer and upload
the data “movie_datanumpy.p" to this processing environment. Plot the
adjacency matrix S as an image. []

Success in Task 2 must have produced the plot in Figure 2. In this fig-
ure each bright dot corresponds to a large entry S(p,q). This denotes
a pair of movies to which watchers tend to give similar scores. For in-
stance, say that when someone scores “Star Wars IV" highly, they are
likely to score “Star Wars V" highly and that the converse is also true;
poor scores in one correlate with poor scores in the other. The entry
5("Star Wars IV, “Star Wars V") is large because the crosscorrelation be-
tween the scores of these entries is high.

Fainter entries $(p, q) denote pairs of movies with less socre correlation
Perhaps between “Star Wars” and "Star Trek” which have overlapping but
not identical fan bases. Dark entries S(p,q) correspond to pairs movies
with no correlation between audience scores. Say when p is the index of
“Star Wars” and ¢ is the index of “Little Miss Sunshine.”

Observed ratings (X7) Reconstructed ratings (¥7)

Sampled ratings of user i (x])

[ama=una-uun=zuns]

User similarity graph (5)

Figure 3. Reconstruction of Movie Ratings with a Movie Similarity Matrix
12 Rating Signals

The vector of ratings x, of a particular user is interpreted as a signal
supported on the graph. That is, a signal in which the pth component
Xup is associated with node p. In this context, the weights of the product
similarity graph become an expectation of similarity between ratings ¥y
and xy. 1f S is large we expect these ratings to be similar. If S is small
we have no expectation of proximity or not between them.

We then have a system with the architecture shown in Figure 3. Rating
signals x, of individual users are extracted from the raw rating matrix
and are interpreted as signals supported on the graph S that we loaded
in Task 2. We want to leverage the graph S to make rating predictions yy
for this particular user.

We will, more precisely, develop and evaluate a graph neural network
(GNN) for making these rating predictions,



13 Rating Data Format and Rating Loss

To train the collaborative filtering system we use rating histories to create
a dataset with entries (xy, ¥, pu). In these entries x, is a vector that
contains the ratings of a particular user, y, is a scalar that contains a
rating that we want to predict, and p, is the index of the movie (product)
that corresponds to the rating y,,. To evaluate this collaborative filtering
system we use rating histories to create a dataset with entries having
the same format. Both of these datasets can be constructed from the
raw U x P movie rating matrix, but to make matters simpler we have
constructed them already and are making them available as part of the
dataset.

If we have a function §, = ®(x,; ) that makes rating predictions out of
availbale ratings, we can evaluate the goodness of this function with the
squared loss

(@it = [52), -] = [@6s0), —w]" ®

Notice that in this expression the function §,, = ®(x,; #) makes predic-
tions for all movies. However, we isolate entry p, and compare it against
the rating y,. We do this, because the rating y, of movie p, is the one we
have available in the training or test sets.

We remark the fact that the function § = ®(x; ) makes predictions for all
movies is important during operation. The idea of the recommendation
system is to identify the subset of products that the customer would rate
highly. They are the ones that we will recommend. This is why we want
a system that has a graph signal as an output even though the available
dataset has scalar outputs.

Task 2 Write a function to evaluate the training loss in (1), [}

2 Graph Convolutions

Let § denote a matrix representation of a graph. Supported on the nodes
of the graph we are given a graph signal x. We also consider a set of K

coefficients I from k = 0 to k = K — 1. A graph convolutional filter is a
linear map acting on x defined as a polynomial on the matrix representa-
tion of the graph with coefficients f;,

K1
z = hsgx = ) IS @
=]

Graph convolutions generalize convolutions in time to graphs. That this
s true can be seen if we represent time with a directed line graph. Con-
sidering (2) for the particular case in which § is the adjacency matrix of
this line graph, the product $x results in a k-shift of the time signal x. For
this reason we sometimes refer to S as a shift operator. We also point out
that although we work with an adjacency matrix in this lab any matrix
representation of the graph can be used in (2).

One advantage that graph filters share with time convolutions is their
locality. To see this, define the diffusion sequence as a collection of graph
signals uy = S'x and rewrite the filter in (2) as,

[= K
z= Y hSx = ) I ®)
=0 =1

It is ready to see that the diffusion sequence is given by the recursion
2 = Sz;_y with g = x. Further observing that S;; # 0 only when the
pair (i, ) is an edge of the graph, we see that the entries of the diffusion
sequence satisfy
Wi = ¥ Sitiorge @
jlij)eE

We can therefore interpret graph filters as operators that propagate in-
formation through adjacent nodes. This is analogous to the propagation
of information in time with the application of time shifts. The locality
of graph convolutions is one of the motivations for their use in the pro-
cessing of information supported on graphs. The other reason is their
equivariance to permutations.

Because it aggregates with a weighted sum the information from neigh-
boring nodes, the operation in (4) is sometimes called an aggregation
information. Because it aggregates at node i information that is passed
from adjacent nodes j, we sometimes say that graph filters are message-
passing architectures and the GNNs that are derived from them are called
message passing GNN.



21 Graph Convolutions with Multiple Features

To increase the representation power of graph filters we extend them to
add multiple features. In these filters the input is a matrix X and the
output is another matrix matrix Y. The filter coefficients are matrices Hy
and the filter itself is a generalization of (2) in which the matrices Hy
replace the scalars i,

K
Z =) SXH;. (5)
=]

In (5), the input feature matrix X has dimension N x F and the output
feature matrix Y has dimension N x G. This means that each of the F
columns of X represents a separate input feature whereas each of the G
columns of Y represents an output feature. To match dimensions, the
filter coefficient matrices Hy must be of dimension F x G.

Other than the fact that it represents an input-output relationship between
‘matrices instead of vectors, (5) has the same structure of (2).

In particular, we can define a diffusion sequence Uy through the recursion
Uy = SU;_; and rewrite (5) as

K1 K
Z = Y mS'X = Y U (6)
= )

This is worth remarking because we can write the diffusion sequence as
a message passing aggregation operation. Indeed, if uy; is the ith row of
Uy we can write the diffusion sequence recursion as

ui = Y Spuea ]

JiEE

In (7) nodes  in the neighborhood of i pass the message u_y;. Node
i aggregates these messages to create the updated message uy; that it
passes on to its neighbors.

Task 3 Write a function that implements a graph filter. This function
takes as inputs the shift operator S, the filter coefficients H and the input
signal X. To further improve practical performance we add a bias term B
to the filter operation. That is, we refine (5) with the opearation,

K
Z =Y S*XH;+B. (8)

z
2 X
Lay
X
X
& z
2= Y s Hy 2
=
X
X:
K z
23 = ) 5% Hy X =0(z)
=)

Layer 3
Lx«’o(x,m

Figure 4. A Graph Neural Network (GNN) with three layers. A GNN is a com-
position of layers, each of which is itself the composition of a lincar graph filter
with a pointwise nonlincarity. [cf. (91

‘The bias B is also passed as a parameter to the filter function. [}

Task 4 The graph filter implemented in Task 3 is not a GNN but it is not a
bad parameterization for making movie recommendations. Train a graph
filter to predict movie ratings. Plot the evolution of the training loss and
evaluate the loss in the test dataset. To obtain a good loss we need to
experiment with the length of the filter ~ the number of filter taps K.

A graph filter is sometimes called a linear GNN. It is a GNN that does
not use nonlinear opeartions.



3 Graph Neural Networks

Graph Neural Networks (GNNs) are information processing architectures
‘made up of a composition of layers, each of which is itself the composition
of a linear graph filter with a pointwise nonlinearity.

For a network with a given number of layers L we define the input output
relationship through the recursion

K
X =o(z) :n(k)::”s‘x,,,ﬂ,k), ©

In this recursion the output of Layer £ — 1 is X;_, and it is recast as an
input to Layer £. In this layer, the input X;_ is processed with a graph
filter to produce the intermediate output Z;. The coefficients of this graph
filter are the matrices Hyy. This intermediate output is processed with a
pointwise nonlinearity ¢ to produce the output X; of Layer /. That the
nonlinear operation is pointwise means that it is acting separately on each
entry of Z;.

To complete the recursion we redefine the input X as the output of Layer
0, Xp = X. The output of the neural network is the output of layer L,
X; = Phi(X;H). In this notation H is the tensor H := [Hyy,..., Hyg]
that groups all of the filters that are used at each of the L layers.

A graph neural network with three layers is depicted in Figure 4.

31 Graph Neural Network Specification

To specify a GNN we need to specify the number of layers L and the
characteristics of the filters that are used at each layer. The latter are the
number of filter taps K; and the number of features F; at the output of
the layer. The number of features Fy must match the number of features
at the input and the number of features F; must match the number of
features at the output. Observe that the number of features at the output
of Layer (£ — 1) determines the number of features at the input of Layer
£. Then, the filter coefficients at Layer ¢ are of dimension Fy_y x Fy.

Task 5 Program a class that implements a GNN with L layers. This class
receives as initialization parameters a GNN specification consisting of the
number of layers L and vectors [Ky, .., Ki] and [Fo, Fi, ..., Fi] containing
the number of taps and the number of features of each layer.

Endow the class with a method that takes an input feature X and pro-
duces the corresponding output feature Phi(X; H). L ]

Task 6 Train a GNN to predict movie ratings. Plot the evolution of the
training loss and evaluate the loss in the test dataset. To obtain a good
loss we need to experiment with the number of laers and the number of
filter taps per layer.
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Permutation Equivariance and Stability > GGy JOHNS HOPKINS

UNIVERSITY

Fact 1

Graph filters and GNNs “work.” Outperform general linear transforms and fully connected NNs.

Fact 2

GNNs outperform graph filters in most learning tasks.
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UNIVERSITY

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2

GNNs outperform graph filters in most learning tasks.
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NIVERSITY

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.
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Permutation Equivariance and Stability JOHNS HOPKINS

UNIVERSITY

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals
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Permutation Equivariance of Graph Neural Networks > (g JOHINS HOPKINS

UNIVERSITY

» It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator S = P”SP and input signal X = P"x. Then

d(%;8,H) = PTo(x;S,H)

» Relabeling the input signal results in a consistent relabeling of the output signal

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability
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UNIVERSITY

» Graph filters and GNNs, perform label-independent processing of graph signals

= Permute input and shift = Relabel input = Permute output = Relabel output

Graph signal x Supported on S Graph signal ¥ = P7x supported on S=P7spP

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



y JOHNS HQPKIVNS

» Graph filters and GNNs, perform label-independent processing of graph signals
= Permute input and shift = Relabel input = Permute output = Relabel output

GNN output ®(x; S, H) supported on S GNN ®(%;8,H) =PTd(x;S,H) on § = PTSP

4( 4(

xz/ X3
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Graph Filters and GNNs Exploit Permutation Symmetries JOHNS HOPKINS

UNIVERSITY

» Graph filters and GNNs exploit permutation symmetries of graphs and graph signals

» By symmetry we mean that the graph can be permuted onto itself = S = PSP

» Equivariance theorem implies = ¢(PTx; S,’H) = <D(PTx; PTSP,H) = PT¢(X; S,H)

From observing x supported on S Learn to process P x supported on S = P7SP

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Permutation Equivariance and Stability JOHNS HOPKINS

UNIVERSITY

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



JOHNS HOPKINS

UNIVERSITY

» Quasi-Symmetry, not symmetry = Stability to deformations that are close to permutation.

» GNNs have better stability properties than graph filters =- Better at leveraging quasi-symmetries.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 39
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Frequency Response of a Graph Filter Duke @y Jorns HOPKins

o0 X
» Graph filters are operators defined on graph shift operators = H(S) = Z hSK =V Z hN V!
k=1 k=1

» They are completely characterized by their frequency responses =- 77()\) = Z Ak
k=1

h()\)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



The Effect of the Graph JOHNS HOPKINS

UNIVERSITY

> Graph S has eigenvalues \; = The response is instantiated at these eigenvalues h(\;) = Z B\
k=1

> Graph S has eigenvalues \; = The response is instantiated at these eigenvalues h(}\;) = Z h A
k=1

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 41



Relative Perturbations of a Shift Operator JOHNS HOPKINS

UNIVERSITY

» Meaningful perturbations of a shift operator operator are relative = P'SP =S + ES + SE
» Conceptually, we learn all there is to be learnt from dilations = S=S+¢S

» Eigenvalues dilate \; — N = (1 + €)Ai. Frequency response instantiated on dilated eigenvalues

A()) - - — — — -

AL A Am Am An b A
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Higher Frequencies are More Difficult to Process JOHNS HOPKINS

UNIVERSITY

» Large eigenvalues move more. Signals with high frequencies are more difficult to process

= Even small perturbations yield large differences in the filter values that are instantiated

= We think we instantiate h()\,-) = But in reality we instantiate h(s\;) = h((l +¢) )\,-)

A()) - - — — — —

AL A Am Am An An A
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Stability Requires Integral Lipschitz Filters JOHNS HOPKINS

UNIVERSITY

» To attain stable graph signal processing we need integral Lipschitz filters = ‘)\B'()\) | <C
» Either the eigenvalue does not change because we are considering low frequencies

» Or the frequency response does not change when we are considering high frequencies

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 44



Discriminative Filter at Low Frequencies JOHNS HOPKINS

UNIVERSITY

> At low frequencies a sharp highly discriminative filter is also highly stable

= Ideal response h()\/) is very close to perturbed response h(:\/) = h( (1+¢) )\/)

) C— — — — —
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Discriminative Filter at Medium Frequencies JOHNS HOPKINS

UNIVERSITY

» At intermediate frequencies a sharp highly discriminative filter is somewhat stable

= Ideal response h()\m) is somewhat close to  perturbed response h(:\m) = h( (1+¢) )\m)

) — — — — —
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Discriminative Filter at High Frequencies JOHNS HOPKINS

UNIVERSITY

» At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

= Ideal response h()\h) is very different from  perturbed response h(:\h) = h( (I1+¢€) )\h)

) C— — — — —
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Discriminative Filter at High Frequencies JOHNS HOPKINS

UNIVERSITY

> We can have stability to deformations if we use an integral Lipschitz filters = [ \A'(\)| < C

= But this precludes the discrimination of high frequency components

h()) - — — — — —

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 48



Pointwise Nonlinearities are Frequency Mixers JOHNS HOPKINS

» Nonlinearities o(v;) and o(v;) spread

energy across all frequencies

® o 7 27 e o o

A A;

» Some energy where it used to be

o . ) H oo
> Some energy at low frequencies Spectrum of nonlinearity applied to v; = V"o(v;)

» Where it can be discriminated with a

stable filter in Layer 2
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Stability vs Discriminability Tradeoff of GNNs JOHNS HOPKINS

UNIVERSITY

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Stability vs Discriminability Tradeoff of GNNs NS HOPKINS

NIVERSITY

Fact 2: Stability Properties of GNNs

For the same sensitivity to deformations, GNNs are more discriminative than graph filters

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability
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Stability of GNNs to Relative Perturbations NS HOPKINS 7§ Pey

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator ®(+; S, A) along with shifts operators S and S having n nodes. If:

(H1) Shift operators are related by P'SP = S 4 ES + SE with P a permutation matrix
(H2) The error matrix E has norm [|[E|| = € and eigenvector misalignement 0 relative to S
(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between ®(+; S, A) and ®(-; §7A) is bounded by

| ®(;S,A) - ®(;S,A) ||, < 2C(1+6vn)Le

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability


arxiv.org/abs/1905.04497

Transferability Properties of Graph Neural Networks

» A GNN that is trained in a graph S can be executed on any other graph S

= In particular, we can execute it in a much larger graph

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Transferability of Graph Neural Networks Duke @ Jorxs HOpkiNs ¥

» Transferability of graph neural networks is ready to verify in practice = recommendation system

~}— Graph Filter
GNN
~#- Lipschitz GNN

Lesattesad, 010

0.08
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0.049

Relative RMSE difference

0.02 4

0.004

600 800 1000 1200 1400 1600 1800 2000
Nodes

» Performance difference on training and target graphs decreases as size of training graph grows

» GNNs appear to be more transferable than graph convolutional filters =- better ML model
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Transferability of Graph Neural Networks

» Transferability of graph neural networks is ready to verify in practice =- decentralized robot control
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1.0 —}— Graph Filter
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» Performance difference on training and target graphs decreases as size of training graph grows

» GNNs appear to be more transferable than graph convolutional filters =- better ML model

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability



Do Graph Neural Networks Scale? > (@ JOHNS HOPKINS

A. Ribeiro

UNIVERSITY

Q1: We have empirically observed that GNNs transfer at scale. Why do they?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

» To answer these questions, turn to CNNs = known to scale well for images and time sequences

Graph Neural Networks: Architectures, Stability, and Transferability



Convolutional Neural Networks Have Limits Dglﬁ(ﬁefJOHNS HOPKIN

UNIVERSITY

143 x 95 — 205 x 136 — 294 x 195 — 600 x 399

= From SP theory, CNNs have well-defined limits on the limits of images and time signals
» Al: Intrinsic dimensionality of the problem is less than the size of the image

» A2: Training with small images is sufficient = CIFAR 10 images are 32 x 32

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 56



Graphons Duke @ Jorns Hopkins

» Graphs also have limit objects that effectively limit their dimensionality =- one is the graphon

i

01 02 03 04 05 05

n = 50 nodes — n = 100 nodes — n = 200 nodes — Graphon W(u,v) =p

» A graphon can be thought of as a graph with an uncountable number of nodes

A. Ribeiro Graph Neural Networks: Architectures, Stabili nd Transferabili



Large-Scale Graphs

pepestine.,

n = 30 products n = 50 products n = 100 products

» So do graph convolutions and graph neural networks converge to limits on the graphon?

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 58



Graph Neural Networks Have Limits > (8 JOHNS HOPKINS

UNIVERSITY

Q1: We have empirically observed that GNNs scale. Why do they scale?

» Al: Because graph convolutions and GNNs have well-defined limits on graphons

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

> A2: Yes, as GNNs are transferable = can be trained on moderate-size and executed on large-scale

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability
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Graphon filters and Graphon Neural Networks (WNNs) Duke &orn

Graphon convolutional filters and graph convolutional filters are the same algebraic object. Which is also the
same algebraic object of a standard convolutional filter.

Graph convolutional filters are

polynomials on a matrix representation s’ s S'x s S'x s S'x
of the graph acting on input signal. ho hy [ hs
y=hxsx
. ) + + +
The coefficients of the filter are the hsx T h S e

coefficients of the polynomial.

Graphon convolutional filters are
polynomials on the graphon integral ! -h e T ’hX | 7’:< = )
+ + +

operator acting on input signal.

. . +
The coefficients of the filter are the
ho T X +mTHX +h T X +hsTPX

coefficients of the polynomial.
Graphon integral operator: TwX : (Tw)X / W(u, v) X(u) di

WNNs are compositions of layers. Themselves compositions of graphon filters with pointwise nonlinearities

[Ruiz et al '20] Graphon Signal Processing, hitps:/arxiv.org/abs/2003.05030

Graph Neural Networks: Architectures, Stability, and Transferability
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Frequency Representation of Graphon Filters

Graphon filters admit a frequency representation. Same as graph filters. Same as standard convolutions

They are still the same algebraic object: They are polynomials of scalar variables

Representation of graph filter is
instantiated at graph eigenvalues

Representation of graphon filter is
instantiated at graphon eigenvalues

$ince graph eigenvalues converge to graphon eigenvalues convergence of graph to graphon filters follows.

The catch is that we have accumulation of eigenvalues around zero.

Thus, we can't transfer filters that attempt to discriminate these
eigenvalues. There is a transferability vs discriminability tradeoff

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, htps://arxiv.orglabs/2112.04629

A. Ribeiro
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Transferability of Graph Filters and GNNs

We derive a finite sample transferability bound from a graph with m nodes to a graph with n nodes

Transferability of a filter depends on the Lipschitz constant of the frequency response of the graph (and graphon) filter

Theorem (Graph Filter Transferability)
Consider graph signals (Sn,x») and (Sm,xm) sampled from graphon signal (W, X) along with
convolution outputs y, = H(Ss)x, and y, = H(Sm)xm. The difference norm of the respective

graphon induced signals is bounded by

1 1
1Ya=Yal < (Ah ) <7+7>||X|| +4Anc|IX]|
n m

Same bound holds for GNNs because the pointwise nonlinearity transfers verbatim because it does not mix components

[Ruiz et al ‘20] Graphon Neural Networks and the Transferability of Graph Neural Networks, nip: html

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629
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Learning by Transference in Stochastic Graph Models Duke @ Jorxs HOpKins §

Transferability can be leveraged to learn in a sequence of growing graphs. We say that we learn by transference.

We consider graphs of growing sizes and use the GNN
trained on a smaller graph as a warm start to learn the
optimal GNN for a larger graph.

Faster training. Enables training in large scale graphs.
102 nodes 108 nodes 104 nodes graphon
00 LTI 200 oh et opoc Training with growing graphs

—— 10 nodes per epoch
—H= Trained on 100 nodes (10 epochs)
—f= Trained on 100 nodes (30 epochs)

—— 10 nodes per epoch

— Trained on 100 nodes (9 epochs) learns GNNs with the same

—4— Trained on 100 nodes (30 epochs)

g9 R performance
£ 70 £ 70
E 60 E 60 i
S 5o g 5o ) .
2 a0 a0 Computational cost is reduced
g § 7 e Ry by a 5.67 factor. More possible eQxle,}

20 20 f h . | \\*\‘x‘:‘ ::fo\)kg‘l:

if graph is larger . HENES
I B R O B S VA Y I R S A A B R )
Numberof Epachs Number of Epachs s

[Cervifio et al '21] Learning by Transference: Training Graph Neural Networks on Growing Graphs, https://arxiv.org/abs/2106.03693
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