
Graph Neural Networks

Architectures, Fundamental Properties and Applications

Navid NaderiAlizadeh, Alejandro Ribeiro, Luana Ruiz, Zhiyang Wang

Web: gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

A. Ribeiro Graph Neural Networks: Architectures, Fundamental Properties and Applications 1

gnn.seas.upenn.edu/aaai-2025/

Graph Neural Networks

Architectures, Stability, and Transferability

Alejandro Ribeiro

Dept. of Electrical and Systems Engineering

University of Pennsylvania

Email: aribeiro@seas.upenn.edu Web: alelab.seas.upenn.edu

TH15: Graph Neural Networks: Architectures, Fundamental Properties and Applications
gnn.seas.upenn.edu/aaai-2025/

Feb 26 2025

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 2

aribeiro@seas.upenn.edu
alelab.seas.upenn.edu
gnn.seas.upenn.edu/aaai-2025/

Graph Neural Networks: Why?

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 3

Visit my course website: https://gnn.seas.upenn.edu

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 4

https://gnn.seas.upenn.edu

Machine Learning on Graphs: Why?

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 5

Why Are Graphs so Common in Information Processing?

▶ Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Identify the author of a text of unknown provenance

Segarra et al ’16,, arxiv.org/abs/1805.00165

Recommendation Systems

Predict the rating a customer would give to a product

Ruiz et al ’18,, arxiv.org/abs/1903.12575

▶ In both cases there exists a graph that contains meaningful information about the problem to solve

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 6

arxiv.org/abs/1805.00165
arxiv.org/abs/1903.12575

Authorship Attribution with Word Adjacency Networks (WANs)

▶ Nodes represent different function words and edges how often words appear close to each other

⇒ A proxy for the different ways in which different authors use the English language grammar

William Shakespeare

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its
lik

e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Christopher Marlowe

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

▶ WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 7

doi.org/10.1353/shq.2016.0024

Recommendation System with Collaborative Filtering

▶ Nodes represent different customers and edges their average similarity in product ratings

⇒ The graph informs the completion of ratings when some are unknown and are to be predicted

Variation Diagram for Original (sampled) ratings Variation Diagram for Reconstructed (predicted) ratings

▶ Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

Ruiz-Gama-Marques-Ribeiro, Invariance-Preserving Localized Activation Functions for Graph Neural Networks, arxiv.org/abs/1903.12575

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 8

arxiv.org/abs/1903.12575

Brain Networks: Brain Age Scoring

Ageing is a risk factor for neurodegeneration and biological age (brain age) is elevated compared to chronological age in pathology.
Hence, Age-Gap (brain age – chronological age) is a biomarker of interest.

Cortical Thickness Brain Signals. GNN on anatomical covariance matrix leverages
cortical thickness (CT) features to predict brain age.
Regional age-gap is defined by the difference between GNN prediction and outputs at
the final layer of GNN.
Elevated brain age gap effect is driven by regional age-gap effects in impacted regions.

VNN
Architecture

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="cngSRBIg6ylJu2kahHSGTkQVI4c=">AAACRHicbVDLSgMxFM34dnxVXboJtoKrMiOiLkU3LhXaKnRKyaR3bDCTDMkdtQzzcW78AHd+gRsXirgV09qFrwOBwzn3cm5OnElhMQgevYnJqemZ2bl5f2FxaXmlsrrWsjo3HJpcS20uYmZBCgVNFCjhIjPA0ljCeXx1PPTPr8FYoVUDBxl0UnapRCI4Qyd1K+3IJtT3I6WF6oFCv2GYsgkYFgspcEB1EkXf7AjhFkexxU1fIJRFLayVNGOGpYAuiNaKiDNJT8pat1IN6sEI9C8Jx6RKxjjtVh6inuZ56oK4ZNa2wyDDTsEMCi6h9KPcQsb4FbuEtqPKRdpOMbqmpFtO6dFEG/cU0pH6faNgqbWDNHaTKcO+/e0Nxf+8do7JQacQKssRFP8KSnJJUdNho7QnDHCUA0cYN8LdSnnf9cGHdfiuhPD3l/+S1k493Kvvnu1UD4/GdcyRDbJJtklI9skhOSGnpEk4uSNP5IW8evfes/fmvX+NTnjjnXXyA97HJyNMsY8=</latexit>

Transferability of
1 parameters H

ROIs identified
for pathology

Readout
(unweighted

mean)

Brain age
estimation

Readout
(unweighted

mean)

Brain age
estimation

<latexit sha1_base64="o28P2OPSw00zPaJL9QyPGPeUF3c=">AAACJXicbVC7SgNBFJ31GddX1NJmMAqxCbtB1MIimMYygnlAEsLdyd1kyOzsMjMrhJCfsfFXbCwMIlj5K04ehRoPDBzOuZcz9wSJ4Np43qezsrq2vrGZ2XK3d3b39rMHhzUdp4phlcUiVo0ANAousWq4EdhIFEIUCKwHg/LUrz+i0jyWD2aYYDuCnuQhZ2Cs1MnetHRIXbfFUBpUXPbccqyMtQU1fc4GErWmXTBgh9z8adTxT2mIYFKF+ryTzXkFbwa6TPwFyZEFKp3spNWNWRrZMCZA66bvJaY9gmmiwLHbSjUmwAbQw6alEiLU7dHsyjE9s0qXhrGyTxo6U39ujCDSehgFdjIC09d/van4n9dMTXjdHnGZpAYlmweFqS0gptPKaJcrZEYMLQGmuP0rZX1QwGxj2rUl+H9PXia1YsG/LFzcF3Ol20UdGXJMTkie+OSKlMgdqZAqYeSJvJA3MnGenVfn3fmYj644i50j8gvO1zd1C6LC</latexit>

Cortical thickness data
(m1 features)

<latexit sha1_base64="RSVL+Zq1lGUc6XN4AMMwfMq83bA=">AAACJXicbVC7SgNBFJ31GddX1NJmMAqxCbtB1MIimMYygnlAEsLdyd1kyOzsMjMrhJCfsfFXbCwMIlj5K04ehRoPDBzOuZcz9wSJ4Np43qezsrq2vrGZ2XK3d3b39rMHhzUdp4phlcUiVo0ANAousWq4EdhIFEIUCKwHg/LUrz+i0jyWD2aYYDuCnuQhZ2Cs1MnetHRIXbfFUBpUXPbccqyMtQU1fc4GErWmXTBgh9z8adQpntIQwaQK9Xknm/MK3gx0mfgLkiMLVDrZSasbszSyYUyA1k3fS0x7BNNEgWO3lWpMgA2gh01LJUSo26PZlWN6ZpUuDWNlnzR0pv7cGEGk9TAK7GQEpq//elPxP6+ZmvC6PeIySQ1KNg8KU1tATKeV0S5XyIwYWgJMcftXyvqggNnGtGtL8P+evExqxYJ/Wbi4L+ZKt4s6MuSYnJA88ckVKZE7UiFVwsgTeSFvZOI8O6/Ou/MxH11xFjtH5Becr292mqLD</latexit>

Cortical thickness data
(m2 features)

<latexit sha1_base64="wAjtm45uhqaV0+m+bVRdQhXunLk=">AAACL3icbVDJSgNBEO1xd9yiHr00RkEvYUZEPbqAeIxgVMiEUNOpiY29DN09Ygz+kRd/xYuIIl79CzvLwa2g4PHqFa/qpbng1kXRSzAyOjY+MTk1Hc7Mzs0vlBaXzq0uDMMa00KbyxQsCq6w5rgTeJkbBJkKvEivj3rzixs0lmt15jo5NiS0Fc84A+epZuk4sRkNw4Shcmi4aocHCpyWXiAo0zdgOCiGXiLBGX5LNyy/Q7omm3HiuERLPVrbbJbKUSXqF/0L4iEok2FVm6WnpKVZIb0tE2BtPY5y1+iCcZwJvA+TwmIO7BraWPdQgbdqdPv/3tN1z7Ropo1v5Wif/b7RBWltR6Ze6a++sr9nPfK/Wb1w2V6jy1VeOFRsYJQVgjpNe+HRFjfInOh4AMxwfytlV2CA+exs6EOIf7/8F5xvVeKdyvbpVnn/cBjHFFkhq2SDxGSX7JMTUiU1wsgDeSKv5C14DJ6D9+BjIB0JhjvL5EcFn1/p4acl</latexit>

Anatomical covariance
matrix (size m1 ⇥ m1)

<latexit sha1_base64="DX3Hr7HTPJuhef+wtdJCUndCuNU=">AAACL3icbVDJSgNBEO1xd9yiHr00RkEvYSaIenQB8ahgVMiEUNOpiY29DN09wRj8Iy/+ihcRRbz6F3ZiDm4FBY9Xr3hVL80Fty6KnoOR0bHxicmp6XBmdm5+obS4dG51YRjWmBbaXKZgUXCFNcedwMvcIMhU4EV6fdifX3TQWK7Vmevm2JDQVjzjDJynmqWjxGY0DBOGyqHhqh3uK3BaeoGgTHfAcFAMvUSCM/yGblh+i3RNNquJ4xIt9Whts1kqR5VoUPQviIegTIZ10iw9Ji3NCultmQBr63GUu0YPjONM4F2YFBZzYNfQxrqHCrxVozf4946ue6ZFM218K0cH7PeNHkhruzL1Sn/1lf0965P/zeqFy3YbPa7ywqFiX0ZZIajTtB8ebXGDzImuB8AM97dSdgUGmM/Ohj6E+PfLf8F5tRJvV7ZOq+W9g2EcU2SFrJINEpMdskeOyQmpEUbuySN5Ia/BQ/AUvAXvX9KRYLizTH5U8PEJ7PenJw==</latexit>

Anatomical covariance
matrix (size m2 ⇥ m2)

<latexit sha1_base64="0FtkVmoDlT0HpPAIZ41bdHXosFk=">AAACOnicbVA9SwNBEN3z2/MrammzGAVtwp2IWoo2lgpGhSSEuc1csmRv99idU0Lwd9n4K+wsbCwUsfUHuIkp/BpYeLx5s2/mJbmSjqLoMRgbn5icmp6ZDefmFxaXSssrF84UVmBVGGXsVQIOldRYJUkKr3KLkCUKL5Pu8aB/eY3WSaPPqZdjI4O2lqkUQJ5qls7qLuVhWBeoCa3U7fCmYxTyxILUXBhLXqq8gjpSdDU6x1tA3pA8t7WRNeMNnoPfRanhj267WSpHlWhY/C+IR6DMRnXaLD3UW0YUmd9AKHCuFkc5NfowsFZ4G9YLhzmILrSx5qGGDF2jPzz9lm96psVTY/3TxIfs94k+ZM71ssQrM6CO+90bkP/1agWlB42+1HlBqMWXUVooToYPcuQtaVGQ6nkAwkq/KxcdsCB8jC70IcS/T/4LLnYq8V5l92ynfHg0imOGrbF1tsVits8O2Qk7ZVUm2B17Yi/sNbgPnoO34P1LOhaMZlbZjwo+PgGYmauH</latexit>

whole brain cortical
thickness dataset
(m1 parcellations)

<latexit sha1_base64="WCoge6rT08TtWSgRJcdlnB3m75M=">AAACOnicbVA9TyMxEPVycMAeHOEoaSzCSdBEuxECSgQNZSIRQEqiaNaZTax47ZU9C4oifhcNv4KOgoYChGj5ATghBV8jWXp688Zv5iW5ko6i6C6Y+TU793t+YTH8s7T8d6W0+u/UmcIKbAijjD1PwKGSGhskSeF5bhGyROFZMjga988u0Dpp9AkNc2xn0NMylQLIU51SveVSHoYtgZrQSt0LL/tGIU8sSM2FseSlyiuoL8VAo3O8C+QNyXNbm1mnuslz8LsoNfnRbXdK5agSTYp/B/EUlNm0ap3SbatrRJH5DYQC55pxlFN7BGNrhVdhq3CYgxhAD5seasjQtUeT06/4f890eWqsf5r4hP04MYLMuWGWeGUG1Hdfe2Pyp16zoHS/PZI6Lwi1eDdKC8XJ8HGOvCstClJDD0BY6Xflog8WhI/RhT6E+OvJ38FptRLvVnbq1fLB4TSOBbbONtgWi9keO2DHrMYaTLBrds8e2VNwEzwEz8HLu3QmmM6ssU8VvL4Bmi2riA==</latexit>

whole brain cortical
thickness dataset
(m2 parcellations)

Regional analysis
of final layer

outputs
<latexit sha1_base64="5iwdhHtJdvsVL+izjJo45bYZdxg=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYCu4sSRF1GV9LFxWsA9oQplMb9qhkwczE6XEfoobF4q49Uvc+TdO2yy09cCFwzn3cu89fsKZVLb9bSwtr6yurRc2zM2t7Z1dq7jXlHEqKDRozGPR9okEziJoKKY4tBMBJPQ5tPzh9cRvPYCQLI7u1SgBLyT9iAWMEqWlrlV0ZWCaZfcGuCLlk8s+dK2SXbGnwIvEyUkJ5ah3rS+3F9M0hEhRTqTsOHaivIwIxSiHsemmEhJCh6QPHU0jEoL0sunpY3yklR4OYqErUniq/p7ISCjlKPR1Z0jUQM57E/E/r5Oq4MLLWJSkCiI6WxSkHKsYT3LAPSaAKj7ShFDB9K2YDoggVOm0TB2CM//yImlWK85Z5fSuWqpd5XEU0AE6RMfIQeeohm5RHTUQRY/oGb2iN+PJeDHejY9Z65KRz+yjPzA+fwDPcJJt</latexit>

�-Age

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="sS93iBWn0WowBH0gtcW2/526jtE=">AAAB9XicbVDLSgMxFL3js46vqks3wSK4KjNF1GXRjcsK9gHtWDJppg3NJEOSUYah/+HGhSJu/Rd3/o1pOwttPRA4nHsu9+SECWfaeN63s7K6tr6xWdpyt3d29/bLB4ctLVNFaJNILlUnxJpyJmjTMMNpJ1EUxyGn7XB8M523H6nSTIp7kyU0iPFQsIgRbKz00NOR6zawGVnjMOuXK17VmwEtE78gFSjQ6Je/egNJ0pgKQzjWuut7iQlyrAwjnE7cXqppgskYD2nXUoFjqoN8lnqCTq0yQJFU9gmDZurvjRzHWmdxaJ2xTagXZ1Pxv1k3NdFVkDORpIYKMj8UpRwZiaYVoAFTlBieWYKJYjYrIiOsMDG2KNeW4C9+eZm0alX/onp+V6vUr4s6SnAMJ3AGPlxCHW6hAU0goOAZXuHNeXJenHfnY25dcYqdI/gD5/MHxLqSDQ==</latexit>

Pathology

ROIs identified
for pathology

Regional analysis
of final layer

outputs <latexit sha1_base64="5iwdhHtJdvsVL+izjJo45bYZdxg=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYCu4sSRF1GV9LFxWsA9oQplMb9qhkwczE6XEfoobF4q49Uvc+TdO2yy09cCFwzn3cu89fsKZVLb9bSwtr6yurRc2zM2t7Z1dq7jXlHEqKDRozGPR9okEziJoKKY4tBMBJPQ5tPzh9cRvPYCQLI7u1SgBLyT9iAWMEqWlrlV0ZWCaZfcGuCLlk8s+dK2SXbGnwIvEyUkJ5ah3rS+3F9M0hEhRTqTsOHaivIwIxSiHsemmEhJCh6QPHU0jEoL0sunpY3yklR4OYqErUniq/p7ISCjlKPR1Z0jUQM57E/E/r5Oq4MLLWJSkCiI6WxSkHKsYT3LAPSaAKj7ShFDB9K2YDoggVOm0TB2CM//yImlWK85Z5fSuWqpd5XEU0AE6RMfIQeeohm5RHTUQRY/oGb2iN+PJeDHejY9Z65KRz+yjPzA+fwDPcJJt</latexit>

�-Age

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="sS93iBWn0WowBH0gtcW2/526jtE=">AAAB9XicbVDLSgMxFL3js46vqks3wSK4KjNF1GXRjcsK9gHtWDJppg3NJEOSUYah/+HGhSJu/Rd3/o1pOwttPRA4nHsu9+SECWfaeN63s7K6tr6xWdpyt3d29/bLB4ctLVNFaJNILlUnxJpyJmjTMMNpJ1EUxyGn7XB8M523H6nSTIp7kyU0iPFQsIgRbKz00NOR6zawGVnjMOuXK17VmwEtE78gFSjQ6Je/egNJ0pgKQzjWuut7iQlyrAwjnE7cXqppgskYD2nXUoFjqoN8lnqCTq0yQJFU9gmDZurvjRzHWmdxaJ2xTagXZ1Pxv1k3NdFVkDORpIYKMj8UpRwZiaYVoAFTlBieWYKJYjYrIiOsMDG2KNeW4C9+eZm0alX/onp+V6vUr4s6SnAMJ3AGPlxCHW6hAU0goOAZXuHNeXJenHfnY25dcYqdI/gD5/MHxLqSDQ==</latexit>

Pathology

Figure 4: Overview of brain age prediction framework using VNNs.

3 Application: Brain Age Prediction

The gap between chronological age and biological age for a subject has been studied as a biomarker of

cognitive decline and neurodegeneration [56,77]. In particular, many studies leverage neuroimaging data to

estimate brain-predicted biological age, also referred to as brain age. Most existing studies treat biological

age as a scalar quantity which is expected to be elevated as compared to chronological age in pathological

contexts. However, in the absence of a ground truth, the notion of brain age is abstract and has a limited

clinical utility without identification of the main contributors to the elevated brain age due to pathology.

In this paper, we leverage the architecture of VNNs to provide an interpretable perspective to brain age

prediction and our results demonstrate that the elevated brain pathology is accompanied with abnormalities

in various regions of interest. Next, we discuss how the outputs at the final layer of VNNs may provide

insights into the impact of a pathology.

18

Interpretability:
Isolate brain
regions with
elevated
regional age-gap

Transferability:
Evaluate spatial
robustness of
age-gap effects

<latexit sha1_base64="ctPfEJQUkDARQCvlMkyMKyrKvE0=">AAAB83icbVBNSwMxEM3Wr7p+VT16CRbBi2W3iHqsetBjBfsB3VKy6Wwbms2GJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2njet1NYWV1b3yhuulvbO7t7pf2Dpk5SRaFBE56odkg0cCagYZjh0JYKSBxyaIWj26nfegKlWSIezVhCNyYDwSJGibFSEOjIda8HcHZHZK9U9ireDHiZ+Dkpoxz1Xukr6Cc0jUEYyonWHd+TppsRZRjlMHGDVIMkdEQG0LFUkBh0N5vdPMEnVunjKFG2hMEz9fdERmKtx3FoO2NihnrRm4r/eZ3URFfdjAmZGhB0vihKOTYJngaA+0wBNXxsCaGK2VsxHRJFqLExuTYEf/HlZdKsVvyLyvlDtVy7yeMooiN0jE6Rjy5RDd2jOmogiiR6Rq/ozUmdF+fd+Zi3Fpx85hD9gfP5A1NnkJQ=</latexit>

Age-Gap

<latexit sha1_base64="ctPfEJQUkDARQCvlMkyMKyrKvE0=">AAAB83icbVBNSwMxEM3Wr7p+VT16CRbBi2W3iHqsetBjBfsB3VKy6Wwbms2GJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2njet1NYWV1b3yhuulvbO7t7pf2Dpk5SRaFBE56odkg0cCagYZjh0JYKSBxyaIWj26nfegKlWSIezVhCNyYDwSJGibFSEOjIda8HcHZHZK9U9ireDHiZ+Dkpoxz1Xukr6Cc0jUEYyonWHd+TppsRZRjlMHGDVIMkdEQG0LFUkBh0N5vdPMEnVunjKFG2hMEz9fdERmKtx3FoO2NihnrRm4r/eZ3URFfdjAmZGhB0vihKOTYJngaA+0wBNXxsCaGK2VsxHRJFqLExuTYEf/HlZdKsVvyLyvlDtVy7yeMooiN0jE6Rjy5RDd2jOmogiiR6Rq/ozUmdF+fd+Zi3Fpx85hD9gfP5A1NnkJQ=</latexit>

Age-Gap

Interpretable regional profile to elevated brain age.

<latexit sha1_base64="sZ4Bp4dVB2e8aNNR2FFcTQqptlM=">AAACWnicbVBNa9tAEF2p+VTS1v249bLUKeQSI4XS9BiaS44pxEnAMma1GtmLV7vqzihgTP5kL6XQv1LIyPGhTTKw8Oa9GebtKxprkNL0dxS/2Njc2t7ZTfb2X7563Xvz9gp9GzQMtbc+3BQKwRoHQzJk4aYJoOrCwnUxP+v061sIaLy7pEUD41pNnamMVsTUpPcjx0omSa7BEQTjpoydN67kPrkMymEFQRXGGlpIX8lGBVUDjyJvHeRaWXl+IL2TdWvJHCETILUPZDopSWhm9NwBoiwVsU/CSa+fDtJVyacgW4O+WNfFpPczL71ua3akrUIcZWlD46Xqbli4S/IWoVF6rqYwYujYH46Xq2ju5CdmSln5wM+RXLH/bixVjbioC56sFc3wsdaRz2mjlqqv46VxTUvg9MOhqrWSvOxylqUJoMkuGCgdDHuVesbh6S67hEPIHn/5Kbg6HmRfBp+/H/dPv63j2BEfxEdxKDJxIk7FubgQQ6HFL/E32oq2oz9xHO/Gew+jcbTeeSf+q/j9PQp+stI=</latexit>

Transferability of parameters
H on multi-scale cortical

thickness datasets

<latexit sha1_base64="LXIMOFfoua0oDGxeSTgxK2M/S+Y=">AAACBHicbVDLSsNAFJ34rPEVddnNYCu4KkkRdVl0ocsK9gFNKJPppB06mQkzE6GELtz4K25cKOLWj3Dn3zhps9DWAxcO59zLvfeECaNKu+63tbK6tr6xWdqyt3d29/adg8O2EqnEpIUFE7IbIkUY5aSlqWakm0iC4pCRTji+zv3OA5GKCn6vJwkJYjTkNKIYaSP1nbLtqwjaNxIlI8FhNfNjpEdhBDvTat+puDV3BrhMvIJUQIFm3/nyBwKnMeEaM6RUz3MTHWRIaooZmdp+qkiC8BgNSc9QjmKigmz2xBSeGGUAIyFNcQ1n6u+JDMVKTeLQdOYnqkUvF//zeqmOLoOM8iTVhOP5oihlUAuYJwIHVBKs2cQQhCU1t0I8QhJhbXKzTQje4svLpF2veee1s7t6pXFVxFECZXAMToEHLkAD3IImaAEMHsEzeAVv1pP1Yr1bH/PWFauYOQJ/YH3+AEwIlp0=</latexit>

Graphon W

<latexit sha1_base64="BB+zuH+Wb5qvvGNNTqi5oqKxNec=">AAACFHicbZDLSsNAFIYnXmu8RV26GWwFQShJEXVZ7MZlBXuBJoTJdNIOnUzCzKRYQh/Cja/ixoUibl24822ctFlo6w8DH/85hznnDxJGpbLtb2NldW19Y7O0ZW7v7O7tWweHbRmnApMWjlksugGShFFOWooqRrqJICgKGOkEo0Ze74yJkDTm92qSEC9CA05DipHSlm+dm64ModmIx0hQxDGBEVKCPsBK5moaBiFsTP0s8p1pxbfKdtWeCS6DU0AZFGr61pfbj3EaEa4wQ1L2HDtRXoaEopiRqemmkiQIj9CA9DRyFBHpZbOjpvBUO30YxkI/ruDM/T2RoUjKSRToznxRuVjLzf9qvVSF115GeZIqwvH8ozBlUMUwTwj2qSBYsYkGhAXVu0I8RAJhpXM0dQjO4snL0K5VncvqxV2tXL8p4iiBY3ACzoADrkAd3IImaAEMHsEzeAVvxpPxYrwbH/PWFaOYOQJ/ZHz+AK9cnV4=</latexit>

Covariance matrix Cm1

<latexit sha1_base64="nlfp2EM1lsXgOSKGOI/mHjj8NgA=">AAACFHicbZDLSsNAFIYnXmu8RV26GWwFQShJEXVZ7MZlBXuBJoTJdNIOnUzCzKRYQh/Cja/ixoUibl24822ctFlo6w8DH/85hznnDxJGpbLtb2NldW19Y7O0ZW7v7O7tWweHbRmnApMWjlksugGShFFOWooqRrqJICgKGOkEo0Ze74yJkDTm92qSEC9CA05DipHSlm+dm64ModmIx0hQxDGBEVKCPsBK5moaBiFsTP0s8mvTim+V7ao9E1wGp4AyKNT0rS+3H+M0IlxhhqTsOXaivAwJRTEjU9NNJUkQHqEB6WnkKCLSy2ZHTeGpdvowjIV+XMGZ+3siQ5GUkyjQnfmicrGWm//VeqkKr72M8iRVhOP5R2HKoIphnhDsU0GwYhMNCAuqd4V4iATCSudo6hCcxZOXoV2rOpfVi7tauX5TxFECx+AEnAEHXIE6uAVN0AIYPIJn8ArejCfjxXg3PuatK0YxcwT+yPj8AbDinV8=</latexit>

Covariance matrix Cm2

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="cngSRBIg6ylJu2kahHSGTkQVI4c=">AAACRHicbVDLSgMxFM34dnxVXboJtoKrMiOiLkU3LhXaKnRKyaR3bDCTDMkdtQzzcW78AHd+gRsXirgV09qFrwOBwzn3cm5OnElhMQgevYnJqemZ2bl5f2FxaXmlsrrWsjo3HJpcS20uYmZBCgVNFCjhIjPA0ljCeXx1PPTPr8FYoVUDBxl0UnapRCI4Qyd1K+3IJtT3I6WF6oFCv2GYsgkYFgspcEB1EkXf7AjhFkexxU1fIJRFLayVNGOGpYAuiNaKiDNJT8pat1IN6sEI9C8Jx6RKxjjtVh6inuZ56oK4ZNa2wyDDTsEMCi6h9KPcQsb4FbuEtqPKRdpOMbqmpFtO6dFEG/cU0pH6faNgqbWDNHaTKcO+/e0Nxf+8do7JQacQKssRFP8KSnJJUdNho7QnDHCUA0cYN8LdSnnf9cGHdfiuhPD3l/+S1k493Kvvnu1UD4/GdcyRDbJJtklI9skhOSGnpEk4uSNP5IW8evfes/fmvX+NTnjjnXXyA97HJyNMsY8=</latexit>

Transferability of
1 parameters H

<latexit sha1_base64="A+bM3tFQH6wVVKGRKA/4150t/Ik=">AAACJXicbZDLSsNAFIYn9VbjrerSzWArVJCSFFFBF8VuuqxgL9CEMJlO2qGTCzMTsYS8jBtfxY0LiwiufBUnbRFt/WHg5zvnMOf8bsSokIbxqeVWVtfWN/Kb+tb2zu5eYf+gLcKYY9LCIQt510WCMBqQlqSSkW7ECfJdRjruqJ7VOw+ECxoG93IcEdtHg4B6FCOpkFO4sYQHdb1kNYe0nFg+kkPXg49O4jtmml7DH1RPZ+xMIYwYbKSnJadQNCrGVHDZmHNTBHM1ncLE6oc49kkgMUNC9EwjknaCuKSYkVS3YkEihEdoQHrKBsgnwk6mV6bwRJE+9EKuXiDhlP6eSJAvxNh3VWe2s1isZfC/Wi+W3pWd0CCKJQnw7CMvZlCGMIsM9iknWLKxMghzqnaFeIg4wlIFq6sQzMWTl027WjEvKud31WLtdh5HHhyBY1AGJrgENdAATdACGDyBF/AGJtqz9qq9ax+z1pw2nzkEf6R9fQNEsqNL</latexit>

�(xm1 ;Cm1 , H)

<latexit sha1_base64="8lqwsuGUSa07bktLXpD5pnd9Y2Q=">AAACJXicbZDLSsNAFIYn9VbjLerSzWArVJCSFFFBF8VuuqxgL9CUMJlO2qGTCzMTsYS8jBtfxY0LiwiufBWnbRBt/WHg5zvnMOf8bsSokKb5qeVWVtfWN/Kb+tb2zu6esX/QEmHMMWnikIW84yJBGA1IU1LJSCfiBPkuI213VJvW2w+ECxoG93IckZ6PBgH1KEZSIce4sYUHdb1oN4a0lNg+kkPXg4+pk/hOJb2GP6iWoTOFMGKwnp4WHaNgls2Z4LKxMlMAmRqOMbH7IY59EkjMkBBdy4xkL0FcUsxIqtuxIBHCIzQgXWUD5BPRS2ZXpvBEkT70Qq5eIOGM/p5IkC/E2HdV53RnsVibwv9q3Vh6V72EBlEsSYDnH3kxgzKE08hgn3KCJRsrgzCnaleIh4gjLFWwugrBWjx52bQqZeuifH5XKVRvszjy4AgcgxKwwCWogjpogCbA4Am8gDcw0Z61V+1d+5i35rRs5hD8kfb1DUiBo00=</latexit>

�(xm2 ;Cm2 , H)

0 1

<latexit sha1_base64="PZFs1ZETTChWF9U56EOCKYJkMs0=">AAAB83icbVBNS8NAEJ3Urxq/qh69LBbBU0lE1GPRi8cK9gPSEDbbTbt0dxN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZenHGmjed9O5W19Y3Nreq2u7O7t39QOzzq6DRXhLZJylPVi7GmnEnaNsxw2ssUxSLmtBuP72Z+94kqzVL5aCYZDQUeSpYwgo2V+q47iQoR+dMgCaNa3Wt4c6BV4pekDiVaUe2rP0hJLqg0hGOtA9/LTFhgZRjhdOr2c00zTMZ4SANLJRZUh8X85ik6s8oAJamyJQ2aq78nCiy0nojYdgpsRnrZm4n/eUFukpuwYDLLDZVksSjJOTIpmgWABkxRYvjEEkwUs7ciMsIKE2Njcm0I/vLLq6Rz0fCvGpcPl/XmbRlHFU7gFM7Bh2towj20oA0EMniGV3hzcufFeXc+Fq0Vp5w5hj9wPn8A646Q+g==</latexit>

ym1
[f]

0 1

<latexit sha1_base64="3ly7T//3L+e5G38wKQ7hiIIqBFA=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSSlqMeiF48V7AekIWy2m3bp7ibsboQQ+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8KGVUadf9tiobm1vbO9Vde2//4PCodnzSU0kmMenihCVyECFFGBWkq6lmZJBKgnjESD+a3s39/hORiibiUecpCTgaCxpTjLSRhradhwUPmzM/DsJa3W24CzjrxCtJHUp0wtrXcJTgjBOhMUNK+Z6b6qBAUlPMyMweZoqkCE/RmPiGCsSJCorFzTPnwigjJ06kKaGdhfp7okBcqZxHppMjPVGr3lz8z/MzHd8EBRVpponAy0VxxhydOPMAnBGVBGuWG4KwpOZWB0+QRFibmGwTgrf68jrpNRveVaP10Kq3b8s4qnAG53AJHlxDG+6hA13AkMIzvMKblVkv1rv1sWytWOXMKfyB9fkD7RaQ+w==</latexit>

ym2
[f]

<latexit sha1_base64="Ht8brgR5rahZgJX/KEK6n0AxHYU=">AAACqnicbVFNb9QwEHXCVwkfXcqRy4gVYgvbbZJWgMSlKhcuiILY3aI4RI7jpFYdJ4odxOLmx/EXuPFvcNJVRVvm9Oa9GXvmTVoLrrTv/3HcGzdv3b6zcde7d//Bw83Ro62FqtqGsjmtRNUcp0QxwSWba64FO64bRspUsGV6+q7Xl99Zo3glv+hVzeKSFJLnnBJtqWT0C6scPA/LisuMSW1hygouDRG8kC86D5+tElMmQRflMezAkIRDAvgM101V6woMpkTAxw4f8mKC84ZQE3QGbNs3s4d/Mk12w52g6+AlXKj2mcti37yN304Ba/ZDG8irBjoYCgBzCZNwd28abIOHmcwu5vOS0dif+UPAdRCswRit4ygZ/cZZRdvSbksFUSoK/FrHhjSaU8Hsxq1iNaGnpGCRhZKUTMVmsLqDZ5bJhtHySmoY2H87DCmVWpWprSyJPlFXtZ78nxa1On8TGy7rVjNJzz/KWwHW3f5ukPGGUS1WFhDacDsr0BNivdT2ur0JwdWVr4NFOAtezfY/heODw7UdG+gJeoomKECv0QF6j47QHFHnufPBWThLd+p+dr+60Xmp66x7HqNL4WZ/AW79zFc=</latexit>

kym1 [f] � ym2 [f]k � O
⇣ 1

m
3�/2�1
1

+
1

m
3�/2�1
2

⌘
, for ⇣ 2 (2/3, 1)

<latexit sha1_base64="/fP3ls92Ooe7+TjfWiauJggtlRk=">AAACHXicbVDLSgMxFM3UVx1fVZdugkWomzJTi7osunFZoS9oS8mkd9rQTDIkGaGU/ogbf8WNC0VcuBH/xrSdhbYeCBzOuZeTe4KYM20879vJrK1vbG5lt92d3b39g9zhUUPLRFGoU8mlagVEA2cC6oYZDq1YAYkCDs1gdDvzmw+gNJOiZsYxdCMyECxklBgr9XLljg6x63aEZKIPwri1IUgFxg5wPEiIIsIAaFxY6BG+OHfdXi7vFb058CrxU5JHKaq93GenL2kS2QDKidZt34tNd0KUzeEwdTuJhpjQERlA21JBItDdyfy6KT6zSh+HUtknDJ6rvzcmJNJ6HAV2MiJmqJe9mfif105MeN2dMBEnBgRdBIUJx0biWVW4zxRQw8eWEKqY/SumQ9sINbbQWQn+8smrpFEq+pfF8n0pX7lJ68iiE3SKCshHV6iC7lAV1RFFj+gZvaI358l5cd6dj8Voxkl3jtEfOF8/lzKgVw==</latexit>

Theoretical guarantees (Theorem 3)

<latexit sha1_base64="PqoZwz9ujnI2oSeyK5WnDOtQr5Y=">AAACFHicbVDJSgNBEO1xd9yiHr00JoIihJkg6lHUg8cIRoUkDDWdGm3sWeiuEcOQj/Dir3jxoIhXD978GzvLwe1BUY/3quiuF2ZKGvK8T2dsfGJyanpm1p2bX1hcKi2vnJs01wIbIlWpvgzBoJIJNkiSwstMI8Shwovw5qjvX9yiNjJNzqibYTuGq0RGUgBZKShtt0zEXfcYCHilaIURv+sFRRz4vQrfrNhe4REC5RrNVlAqe1VvAP6X+CNSZiPUg9JHq5OKPMaEhAJjmr6XUbsATVIo7Lmt3GAG4gausGlpAjGadjE4qsc3rNLhUaptJcQH6veNAmJjunFoJ2Oga/Pb64v/ec2cov12IZMsJ0zE8KEoV5xS3k+Id6RGQaprCQgt7V+5uAYNgmyOrg3B/33yX3Jeq/q71Z3TWvngcBTHDFtj62yT+WyPHbATVmcNJtg9e2TP7MV5cJ6cV+dtODrmjHZW2Q84719ZHJvo</latexit>

Data xm1 (m1 features)

<latexit sha1_base64="VFQoMYLj1P5UlHlpz52TNXwXYDY=">AAACFHicbVDJSgNBEO1xd9yiHr00JoIihJkg6lHUg8cIRoUkDDWdGm3sWeiuEcOQj/Dir3jxoIhXD978GzvLwe1BUY/3quiuF2ZKGvK8T2dsfGJyanpm1p2bX1hcKi2vnJs01wIbIlWpvgzBoJIJNkiSwstMI8Shwovw5qjvX9yiNjJNzqibYTuGq0RGUgBZKShtt0zEXfcYCHilaIURv+sFRRzUehW+WbG9wiMEyjWaraBU9qreAPwv8UekzEaoB6WPVicVeYwJCQXGNH0vo3YBmqRQ2HNbucEMxA1cYdPSBGI07WJwVI9vWKXDo1TbSogP1O8bBcTGdOPQTsZA1+a31xf/85o5RfvtQiZZTpiI4UNRrjilvJ8Q70iNglTXEhBa2r9ycQ0aBNkcXRuC//vkv+S8VvV3qzuntfLB4SiOGbbG1tkm89keO2AnrM4aTLB79sie2Yvz4Dw5r87bcHTMGe2ssh9w3r8AXEKb6g==</latexit>

Data xm2 (m2 features)

<latexit sha1_base64="L4SiOGXZ7aqAAcLhvUhxyDIC3Is=">AAACBHicbZC7TsMwFIYdriXcAoxdLFqkslRJhYCxgoWxSPQiNVHluE5r1XYi20EqUQcWXoWFAYRYeQg23ga3zQAtv2Tp03/O0fH5w4RRpV3321pZXVvf2Cxs2ds7u3v7zsFhS8WpxKSJYxbLTogUYVSQpqaakU4iCeIhI+1wdD2tt++JVDQWd3qckICjgaARxUgbq+cUfRVBu6LoA4Fl3vN8TTlR0FD5tOeU3Ko7E1wGL4cSyNXoOV9+P8YpJ0JjhpTqem6igwxJTTEjE9tPFUkQHqEB6RoUyKwKstkRE3hinD6MYmme0HDm/p7IEFdqzEPTyZEeqsXa1Pyv1k11dBlkVCSpJgLPF0UpgzqG00Rgn0qCNRsbQFhS81eIh0girE1utgnBWzx5GVq1qndePbutlepXeRwFUATHoAI8cAHq4AY0QBNg8AiewSt4s56sF+vd+pi3rlj5zBH4I+vzB6AWlis=</latexit>

(size m1 ⇥ m1)

<latexit sha1_base64="K3UOvH8/jansHgmOvTMHqjYAm/g=">AAACBHicbZC7TsMwFIYdriXcAoxdLFqkslRJhYCxgoWxSPQiNVHluE5r1XYi20EqUQcWXoWFAYRYeQg23ga3zQAtv2Tp03/O0fH5w4RRpV3321pZXVvf2Cxs2ds7u3v7zsFhS8WpxKSJYxbLTogUYVSQpqaakU4iCeIhI+1wdD2tt++JVDQWd3qckICjgaARxUgbq+cUfRVBu6LoA4Fl3qv5mnKioKHyac8puVV3JrgMXg4lkKvRc778foxTToTGDCnV9dxEBxmSmmJGJrafKpIgPEID0jUokFkVZLMjJvDEOH0YxdI8oeHM/T2RIa7UmIemkyM9VIu1qflfrZvq6DLIqEhSTQSeL4pSBnUMp4nAPpUEazY2gLCk5q8QD5FEWJvcbBOCt3jyMrRqVe+8enZbK9Wv8jgKoAiOQQV44ALUwQ1ogCbA4BE8g1fwZj1ZL9a79TFvXbHymSPwR9bnD6Msli0=</latexit>

(size m2 ⇥ m2)

<latexit sha1_base64="GbW6eigMBomwFXAErbt3bZbzp/4=">AAACC3icbVC7TsMwFHXKq4RXgJHFaovEVCUVAsYKFsYi0YfURJHjOK1Vx4lsB6mKurPwKywMIMTKD7DxNzhtBmi5kqWjc8491j1ByqhUtv1tVNbWNza3qtvmzu7e/oF1eNSTSSYw6eKEJWIQIEkY5aSrqGJkkAqC4oCRfjC5KfT+AxGSJvxeTVPixWjEaUQxUpryrZorI2iaLk8oDwlXptmIfacBUyR0mrZI07fqdtOeD1wFTgnqoJyOb325YYKzWMdhhqQcOnaqvLxIxIzMTDeTJEV4gkZkqCFHMZFePr9lBk81E8IoEfpxBefs740cxVJO40A7Y6TGclkryP+0YaaiKy+nPM0U4XjxUZQxqBJYFANDKghWbKoBwkLfjiEeI4Gw0vUVJTjLJ6+CXqvpXDTP71r19nVZRxWcgBo4Aw64BG1wCzqgCzB4BM/gFbwZT8aL8W58LKwVo9w5Bn/G+PwBu5yY+g==</latexit>

m1 partitions

<latexit sha1_base64="TmuOAHeSrXM87zF7P9b0CcZjnYs=">AAACC3icbVC7TsMwFHXKq4RXgJHFaovEVCUVAsYKFsYi0YfURJHjOK1Vx4lsB6mKurPwKywMIMTKD7DxNzhtBmi5kqWjc8491j1ByqhUtv1tVNbWNza3qtvmzu7e/oF1eNSTSSYw6eKEJWIQIEkY5aSrqGJkkAqC4oCRfjC5KfT+AxGSJvxeTVPixWjEaUQxUpryrZorI2iaLk8oDwlXptmI/VYDpkjoNG2Rpm/V7aY9H7gKnBLUQTkd3/pywwRnsY7DDEk5dOxUeXmRiBmZmW4mSYrwBI3IUEOOYiK9fH7LDJ5qJoRRIvTjCs7Z3xs5iqWcxoF2xkiN5bJWkP9pw0xFV15OeZopwvHioyhjUCWwKAaGVBCs2FQDhIW+HUM8RgJhpesrSnCWT14FvVbTuWie37Xq7euyjio4ATVwBhxwCdrgFnRAF2DwCJ7BK3gznowX4934WFgrRrlzDP6M8fkDvS2Y+w==</latexit>

m2 partitions

Figure 3: Overview of transferability of VNNs. ym1 [f] is the continuous representation of f -th output

of VNN �(xm1 ;Cm1 , H) that is instantiated on data and covariance matrix with m1 features. Similarly,

ym2 [f] represents the f -th output of VNN �(xm2 ;Cm2 , H) that is instantiated on dataset with m2 features.

If the continuous counterparts of covariance matrices Cm1 and Cm2 , i.e., WCm1
and WCm2

, belong to a

sequence that converges to a graphon W (Definition 4) and the continuous representations of inputs xm1

and xm1 are close, the convergence between ym1 [f] and ym2 [f] is characterized in terms of m1 and m2 in

Theorem 3.

16

<latexit sha1_base64="Y4bCfEat9cNUZ0HXvtjQO1hF5Mw=">AAACQXicbVBNSwMxEM36bfyqevQSrIIHKbtF1KPoxZOo2Fpol5JNZ2swmyxJVijFv+bFf+DNuxcPinj14rT24NdA4OW9eZnMS3IlnQ/Dx2BsfGJyanpmls7NLywulZZX6s4UVkBNGGVsI+EOlNRQ89IraOQWeJYouEyujwb65Q1YJ42+8L0c4ox3tUyl4B6pdqnRcimjtCVAe7BSdxFrI3UH75SeAz7mEA67mUlZRzphwQOltH5ywkzh88Iz1OTAf8MV22iG21G80S6Vw0o4LPYXRCNQJqM6bZceWh0jigynCcWda0Zh7uM+t14KBbe0VTjIubjmXWgi1DwDF/eHCdyyTWQ6LDUWj/ZsyH539HnmXC9LsDPj/sr91gbkf1qz8Ol+3JcatwQtvgalhWLesEGcmIcF4VUPARdW4l+ZuOKWC0zDUQwh+r3yX1CvVqLdys5ZtXxwOIpjhqyRdbJFIrJHDsgxOSU1IsgdeSIv5DW4D56Dt+D9q3UsGHlWyY8KPj4Bfoat1A==</latexit>

Representation of discrete
VNN output on interval [0, 1]

GNN can be transferred across different graphs

a

b

Healthy Controls vs AD

Healthy Controls vs MCI

Healthy Controls vs MCI

Healthy Controls vs AD

OASIS-3
DKT Atlas

OASIS-3
DKT Atlas

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

32

a

b

Healthy Controls vs AD

Healthy Controls vs MCI

Healthy Controls vs MCI

Healthy Controls vs AD

OASIS-3
DKT Atlas

OASIS-3
DKT Atlas

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

32

Regions with elevated age-gap in Alzheimer’s Disease

Sihag-Mateos-McMillan-Ribeiro, coVariance Neural Networks., arxiv.org/abs/2205.15856

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 9

arxiv.org/abs/2205.15856

Graphs in Multiagent Physical Systems

▶ Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

Coordinate a team of agents without central coordination

Tolstaya et al ’19,, arxiv.org/abs/1903.10527

Wireless Communications Networks

Manage resources in wireless communications

Eisen-Ribeiro ’19,, arxiv.org/abs/1909.01865

▶ The graph is the source of the problem ⇒ Challenge is that goals are global but information is local

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 10

arxiv.org/abs/1903.10527
arxiv.org/abs/1909.01865

Graphs in Multiagent Physical Systems

▶ Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

6

Learning for PAC Loops: Challenges & Solutions

Humans find it difficult to design autonomous distributed
collaborative intelligent behaviors. We know that even simple
problems have difficult solutions.

We can, however, learn collaborative behaviors.

We are interested in large scale systems. Scalable
learning is impossible unless we properly exploit structure.

Graph neural networks (GNNs) leverage spatial,
sensing and communication graphs.

We need to learned solutions that respect information
locality. Information flows over the communication graph.

GNNs respect communication constraints.
(a) A city simulated in Unity. (b) The graph representation of the task. (c) A team of 10 such quadrotors were used.

Fig. 1. The trained models were tested on a team of robots simulated in Unity and controlled by waypoint commands issued through a
Robot Operating System interface. The trained model allows the robots to divide and conquer to visit the points of interest more efficiently
than a greedy model. We visualize this experiment in a provided along with this work: https://youtu.be/MiYSeENTyoA

Fig. 2. Robots and waypoints comprise the nodes in the graph, with
the edges between them indicating the ability of robots to move to
new locations.

B. Graph Representations for Exploration

We view the exploration problem as the problem of
coverage on a growing graph. Waypoint nodes are added
to the graph when they are observed by a range sensor with
range S: if kpi

t �q j
t k S, then Wt+1 = Wt [{pi}, with the set

of waypoints growing over time. Exploration introduces the
possibility that an observed waypoint may or may not have
adjacent waypoints that are currently unexplored. We call
these frontier nodes and add an indicator feature to indicate
whether a waypoint is part of the set of frontier nodes, F :

vi = [1i2R,1i2W ,1i2X ,1i2F]. (5)

C. Aggregation Graph Neural Networks

Graph Neural Networks are an increasingly popular tool
for exploiting the known structure of any relational system
[9]. In graph convolutional networks, the graph convolution
operation is defined using learnable coefficients that multiply
powers of the adjacency matrix times the graph signal [21],
[22]. We extend this architecture by incorporating non-linear
graph convolution operations.

The building block of a GNN is the Graph Network Block.
Given a graph signal, G =

�
{ek},{vi}

, one application of

the GN block transforms these features, G0 =
�
{e0k},{v0i}

:

e0k = f e(ek,vrk ,vsk), v0i = f v(ē0i,vi), ē0i = re!v(E 0
i). (6)

GN(·) is a function of the graph signal G, described by
the application of f e, re!v and f v in that order to produce
the transformed graph signal G0, with the same connectivity
but new features on the edges and nodes.

The aggregation operation re!v takes the set of trans-
formed incident edge features E 0

i = {e0k}rk=i at node i and
generates the fixed-size latent vector ē0i. Aggregations must
satisfy a permutation invariance property since there is no
fundamental ordering of edges in a graph. Also, this function
must be able to handle graphs of varying degree, so the mean
aggregation is particularly suitable to normalizing the output
by the number of input edges [14]:

re!v(E 0
i) :=

1
|E 0

i | Â
e0k2E 0

i

e0k. (7)

The mean aggregation operation is especially helpful for
improving the stability of GNNs with large receptive fields.

Next, we describe two variants of the Aggregation GNN
architecture that build upon [23]. The linear Aggregation
GNN architecture uses the following parametrization:

f e
L(ek,vrk ,vsk) := vsk , f v

L(ē0i,vi) := ē0i, (8)

while the non-linear Aggregation GNN uses learnable non-
linear functions to update node and edge features:

f e
N(ek,vrk ,vsk) := NNe([ek,vrk ,vsk]),

f v
N(ē0i,vi) := NNv([ē0i,vi]), (9)

where NNe and NNv are 3 layer MLPs with 16 hidden units.
Note that the linear Aggregation GNN in (8) cannot use the
input edge features, such as those defined in (4), unlike the
non-linear GNN defined in (9).

D. Policy Architecture

While a Graph Network Block can be used to compose a
variety of architectures, for this work, we develop a variant
of the Aggregation GNN in which the output of every GN

[Ribeiro ‘20] ESE514: Graph Neural Networks, https://gnn.seas.upenn.edu
Collaborative navigation of roads with a team of agents

Tolstaya et al ’21,, arxiv.org/abs/2011.01119

Wireless Communications Networks

Mobile infrastructure on demand to support a task team

Mox et al ’22,, arxiv.org/abs/2112.07663

▶ The graph is the source of the problem ⇒ Challenge is that goals are global but information is local

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 11

arxiv.org/abs/2011.01119
arxiv.org/abs/2112.07663

Machine Learning on Graphs: How?

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 12

Neural Networks and Convolutional Neural Networks

▶ There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

▶ Generic NNs do not scale to large dimensions ⇒ Convolutional Neural Networks (CNNs) do scale

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 13

Convolutional Neural Networks and Graph Neural Networks

▶ CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs

▶ Generalize convolutions to graphs ⇒ Compose graph filter banks with pointwise nonlinearities

▶ Stack in layers to create a graph (convolutional) Neural Network (GNN)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 14

Convolutions in Time, in Space, and on Graphs

▶ How do we generalize convolutions in time and space to operate on graphs?

⇒ Even though we do not often think of them as such, convolutions are operations on graphs

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 15

Time and Space are Representable by Graphs

▶ We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

▶ Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 16

Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17

Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

43

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17

Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

432

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17

Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4321

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

03 05

12 16

32 36

21 27

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17

Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4321

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

03 05

12 16

32 36

21 27

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 17

Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1 1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

▶ Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18

Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

6

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

▶ Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18

Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

▶ Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18

Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

6

7

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

210

10 10

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

▶ Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18

Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

6

7

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

210

10 10

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
∞∑

k=0

hk S
kx

▶ Graph convolutions share the locality of conventional convolutions. Recovered as particular case

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 18

Graph Convolutional Filters as Diffusion Operators

▶ A graph convolution is a weighted linear combination of the elements of the diffusion sequence

▶ Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S
0x + h1S

1x + h2S
2x + h3S

3x

y = h ⋆S x

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 19

Algebraic Convolutions

Definition (Convolution)

A convolutional filter is a polynomial on a shift operator with coefficients hk ⇒ z =
∞∑

k=0

hk S
kx

▶ It is the same algebraic object whether we consider time, space, or graphs

▶ They all have compositionality (operator powers) and some kind of equivariance

▶ They all admit a frequency representation

⇒ Filters are pointwise operators in the eigenvector basis of the shift operator

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stability to Deformations, arxiv.org/abs/2009.01433

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 20

arxiv.org/abs/2009.01433

Convolutions with Multiple Features

Definition (Algebraic Convolutions with Multiple Features)

Input signal X ∈ RN×F with F features. Output signal Z ∈ RN×G with G features. Filter

coefficients Hk are F × G matrices. The convolutional filter with coefficients Hk is

Z =
∞∑

k=0

Sk × X × Hk

▶ It has the same algebraic structure of a regular filter with scalar coefficients.

▶ Retains compositionality, equivariance, and existence of a frequency representation

▶ Filters with multiple features are more expressive. The ones we use to build GNNs and CNNs

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 21

Convolutional Neural Networks and Graph Neural Networks

▶ CNNs and GNNe are minor variations of linear convolutional filters

⇒ Compose filters with pointwise nonlinearities and compose these compositions into several layers

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 22

Neural Networks (NNs)

▶ A neural network composes a cascade of layers

▶ Each of which are themselves compositions of

linear maps with pointwise nonlinearities

▶ Does not scale to large dimensional signals x

Layer 1

Layer 2

Layer 3

x = x0

z1 = H1 x0 x1 = σ
[
z1

]z1

z2 = H2 x1 x2 = σ
[
z2

]z2

z3 = H3, x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 23

Convolutional Neural Networks (CNNs)

▶ A convolutional NN composes a cascade of layers

▶ Each of which are themselves compositions of

convolutions with pointwise nonlinearities

▶ Scales well. The Deep Learning workhorse

▶ A CNNs are minor variation of convolutional filters

⇒ Just add nonlinearity and compose

⇒ They scale because convolutions scale

Layer 1

Layer 2

Layer 3

x = x0

z1 = h1 ⋆ x x1 = σ
[
z1

]z1

z2 = h2 ⋆ x1 x2 = σ
[
z2

]z2

z3 = h3 ⋆ x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 24

When we Think of Time Signals as Supported on a Line Graph

▶ Those convolutions are polynomials on the

adjacency matrix of a line graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

▶ Just another way of writing convolutions and

Just another way of writing CNNs

▶ But one that lends itself to generalization

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 25

Graph Neural Networks (GNNs)

▶ The graph can be any arbitrary graph

▶ The polynomial on the matrix representation S

becomes a graph convolutional filter

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 26

arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

▶ A graph NN composes a cascade of layers

▶ Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

▶ A NN with linear maps restricted to convolutions

▶ Recovers a CNN if S describes a line graph

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 27

arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

▶ There is growing evidence of scalability.

▶ A GNN is a minor variation of a graph filter

⇒ Just add nonlinearity and compose

▶ Both are scalable because they leverage the

signal structure codified by the graph

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 28

arxiv.org/abs/1805.00165

Graph Neural Networks with Multiple Features

▶ In practice we use layers with multiple features

▶ This is to increase representation power but it does

not affect our fundamental observations

Layer 1

Layer 2

Layer 3

X = X0

Z1 =

K−1∑
k=0

Sk X0 H1k X1 = σ
[
Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[
Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[
Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 29

arxiv.org/abs/1805.00165

Collaborative Filtering with
Graph Neural Networks

Juan Elenter, Tatiana Guevara, Ignacio Hounie,
Charilaos Kanatsoulis, and Alejandro Ribeiro*

March 5, 2023

1 Collaborative Filtering

The objective of this lab is to design a recommendation system that pre-
dicts the ratings that customers would give to a certain product. Say,
the rating that a moviegoer would give to a specific movie, or the rating
that an online shopper would give to a particular offering. A possible
approach to making these predictions is to leverage the ratings that cus-
tomers have given to this or similar products in the past. This is called
collaborative filtering.

A schematic representation of collaborative filtering is shown in Figure 1.
The underlying assumption is that there is a true set of ratings that dif-
ferent customers would give to specific products. These ratings remain
unobserved and are denoted by X̄ in Figure 1. What we do have avail-
able are a subset of these ratings. They are represented by X in Figure 1
where all of the missing ratings are represented by a blank space. This
is a reasonable model of reality. Each of us has seen a small number of
movies or bought a small number of offerings. Thus, the ratings matrix
Xu contains only a few entries that correspond to rated products. Our
goal is to recover estimates Y of the unobserved ratings X̄.

*In alphabetical order.

1

Unobserved true ratings (X̄T) Observed ratings (XT) Reconstructed ratings (YT)

Figure 1. Recommendation with Collaborative Filtering.

As a specific example, we use the MovieLens-100k dataset. The MovieLens-
100k dataset consists of ratings given by U users to P movies (products).
The existing movie ratings are integer values between 1 and 5. Therefore,
the data are represented by a U ⇥ P matrix X where xup is the rating that
user u gives to movie p. If user u has not rated movie p, we adopt the
convention that xup = 0. We see that each row of this matrix corresponds
to a vector of ratings xu of a particular user.

1.1 Product Similarity Graph

To build the collaborative filtering system, we use the rating history of all
movies and all users to compute a graph of product similarities. This is
a graph in which nodes p represent different movies and weighted edges
Spq denote similarities between products p and q. The edges of the graph
are grouped in the adjacency matrix S.

To compute the entries Spq of the product similarity graph we use the raw
U ⇥ P movie rating matrix to evaluate crosscorrelations between movie
ratings of products p and q. To make matters simpler we have constructed
this graph already and are making it available as part of the dataset.

2

Figure 2. Adjacency Matrix of the Movie Similarity Graph. Brighter dots corre-
spond to pairs of movies that different watchers tend to score with similar ratings.

Task 1 Download the movie rating data to your computer and upload
the data ”movie data numpy.p” to this processing environment. Plot the
adjacency matrix S as an image. ⌅

Success in Task 2 must have produced the plot in Figure 2. In this fig-
ure each bright dot corresponds to a large entry S(p, q). This denotes
a pair of movies to which watchers tend to give similar scores. For in-
stance, say that when someone scores ”Star Wars IV” highly, they are
likely to score ”Star Wars V” highly and that the converse is also true;
poor scores in one correlate with poor scores in the other. The entry
S(”Star Wars IV”, ”Star Wars V”) is large because the crosscorrelation be-
tween the scores of these entries is high.

Fainter entries S(p, q) denote pairs of movies with less socre correlation.
Perhaps between ”Star Wars” and ”Star Trek” which have overlapping but
not identical fan bases. Dark entries S(p, q) correspond to pairs movies
with no correlation between audience scores. Say when p is the index of
”Star Wars” and q is the index of ”Little Miss Sunshine.”

3

Observed ratings (XT)

Sampled ratings of user u (xT
u)

User similarity graph (S)

Reconstructed ratings (YT)

Figure 3. Reconstruction of Movie Ratings with a Movie Similarity Matrix

1.2 Rating Signals

The vector of ratings xu of a particular user is interpreted as a signal
supported on the graph. That is, a signal in which the pth component
xup is associated with node p. In this context, the weights of the product
similarity graph become an expectation of similarity between ratings xup
and xuq. If Spq is large we expect these ratings to be similar. If Spq is small
we have no expectation of proximity or not between them.

We then have a system with the architecture shown in Figure 3. Rating
signals xu of individual users are extracted from the raw rating matrix
and are interpreted as signals supported on the graph S that we loaded
in Task 2. We want to leverage the graph S to make rating predictions yu
for this particular user.

We will, more precisely, develop and evaluate a graph neural network
(GNN) for making these rating predictions.

4

1.3 Rating Data Format and Rating Loss

To train the collaborative filtering system we use rating histories to create
a dataset with entries (xn, yn, pn). In these entries xn is a vector that
contains the ratings of a particular user, yn is a scalar that contains a
rating that we want to predict, and pn is the index of the movie (product)
that corresponds to the rating yn. To evaluate this collaborative filtering
system we use rating histories to create a dataset with entries having
the same format. Both of these datasets can be constructed from the
raw U ⇥ P movie rating matrix, but to make matters simpler we have
constructed them already and are making them available as part of the
dataset.

If we have a function ŷn = F(xn; H) that makes rating predictions out of
availbale ratings, we can evaluate the goodness of this function with the
squared loss

`
�
F(xn; H), yn

�
=
h�

ŷn
�

pn
� yn

i2
=
h�

F(xn; H)
�

pn
� yn

i2
. (1)

Notice that in this expression the function ŷn = F(xn; H) makes predic-
tions for all movies. However, we isolate entry pn and compare it against
the rating yn. We do this, because the rating yn of movie pn is the one we
have available in the training or test sets.

We remark the fact that the function ŷ = F(x; H) makes predictions for all
movies is important during operation. The idea of the recommendation
system is to identify the subset of products that the customer would rate
highly. They are the ones that we will recommend. This is why we want
a system that has a graph signal as an output even though the available
dataset has scalar outputs.

Task 2 Write a function to evaluate the training loss in (1). ⌅

2 Graph Convolutions

Let S denote a matrix representation of a graph. Supported on the nodes
of the graph we are given a graph signal x. We also consider a set of K

5

coefficients hk from k = 0 to k = K � 1. A graph convolutional filter is a
linear map acting on x defined as a polynomial on the matrix representa-
tion of the graph with coefficients hk,

z = h ⇤S x =
K�1

Â
k=0

hkSkx. (2)

Graph convolutions generalize convolutions in time to graphs. That this
is true can be seen if we represent time with a directed line graph. Con-
sidering (2) for the particular case in which S is the adjacency matrix of
this line graph, the product Skx results in a k-shift of the time signal x. For
this reason we sometimes refer to S as a shift operator. We also point out
that although we work with an adjacency matrix in this lab any matrix
representation of the graph can be used in (2).

One advantage that graph filters share with time convolutions is their
locality. To see this, define the diffusion sequence as a collection of graph
signals uk = Skx and rewrite the filter in (2) as,

z =
K�1

Â
k=0

hkSkx =
K

Â
k=0

hkuk (3)

It is ready to see that the diffusion sequence is given by the recursion
zk = Szk�1 with z0 = x. Further observing that Sij 6= 0 only when the
pair (i, j) is an edge of the graph, we see that the entries of the diffusion
sequence satisfy

uk,i = Â
j:(i,j)2E

Sijuk�1,j. (4)

We can therefore interpret graph filters as operators that propagate in-
formation through adjacent nodes. This is analogous to the propagation
of information in time with the application of time shifts. The locality
of graph convolutions is one of the motivations for their use in the pro-
cessing of information supported on graphs. The other reason is their
equivariance to permutations.

Because it aggregates with a weighted sum the information from neigh-
boring nodes, the operation in (4) is sometimes called an aggregation
information. Because it aggregates at node i information that is passed
from adjacent nodes j, we sometimes say that graph filters are message-
passing architectures and the GNNs that are derived from them are called
message passing GNNs.

6

2.1 Graph Convolutions with Multiple Features

To increase the representation power of graph filters we extend them to
add multiple features. In these filters the input is a matrix X and the
output is another matrix matrix Y. The filter coefficients are matrices Hk
and the filter itself is a generalization of (2) in which the matrices Hk
replace the scalars hk,

Z =
K

Â
k=0

SkXHk. (5)

In (5), the input feature matrix X has dimension N ⇥ F and the output
feature matrix Y has dimension N ⇥ G. This means that each of the F
columns of X represents a separate input feature whereas each of the G
columns of Y represents an output feature. To match dimensions, the
filter coefficient matrices Hk must be of dimension F ⇥ G.

Other than the fact that it represents an input-output relationship between
matrices instead of vectors, (5) has the same structure of (2).

In particular, we can define a diffusion sequence Uk through the recursion
Uk = SUk�1 and rewrite (5) as

Z =
K�1

Â
k=0

hkSkX =
K

Â
k=0

hkUk. (6)

This is worth remarking because we can write the diffusion sequence as
a message passing aggregation operation. Indeed, if uk,i is the ith row of
Uk we can write the diffusion sequence recursion as

uk,i = Â
j:(i,j)2E

Sijuk�1,j. (7)

In (7) nodes j in the neighborhood of i pass the message uk�1,j. Node
i aggregates these messages to create the updated message uk,i that it
passes on to its neighbors.

Task 3 Write a function that implements a graph filter. This function
takes as inputs the shift operator S, the filter coefficients Hk and the input
signal X. To further improve practical performance we add a bias term B
to the filter operation. That is, we refine (5) with the opearation,

Z =
K

Â
k=0

SkXHk + B. (8)

7

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =
K1

Â
k=0

SkX0H1k X1 = s
⇣

Z1

⌘Z1

Z2 =
K2

Â
k=0

SkX1H2k X2 = s
⇣

Z2

⌘Z2

Z3 =
K3

Â
k=0

SkX2H3k X3 = s
⇣

Z3

⌘Z3

X1

X1

X2

X2

X3 = F(X; H)

Figure 4. A Graph Neural Network (GNN) with three layers. A GNN is a com-
position of layers, each of which is itself the composition of a linear graph filter
with a pointwise nonlinearity. [cf. (9)].

The bias B is also passed as a parameter to the filter function. ⌅

Task 4 The graph filter implemented in Task 3 is not a GNN but it is not a
bad parameterization for making movie recommendations. Train a graph
filter to predict movie ratings. Plot the evolution of the training loss and
evaluate the loss in the test dataset. To obtain a good loss we need to
experiment with the length of the filter – the number of filter taps K.

A graph filter is sometimes called a linear GNN. It is a GNN that does
not use nonlinear opeartions.

8

3 Graph Neural Networks

Graph Neural Networks (GNNs) are information processing architectures
made up of a composition of layers, each of which is itself the composition
of a linear graph filter with a pointwise nonlinearity.

For a network with a given number of layers L we define the input output
relationship through the recursion

X` = s
⇣

Z`

⌘
= s

K`

Â
k=0

SkXl�1H`k

!
, (9)

In this recursion the output of Layer ` � 1 is Xl�1 and it is recast as an
input to Layer `. In this layer, the input Xl�1 is processed with a graph
filter to produce the intermediate output Z`. The coefficients of this graph
filter are the matrices H`k. This intermediate output is processed with a
pointwise nonlinearity s to produce the output X` of Layer `. That the
nonlinear operation is pointwise means that it is acting separately on each
entry of Zl .

To complete the recursion we redefine the input X as the output of Layer
0, X0 = X. The output of the neural network is the output of layer L,
XL = Phi(X; H). In this notation H is the tensor H := [H11, . . . , HLK`]
that groups all of the filters that are used at each of the L layers.

A graph neural network with three layers is depicted in Figure 4.

3.1 Graph Neural Network Specification

To specify a GNN we need to specify the number of layers L and the
characteristics of the filters that are used at each layer. The latter are the
number of filter taps K` and the number of features F` at the output of
the layer. The number of features F0 must match the number of features
at the input and the number of features FL must match the number of
features at the output. Observe that the number of features at the output
of Layer (`� 1) determines the number of features at the input of Layer
`. Then, the filter coefficients at Layer ` are of dimension F`�1 ⇥ F`.

9

Task 5 Program a class that implements a GNN with L layers. This class
receives as initialization parameters a GNN specification consisting of the
number of layers L and vectors [K1, . . . , KL] and [F0, F1, . . . , FL] containing
the number of taps and the number of features of each layer.

Endow the class with a method that takes an input feature X and pro-
duces the corresponding output feature Phi(X; H). ⌅

Task 6 Train a GNN to predict movie ratings. Plot the evolution of the
training loss and evaluate the loss in the test dataset. To obtain a good
loss we need to experiment with the number of layers and the number of
filter taps per layer.

10

Equivariance and Stability Properties of GNNs

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020, arxiv.org/abs/1905.04497

Gama-Isufi-Leus-Ribeiro, Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks, SPMag 2020, arxiv.org/abs/2003.03777

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and Transferability, PIEEE 2021 arxiv.org/abs/2008.01767

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 30

arxiv.org/abs/1905.04497
arxiv.org/abs/2003.03777
arxiv.org/abs/2008.01767

Permutation Equivariance and Stability

Fact 1

Graph filters and GNNs “work.” Outperform general linear transforms and fully connected NNs.

Fact 2

GNNs outperform graph filters in most learning tasks.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 31

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2

GNNs outperform graph filters in most learning tasks.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 32

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 33

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 34

Permutation Equivariance of Graph Neural Networks

▶ It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PTx. Then

Φ(x̂; Ŝ,H) = PTΦ(x;S,H)

▶ Relabeling the input signal results in a consistent relabeling of the output signal

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 35

Signal Processing with Graph Filters and GNNs is Independent of Labeling

▶ Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Graph signal x̂ = PT x supported on Ŝ = PTSP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 36

Signal Processing with Graph Filters and GNNs is Independent of Labeling

▶ Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x;S,H) supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

GNN Φ(x̂; Ŝ,H) = PTΦ(x;S,H) on Ŝ = PTSP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 36

Graph Filters and GNNs Exploit Permutation Symmetries

▶ Graph filters and GNNs exploit permutation symmetries of graphs and graph signals

▶ By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

▶ Equivariance theorem implies ⇒ Φ
(
PTx; S,H

)
= Φ

(
PTx; PTSP,H

)
= PTΦ

(
x; S,H

)

From observing x supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Learn to process PT x supported on S = PTSP

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 37

Permutation Equivariance and Stability

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 38

It is Quasi-Symmetry we Want to Exploit. Not Symmetry

▶ Graph not symmetric but close to symmetric ⇒ Deformed version of a permutation of itself

1

x1
2

x23
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1
2

x23
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

▶ Quasi-Symmetry, not symmetry ⇒ Stability to deformations that are close to permutation.

▶ GNNs have better stability properties than graph filters ⇒ Better at leveraging quasi-symmetries.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 39

Frequency Response of a Graph Filter

▶ Graph filters are operators defined on graph shift operators ⇒ H(S) =
∞∑

k=1

hkS
k = V

∞∑

k=1

hkΛ
kVH

▶ They are completely characterized by their frequency responses ⇒ h̃(λ) =
∞∑

k=1

hkλ
k

λ

h̃(λ)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 40

The Effect of the Graph

▶ Graph S has eigenvalues λi ⇒ The response is instantiated at these eigenvalues h̃(λi) =
∞∑

k=1

hkλ
k
i

▶ Graph Ŝ has eigenvalues λ̂i ⇒ The response is instantiated at these eigenvalues h̃(λ̂i) =
∞∑

k=1

hk λ̂
k
i

λ

h̃(λ)

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 41

Relative Perturbations of a Shift Operator

▶ Meaningful perturbations of a shift operator operator are relative ⇒ PT ŜP = S+ ES+ SE

▶ Conceptually, we learn all there is to be learnt from dilations ⇒ Ŝ = S+ ϵS

▶ Eigenvalues dilate λi → λ̂i = (1 + ϵ)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 42

Higher Frequencies are More Difficult to Process

▶ Large eigenvalues move more. Signals with high frequencies are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ϵ)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 43

Stability Requires Integral Lipschitz Filters

▶ To attain stable graph signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

▶ Either the eigenvalue does not change because we are considering low frequencies

▶ Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 44

Discriminative Filter at Low Frequencies

▶ At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ϵ)λl

)

λlλl λ

h̃(λ)

λl λ̂l

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 45

Discriminative Filter at Medium Frequencies

▶ At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ϵ)λm

)

λmλm λ

h̃(λ)

λm λ̂m

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 46

Discriminative Filter at High Frequencies

▶ At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ϵ)λh

)

λhλh λ

h̃(λ)

λh λ̂h

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 47

Discriminative Filter at High Frequencies

▶ We can have stability to deformations if we use an integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

⇒ But this precludes the discrimination of high frequency components

µh λhµh λh λ

h̃(λ)

µh λhµ̂h λ̂h

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 48

Pointwise Nonlinearities are Frequency Mixers

▶ Nonlinearities σ(vi) and σ(vj) spread

energy across all frequencies

▶ Some energy where it used to be

▶ Some energy at low frequencies

▶ Where it can be discriminated with a

stable filter in Layer 2

Spectrum of nonlinearity applied to vi ⇒ VHσ(vi)

λiλiλi λ̂i

Spectrum of nonlinearity applied to vj ⇒ VHσ(vj)

λjλjλj λ̂j

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 49

Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 50

Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

For the same sensitivity to deformations, GNNs are more discriminative than graph filters

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 51

Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·;S,A) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S+ ES+ SE with P a permutation matrix

(H2) The error matrix E has norm ∥E∥ = ϵ and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between Φ(·;S,A) and Φ(·; Ŝ,A) is bounded by

∥∥Φ(·; Ŝ,A)−Φ(·;S,A)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lϵ + O(ϵ2).

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020, arxiv.org/abs/1905.04497

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 52

arxiv.org/abs/1905.04497

Transferability Properties of Graph Neural Networks

▶ A GNN that is trained in a graph S can be executed on any other graph Ŝ

⇒ In particular, we can execute it in a much larger graph

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 53

Transferability of Graph Neural Networks

▶ Transferability of graph neural networks is ready to verify in practice ⇒ recommendation system

→

600 800 1000 1200 1400 1600 1800 2000
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

RM
SE

 d
iff

er
en

ce

Graph Filter
GNN
Lipschitz GNN

▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 54

Transferability of Graph Neural Networks

▶ Transferability of graph neural networks is ready to verify in practice ⇒ decentralized robot control

-4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0
n = 0 s
n = 300 s

30 40 50 60 70 80 90
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

co
st

 d
iff

er
en

ce

Graph Filter
GNN

▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 54

Do Graph Neural Networks Scale?

Q1: We have empirically observed that GNNs transfer at scale. Why do they?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

▶ To answer these questions, turn to CNNs ⇒ known to scale well for images and time sequences

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 55

Convolutional Neural Networks Have Limits

▶ Discrete time/image signals converge to continuous time/image signals ⇒ ↓ intrinsic dimension

143 × 95 → 205 × 136 → 294 × 195 → 600 × 399

⇒ From SP theory, CNNs have well-defined limits on the limits of images and time signals

▶ A1: Intrinsic dimensionality of the problem is less than the size of the image

▶ A2: Training with small images is sufficient ⇒ CIFAR 10 images are 32× 32

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 56

Graphons

▶ Graphs also have limit objects that effectively limit their dimensionality ⇒ one is the graphon

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

▶ A graphon can be thought of as a graph with an uncountable number of nodes

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 57

Large-Scale Graphs

▶ Graphs however do not have the Euclidean structure time and image signals have in the limit

n = 30 products n = 50 products n = 100 products

▶ So do graph convolutions and graph neural networks converge to limits on the graphon?

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 58

Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

▶ A1: Because graph convolutions and GNNs have well-defined limits on graphons

L. Ruiz et al, Graphon Signal Processing, TSP 2021, https://arxiv.org/abs/2003.05030

L. Ruiz et al, Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

▶ A2: Yes, as GNNs are transferable ⇒ can be trained on moderate-size and executed on large-scale

J. Cerviño et al, Learning by Transference: Training Graph Neural Networks on Growing Graphs., https://arxiv.org/abs/2106.03693

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 59

https://arxiv.org/abs/2003.05030
https://arxiv.org/abs/2112.04629
https://arxiv.org/abs/2106.03693

Graphon filters and Graphon Neural Networks (WNNs)

17

Graphon filters and Graphon Neural Networks (WNNs)

Graph Convolutional Filters as Di↵usion Operators

I A graph convolution is a weighted linear combination of the elements of the di↵usion sequence

I Can represent graph convolutions with a shift register) Convolution ⌘ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S
0x + h1S

1x + h2S
2x + h3S

3x

y = h ?S x

25

Graph convolutional filters are
polynomials on a matrix representation
of the graph acting on input signal.

The coefficients of the filter are the
coefficients of the polynomial.

Graphon convolutional filters and graph convolutional filters are the same algebraic object. Which is also the
same algebraic object of a standard convolutional filter.

Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter) Y (v) =
KX

k=1

hk

⇣
T

(k)
W X

⌘
(v)

I Only di↵erence is a change of shift operator) TW X : (TW)X (v) =

Z 1

0

W(u, v) X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y

51

Graphon convolutional filters are
polynomials on the graphon integral
operator acting on input signal.

The coefficients of the filter are the
coefficients of the polynomial.

Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter) Y (v) =
KX

k=1

hk

⇣
T

(k)
W X

⌘
(v)

I Only di↵erence is a change of shift operator) TW X : (TW)X (v) =

Z 1

0

W(u, v) X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y

51

Graphon integral operator:

WNNs are compositions of layers. Themselves compositions of graphon filters with pointwise nonlinearities

[Ruiz et al ‘20] Graphon Signal Processing, https://arxiv.org/abs/2003.05030

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 60

Frequency Representation of Graphon Filters

18

Frequency Representation of Graphon Filters

Graphon filters admit a frequency representation. Same as graph filters. Same as standard convolutions

They are still the same algebraic object: They are polynomials of scalar variables
Convergence of Graph Convolutions

I Because eigenvalues converge, graph convolutions converge in the spectral domain

-1.0 0 1.0

I But convergence in the spectral domain is not enough) convolution operates in the node domain

I Need convergence of the graph Fourier transform x̂n to the graphon Fourier transform X̂

) If ŷn = h(⇤n)x̂n converges, by the convolution theorem yn converges in the node domain

27

Representation of graph filter is
instantiated at graph eigenvalues

Representation of graphon filter is
instantiated at graphon eigenvalues

TSince graph eigenvalues converge to graphon eigenvalues convergence of graph to graphon filters follows.

The catch is that we have accumulation of eigenvalues around zero.

Thus, we can’t transfer filters that attempt to discriminate these
eigenvalues. There is a transferability vs discriminability tradeoff

Transferability-Discriminability Tradeo↵

I If filter is sharp near � = 0, spectral components of �j(Sn) and �j(W) are amplified di↵erently

0 0.35

I Transferability and discriminability are not compatible for graph convolutional filters

35

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 61

Transferability of Graph Filters and GNNs

19

Transferability of Graph Convolutions

Theorem (Graph Filter Transferability) (Ruiz, L. et al., Proc. IEEE’21)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W , X) along with

convolution outputs yn = H(Sn)xn and ym = H(Sm)xm. The di↵erence norm of the respective

graphon induced signals is bounded by

kYn �Ymk  2Aw

Ah +⇡

max(Bnc , Bmc)

min(�nc , �mc)

!
1

n
+

1

m

!
kXk+Ax(Ahc + 2)

1

n
+

1

m

!
+4AhckXk

I Filters that are more discriminative are more di�cult to transfer

I If we fix n and m we observe emergence of a transferability vs. discriminability tradeo↵

34

Transferability of Graph Filters and GNNs

We derive a finite sample transferability bound from a graph with m nodes to a graph with n nodes

Transferability of a filter depends on the Lipschitz constant of the frequency response of the graph (and graphon) filter

Transferability of Graph Convolutions

Theorem (Graph Filter Transferability) (Ruiz, L. et al., Proc. IEEE’21)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W , X) along with

convolution outputs yn = H(Sn)xn and ym = H(Sm)xm. The di↵erence norm of the respective

graphon induced signals is bounded by

kYn �Ymk  2Aw

Ah +⇡

max(Bnc , Bmc)

min(�nc , �mc)

!
1

n
+

1

m

!
kXk+Ax(Ahc + 2)

1

n
+

1

m

!
+4AhckXk

I Filters that are more discriminative are more di�cult to transfer

I If we fix n and m we observe emergence of a transferability vs. discriminability tradeo↵

34

Same bound holds for GNNs because the pointwise nonlinearity transfers verbatim because it does not mix components

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

[Ruiz et al ‘20] Graphon Neural Networks and the Transferability of Graph Neural Networks, https://papers.nips.cc/paper/2020/hash/12bcd658ef0a540cabc36cdf2b1046fd-Abstract.html

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 62

Learning by Transference in Stochastic Graph Models

20

Learning by Transference in Stochastic Graph Models

[Cerviño et al ‘21] Learning by Transference: Training Graph Neural Networks on Growing Graphs, https://arxiv.org/abs/2106.03693

102 nodes 103 nodes 104 nodes graphon

.

We consider graphs of growing sizes and use the GNN
trained on a smaller graph as a warm start to learn the
optimal GNN for a larger graph.

Faster training. Enables training in large scale graphs.

Training with growing graphs
learns GNNs with the same
performance

Computational cost is reduced
by a 5.67 factor. More possible
if graph is larger

Transferability can be leveraged to learn in a sequence of growing graphs. We say that we learn by transference.

A. Ribeiro Graph Neural Networks: Architectures, Stability, and Transferability 63

	Graph Neural Networks: Why?
	Machine Learning on Graphs: Why?
	Machine Learning on Graphs: How?
	Convolutions in Time, in Space, and on Graphs
	Convolutional Neural Networks and Graph Neural Networks
	Equivariance and Stability Properties of GNNs
	Transferability Properties of Graph Neural Networks

