

▶ We introduce graphons to study graph filters and GNNs in the limit of large number of nodes

Definition (Graphon)

A graphon is a bounded symmetric measurable function \Rightarrow W : $[0,1]^2 \rightarrow [0,1]$

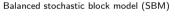
Can think of a graphon as a weighted symmetric graph with uncountable nodes

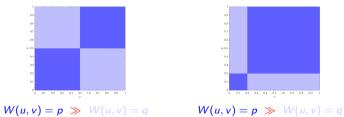
 \Rightarrow The labels are the graphon arguments $\Rightarrow u \in [0, 1]$.

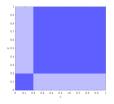
 \Rightarrow The weights are the graphon values $\Rightarrow W(u, v) = W(v, u)$

Definition (Graphon)

A graphon is a bounded symmetric measurable function \Rightarrow W : $[0,1]^2 \rightarrow [0,1]$







Definition (Graphon)

A graphon is a bounded symmetric measurable function \Rightarrow W : $[0,1]^2 \rightarrow [0,1]$

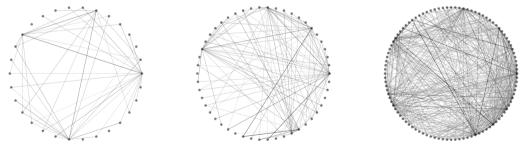
\blacktriangleright Practice \Rightarrow Graph sets where graphs in the set have large number of nodes and similar structure

• Theory \Rightarrow A generative model of graph families via deterministic or stochastic edge sampling

• Theory \Rightarrow A limit object for a sequence of graphs

The Product Similarity "Graphon"

- Product similarity graphs, even with different number of nodes, "look like each other"
- ▶ Abstract similarities between graphs into a limit object ⇒ The product similarity "graphon"

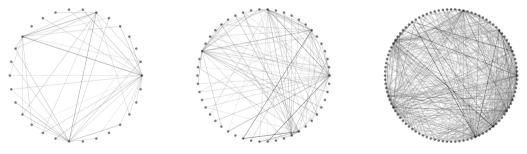


n = 30 products

n = 50 products

We never compute the product similarity "graphon"

 \Rightarrow Use abstract idea of graphon to work with all of these graphs as if they were the same object



n = 30 products

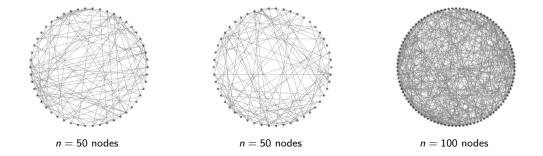
n = 50 products

- ▶ Vertices: For an *n*-node graph, sample *n* points $\{u_1, u_2, ..., u_n\}$ from the unit interval [0, 1]
 - \Rightarrow Points can be sampled on a grid, uniformly at random, etc.
 - \Rightarrow Each sample u_i corresponds to a node $i \in \{1, 2, 3, \dots, n\}$ of the graph
- Edges: Evaluate $W(u_i, u_j)$ for edge (i, j)
 - \Rightarrow Stochastic: Connect *i* and *j* with an unweighted undirected edge with probability W(u_i, u_j)
 - \Rightarrow Weighted: Connect *i* and *j* with weighted undirected edge with weight W(u_i, u_j)

► Use uniform Graphon

To generate random graphs with the same

Or different number of nodes



Graphon



To generate balanced SBM graphs with the same

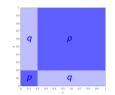
Or different number of nodes

n = 20 nodes

n = 20 nodes

n = 40 nodes

Graphon



To generate unbalanced SBM graphs with the same

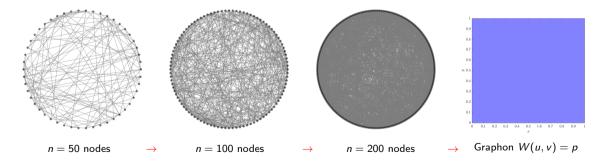
Or different number of nodes

n = 20 nodes

n = 20 nodes

As we consider random graphs with larger numbers of nodes the graphs approach a limit

 \Rightarrow It is unclear what that limit is. The graphon is the limit. As we will see



Convergence of Graph Sequences

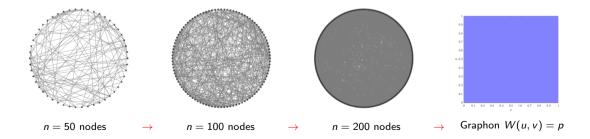
▶ A graphon is the limit of a sequence of graphs that converges in terms of homomorphism densities

Convergent Graph Sequences

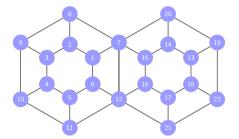
Sequence of graphs with growing number of nodes
$$n \Rightarrow \left\{ G_n = (V_n, E_n, S_n) \right\}_{n=1}^{\infty}$$

▶ The graph sequence $\{G_n\}_{n=1}^{\infty}$ converges to a graphon $W \Rightarrow$ In what sense?

 \Rightarrow We need to introduce three concepts: Motifs, homomorphisms, and homomorphism densities



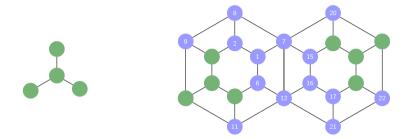
A motif F is a graph. But think of it as a small graph that we embed in another larger graph



$$\beta$$
 : $V' \rightarrow V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

Motifs and Graph Homomorphisms

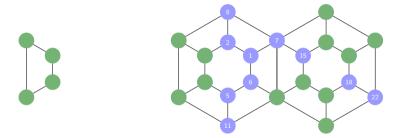
A motif F is a graph. But think of it as a small graph that we embed in another larger graph



$$\beta$$
 : $V' \rightarrow V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

Motifs and Graph Homomorphisms

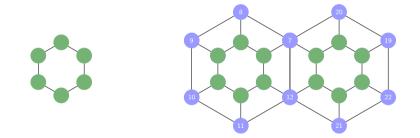
A motif F is a graph. But think of it as a small graph that we embed in another larger graph



$$\beta$$
 : $V' \rightarrow V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

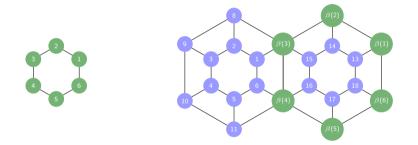
Motifs and Graph Homomorphisms

A motif F is a graph. But think of it as a small graph that we embed in another larger graph



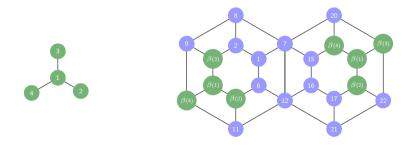
$$\beta$$
 : $V' \rightarrow V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

A motif F is a graph. But think of it as a small graph that we embed in another larger graph



$$\beta$$
 : $V' \rightarrow V$ such that $(i, j) \in E'$ implies $(\beta(i), \beta(j)) \in E$

• Given motif F and graph G, there are multiple homomorphism functions β



 \blacktriangleright We define hom(F, G) to represent the number of homomorphisms between motif F and graph G

▶ If the graph G has n nodes and the motif F has n' nodes, there are $n^{n'}$ different maps from F to G

▶ Homomorphism density of motif *F* in graph *G* is the fraction of maps that are homomorphisms

$$t(F,G) = \frac{\hom(F,G)}{n^{n'}}$$

• Density t(F, G) is a relative measure of the number of ways in in which F can be mapped into G

• Consider weighted graph G = (V, E, S) with adjacency matrix S

▶ Homomorphism density of motif *F* in weighted graph *G* with the adjacency matrix S is

$$t(F,G) = = \frac{\sum_{\beta} \prod_{(i,j) \in \mathcal{E}'} [S]_{\beta(i)\beta(j)}}{n^{n'}}$$

Weight each motif embedding by the product of the edge weights in the homomorphism image.

• The Homomorphism density of a motif F into a given graphon W is defined as

$$t(F,W) = \int_{[0,1]^{n'}} \prod_{(i,j)\in\mathcal{E}'} W(u_i,u_j) \prod_{i\in\mathcal{V}'} du_i$$

 \blacktriangleright The homomorphism density is the probability of drawing the motif F from the graphon W

Definition (Convergent graph sequence)

A sequence of undirected graphs G_n converges to the graphon W if and only if for all motifs F

 $\lim_{n\to\infty}t(F,G_n)=t(F,W)$

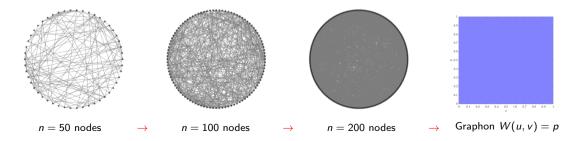
• We say that the sequence G_n converges to W in the homomorphism density sense

▶ It can be proven that every graphon is the limit object of a sequence of convergent graphs

It can be proven that every convergent graph sequence converges to a graphon

Example of Convergent Graph Sequence

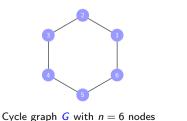
- Consider a sequence of random graphs $\{G_n\}$ sampled from the graphon W. Graphs G_n have
 - \Rightarrow Labels $u_i \sim \textit{U}[0,1]$ drawn uniformly at random from the interval [0,1]
 - \Rightarrow Edge sets such that $(u_i, u_j) \in \mathcal{E}$ with probability $W(u_i, u_j)$
- ▶ We have $\lim_{n\to\infty} t(F, G_n) = t(F, W)$ in the homomorphism density sense almost surely

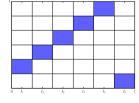


Every undirected graph admits a graphon representation which we call its induced graphon

 \rightarrow

- Consider a graph $G = \{\mathcal{V}, \mathcal{E}, S\}$ with $|\mathcal{V}| = n$ and normalized graph shift operator S
- ▶ Regular partition of the unit interval with *n* subintervals \Rightarrow $I_i = [(i-1)/n, i/n]$
- ▶ We define the induced graphon $W_G \Rightarrow W_G(u, v) = [S]_{ij} \mathbb{I}(u \in I_i) \mathbb{I}(v \in I_j)$





Graphon W_G induced by the graph G

Graphon Signals

▶ Graph signals are signals supported on graphons. They are limit objects of graph signals

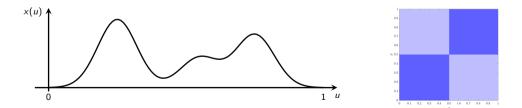
• Graphon signals are pairs (W, X) where W is a graphon and $X : [0, 1] \rightarrow \mathbb{R}$ is a function

► Function
$$X(u) \in L^2([0,1])$$
 has finite energy $\Rightarrow \int_0^1 |X(u)|^2 du < \infty$.



Generative models of graph signals. And limits of convergent sequences of graph signals

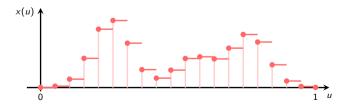
- We generate graph signals (S_n, x_n) by taking *n* samples of the graphon signal (W, X)
- Sample the graphon at node labels u_i . Sample the function X at node labels $u_i \Rightarrow x_i = X(u_i)$
- Graph signal sampled from the unit interval in the same coordinates u_i where graphon is sampled

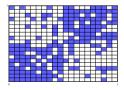


- We generate graph signals (S_n, x_n) by taking *n* samples of the graphon signal (W, X)
- ▶ Sample the graphon at node labels u_i . Sample the function X at node labels $u_i \Rightarrow x_i = X(u_i)$
- Graph signal sampled from the unit interval in the same coordinates u_i where graphon is sampled



- Every graph signal x supported on graph G induces a graphon signal (W_G, X_G)
- ▶ Regular partition of unit interval with *n* subintervals $I_i = [(i-1)/n, i/n]$
 - \Rightarrow Induced signal $X_G(u) = x_i \mathbb{I}(u \in I_i)$
 - \Rightarrow W_G is the graphon induced by the graph $G \Rightarrow W_G(u, v) = [S]_{ij} \mathbb{I}(u \in I_i) \mathbb{I}(v \in I_j)$





Definition (Convergent sequences of graph signals)

A sequence of graph signals (G_n, x_n) is said to converge to the graphon signal (W, X), if there exists a sequence of permutations π_n such that for all motifs F we have

$$t(F, G_n) \rightarrow t(F, W),$$
 and $X_{\pi_n(G_n)} - X \Big|_{L^2} \rightarrow 0$

We say (W, X) is the limit of the graph signal sequence and write $(G_n, x_n) \rightarrow (W, X)$

▶ The permutation is used here to make the convergence definition independent of labels

• To enable comparison of the vector x_n and the function X we use the induced signal in the L_2 norm

- ▶ The Graphon W can be used to define an integral linear operator $\Rightarrow T_W : L^2([0,1]) \rightarrow L^2([0,1])$
- ▶ When applied to the graphon signal X, the operator T_W produces the signal $T_W X$ with values

$$(T_WX)(v) = \int_0^1 W(u,v)X(u) \, du$$

- ▶ This is a Hilbert-Schmidt operator because W is bounded and compact. It's a matrix multiplication
- We say that the linear operator T_W is the graphon shift operator (WSO) of the graphon W

 \Rightarrow Applying the WSO T_W to the graphon signal X diffuses X over the graphon W

Graphon Fourier Transform

▶ We define a graphon Fourier transform to enable spectral representation of graphon signals.

► The WSO is a self adjoint Hilbert-Schmidt operator $\Rightarrow (T_WX)(v) = \int_0^1 W(u,v)X(u) du$

▶ The function $\varphi : [0,1] \rightarrow \mathbb{R}$ is an eigenfunction of \mathcal{T}_W with associated eigenvalue λ if

$$(T_{W}\varphi)(v) = \int_{0}^{1} W(u, v)\varphi(u) \, du = \lambda \varphi(v)$$

► $T_{\rm W}$ has a countable number of eigenvalue-eigenfunction pairs $\Rightarrow \left\{ (\lambda_i, \varphi_i) \right\}_{i=1}^{\infty}$

• We assume eigenfunctions are normalized to unit energy $\Rightarrow \|\varphi_i\|^2 = \int_0^1 \varphi(u) du = 1$

The (countable number of) eigenfunctions of the operator T_w are an orthonormal basis of $L^2([0,1])$

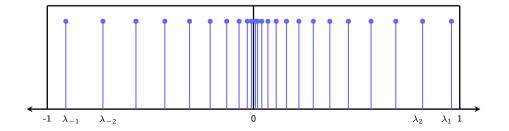
▶ We can thus decompose the graphon W in the basis $\{\varphi_i\}_{i=1}^\infty$ of eigenfunctions of the operator T_W

$$W(u, v) = \sum_{i=0}^{\infty} \lambda_i \varphi_i(u) \varphi_i(v)$$

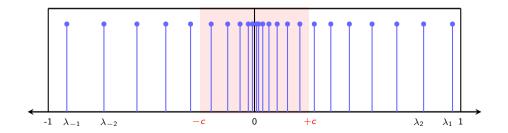
• More or less the same as the eigenvector decomposition $\Rightarrow S = V \wedge V^H = \sum_{i=1}^{\infty} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$

▶ T_W is self adjoint and $0 \le W(x, y) \le 1 \Rightarrow$ Eigenvalues are real and lie in the interval [-1, 1]

• Order them as
$$\Rightarrow -1 \leq \lambda_{-1} \leq \lambda_{-2} \leq \ldots \leq 0 \leq \ldots \leq \lambda_2 \leq \lambda_1 \leq 1$$



- Graphon eigenvalues accumulate at $\lambda = 0 \Rightarrow \lim_{i \to \infty} \lambda_i = \lim_{i \to \infty} \lambda_{-i} = 0$. And only at $\lambda = 0$
- For any c > 0, the number of eigenvalues with $|\lambda_i| \ge c$ is finite $\Rightarrow \# \left\{ \lambda_i : |\lambda_i| \ge c \right\} = n_c < \infty$
- ▶ All eigenvalues that are not $\lambda_j = 0$ have finite multiplicity



Theorem (Eigenvalue Convergence of a Graph Sequence)

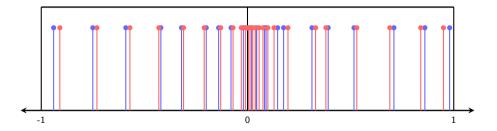
If a graph sequence $\{G_n\}$ converges to a graphon W in the homomorphism density sense , then

$$\lim_{n\to\infty}\frac{\lambda_j(\mathsf{S}_n)}{n} = \lambda_j(\mathsf{T}_\mathsf{W}) = \lim_{n\to\infty}\lambda_j(\mathsf{T}_{\mathsf{W}_n}) \text{ for all } j$$

▶ For any convergent graph sequence, the eigenvalues of the graph converge to those of the graphon

Borgs-Chayes-Lovász-Sós-Vesztergombi, Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics,

▶ For a convergent graph sequence, eigenvalues of the graph converge to those of the limit graphon



• Convergence holds in the sense that $\Rightarrow \exists n_0$ s.t. for all $n > n_0$, $\left| \frac{\lambda_j(S_n)}{n} - \lambda_j(T_W) \right| < \epsilon, \epsilon > 0$

b But n_0 will be different for each *j*. Eigenvalue convergence is not uniform

The graphon shift operator can be rewritten as

$$(T_{\mathsf{W}}\phi)(\boldsymbol{v}) = \sum_{j=0}^{\infty} \lambda_j \varphi_j(\boldsymbol{v}) \int_0^1 \varphi_j(\boldsymbol{u}) X(\boldsymbol{u}) d\boldsymbol{u}$$

- ▶ Integral terms correspond to inner products $\langle X, \varphi_j \rangle$ between the signal and the eigenfunctions
- Moreover, the eigenfunctions form a complete orthonormal basis of $L^2([0,1])$
- Thus, the inner products can provide a complete representation of the signal on the graphon basis
- That change of basis is called the graphon Fourier Transform

Definition (Graphon Fourier transform)

The graphon Fourier transform (WFT) of a graphon signal X is defined as a functional \hat{X} =

WFT(X) with continuous input X and discrete output

$$\hat{X}_j = \hat{X}(\lambda_j) = \int_0^1 X(u) \varphi_j(u) du$$

with $\{\lambda_j\}_{j\in\mathbb{Z}/\{0\}}$ the eigenvalues and $\{\varphi_j\}_{j\in\mathbb{Z}/\{0\}}$ the eigenfunctions of T_W

▶ The eigenvalues λ_i are countable \Rightarrow The graphon Fourier transform \hat{X} can always be defined

Definition (Inverse graphon Fourier transform)

The inverse graphon Fourier transform (iWFT) of a graphon Fourier transform \hat{X} is defined as

$$\mathsf{iWFT}(\hat{X}) = \sum_{j \in \mathbb{Z}/\{0\}} \hat{X}(\lambda_j) \varphi_j = X$$

with $\{\lambda_j\}_{j\in\mathbb{Z}/\{0\}}$ the eigenvalues and $\{\varphi_j\}_{j\in\mathbb{Z}/\{0\}}$ the eigenfunctions of \mathcal{T}_W

Eigenfunctions $\{\varphi_j\}_{j \in \mathbb{Z}/\{0\}}$ are orthonormal. The iWFT is a proper inverse of the WFT

The GFT converges to the WFT

▶ We discuss the convergence of the GFT to the WFT for graph sequences that converge to graphons.

> This need us to review convergence of eigenvectors and eigenvalues of graph sequences

• Graphon FT, WFT(
$$W, X$$
) is the eigenspace projection $\Rightarrow \hat{X}_j = \hat{X}(\lambda_j) = \int_0^1 X(u) \varphi_j(u) du$

• Graph FTs, GFT(
$$G_n, x_n$$
) are the eigenspace projections $\Rightarrow \hat{x}_n(j) = \hat{x}_n(\lambda_{nj}) = \sum_{i=1}^n x_n(i) v_{nj}(i)$

• Graph signal sequence (G_n, x_n) converges to graphon signal $(W, X) \Rightarrow$ Conjecture GFT convergence

 $GFT(G_n, x_n) \rightarrow WFT(W, X)$

Eigenvalue convergence holds $\Rightarrow \lambda_{nj} \rightarrow \lambda_j$. Conjecture is reasonable GFT convergence should hold

• Graphon FT, WFT(
$$W, X$$
) is the eigenspace projection $\Rightarrow \hat{X}_j = \hat{X}(\lambda_j) = \int_0^1 X(u) \varphi_j(u) du$

• Graph FTs, GFT(G_n, x_n) are the eigenspace projections $\Rightarrow \hat{x}_n(j) = \hat{x}_n(\lambda_{nj}) = \sum_{i=1}^n x_n(i) v_{nj}(i)$

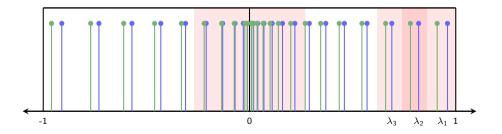
▶ Alas, this conjecture is wrong \Rightarrow GFT convergence to the WFT does not hold in general

 $GFT(G_n, x_n) \not\rightarrow WFT(W, X)$

► GFT and WFT are projections on eigenvectors and eigenfunctions. Not eigenvalues

Convergence to Graphon Eigenvectors

- Convergence of two eigenvectors depends on how close the eigenvalues of other eigenvectors are
- Eigenvalues accumulate around $\lambda = 0$. They all converge. But different eigenvalues are close
- It makes the eigenvectors slow to converge \Rightarrow They all converge but convergence is not uniform



- Consider eigenvalues λ_j of graphon W and λ_{nj} of graph G_n with the same index j
 - \Rightarrow Compare graphon eigenvalue λ_j to the closest graph eigenvalue other than λ_{nj}
 - \Rightarrow Compare graph eigenvalue λ_{ni} to the closest graphon eigenvalue other than λ_j

$$d(\lambda_j, \lambda_{nj}) = \min \left(d_1 = \min_{i \neq j} \left| \lambda_j - \lambda_{ni} \right|, d_2 = \min_{i \neq j} \left| \lambda_{nj} - \lambda_i \right| \right)$$

 \Rightarrow The minimum of these two is the eigenvalue margin $d(\lambda_j, \lambda_{nj})$ for the eigenvalue pair $(\lambda_j, \lambda_{nj})$

Theorem (Davis-Kahan)

Given graphon W and graphon W_{G_n} induced by graph G_n we consider graphon eigenvalue λ_j and graph eigenvalue λ_{nj} . The distance between the associated eigenfunctions is bounded by

$$\|\varphi_j - \varphi_{nj}\| \leq \frac{\pi}{2} \frac{\|W - W_{G_n}\|}{d(\lambda_j, \lambda_{nj})}$$

where $d(\lambda_j, \lambda_{nj})$ is the eigenvalue margin for the eigenvalue pair $(\lambda_j, \lambda_{nj})$

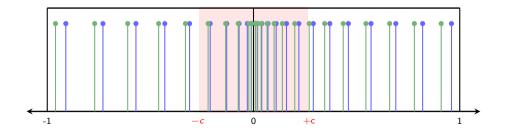
Graph eigenvectors converge to graphon eigenfunctions if graph sequence converges to graphon

▶ When the distance to other eigenvalues decreases, the distance between eigenvectors increases

The GFT Does Not Converge to the WFT

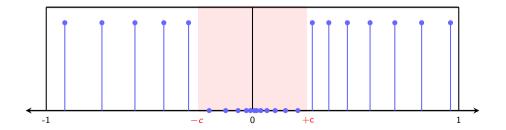
Thus for any *n* and
$$\epsilon > 0$$
 we have some *j* for which $\Rightarrow \frac{\pi}{2} \frac{\|W - G_n\|}{d(\lambda_i, \lambda_{nj})} > \epsilon$

• Opposite of a convergence claim. \Rightarrow For any $\epsilon > 0$, all $n > n_0$, and $j \Rightarrow \frac{\pi}{2} \frac{\|W - G_n\|}{d(\lambda_j, \lambda_{nj})} \leq \epsilon$

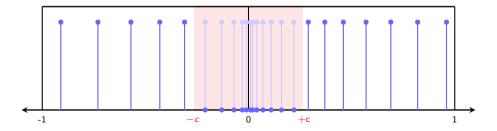


Definition (Graphon bandlimited signals)

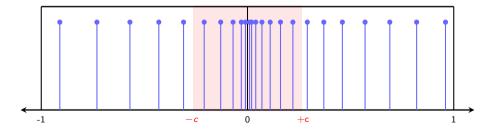
A graphon signal (W, X) is *c*-bandlimited, with bandwith $c \in (0, 1]$, if $\hat{X}(\lambda_i) = 0$ for all $|\lambda_i| < c$.



- Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited
- **•** To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (-c, c)



- Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited
- **•** To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (-c, c)



Theorem (GFT convergence for graphon bandlimited signals)

Let (G_n, x_n) be a sequence of graph signals converging to the *c*-bandlimited graphon signal (W, X).

There exists a sequence of permutations π_n such that

$$\mathsf{GFT}\Big(\pi_n(G_n),\pi_n(\mathsf{x}_n)\Big) \rightarrow \mathsf{WFT}\Big(W,X\Big)$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/

Theorem (iGFT convergence for graphon bandlimited signals)

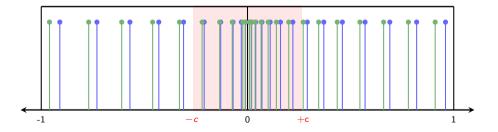
Let (G_n, \hat{x}_n) be a sequence of GFTs converging to the WFT (W, X). The WFT is associated to a

c-bandlimited graphon signal. There exists a sequence of permutations $\{\pi_n\}$ such that

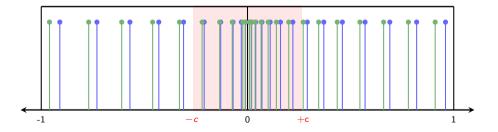
$$\pi_n \Big(\operatorname{iGFT}(\hat{\mathbf{x}}_n) \Big) \rightarrow \operatorname{iWFT}(\hat{\mathbf{X}}).$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/

- ► Convergence of GFT depends on convergence of graph eigenvalues to graphon eigenvalues
- ▶ As the number of nodes *n* grows, the eigenvalues of G_n converge to the eigenvalues of W.



- However, for large |j| the graph and graphon eigenvalues become difficult to tell apart
- ► Therefore, the GFT only converges to the WFT for graphon bandlimited signals



Graphon Filters

▶ We define graphon filters and prove their frequency response, which is independent of the graphon.

Apply the Graphon shift operator recursively to create the graphon diffusion sequence

$$\left(T_{\mathsf{W}}^{(k)}X\right)(v) = \int_{0}^{1} \mathsf{W}(u,v)\left(T_{\mathsf{W}}^{(k-1)}X\right)(u) \, du \qquad T_{\mathsf{W}}^{(0)}X = X$$

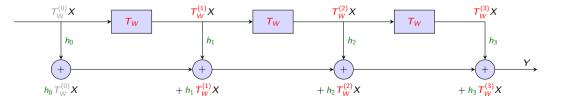
• A graphon filter of order K is defined by the filter coefficients h_k and produces outputs as per

$$Y(v) = \sum_{k=1}^{K} h_k \left(T_{W}^{(k)} X \right) (v) = (T_H X)(v)$$

• A linear combination of the elements of the diffusion sequence modulated by coefficients h_k

• A graphon filter has the same algebraic structure of a graph filter $\Rightarrow Y(v) = \sum_{k=1}^{K} h_k \left(T_{W}^{(k)} X \right) (v)$

• Only difference is a change of shift operator
$$\Rightarrow T_W X : (T_W) X(v) = \int_0^1 W(u, v) X(u) du$$



$$\Rightarrow \quad \mathsf{WFTs of input signal} \ \Rightarrow \hat{X}_j = \int_0^1 X(u)\varphi_j(u)du \quad \Rightarrow \mathsf{WFT of output} \ \Rightarrow \hat{Y}_j = \int_0^1 Y(u)\varphi_j(u)du$$

Theorem (Graph frequency representation of graphon filters)

Given a graphon filter $T_{\rm H}$ with coefficients h_k , the components of the graphon Fourier transforms

of the input and output signals are related by

$$\hat{Y}_{j} = \sum_{k=0}^{K} h_{k} \lambda_{j}^{k} \hat{X}_{j}$$

• The same polynomial that defines the filter but with the eigenvalue λ_i as a variable

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/

• Graphon filters are pointwise in the WFT domain $\Rightarrow \hat{Y}_j = \sum_{k=0}^{K} h_k \lambda_j^k \hat{X}_j = h(\lambda_j) \hat{X}_j$

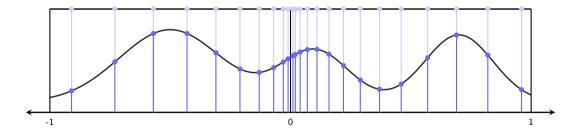
Definition (Frequency response of a graphon filter)

Given a graphon filter with coefficients $h = {h_k}_{k=1}^{\infty}$ the frequency response is the polynomial

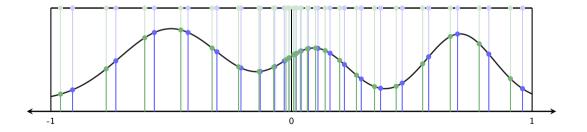
$$h(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$$

• This is also the exact same definition of the frequency response of a graph filter with coefficients h_k

- The frequency response of a graphon filter and a graph filter with the same coefficients are the same
- ► Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues
- ▶ If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers



- The frequency response of a graphon filter and a graph filter with the same coefficients are the same
- ► Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues
- ▶ If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers



Denn

Convergence of Graph Filters in the Spectral Domain

Convergence of graph filter sequences towards graphon filters for convergent graph signal sequences

• Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients

$$\xrightarrow{X_n} H(S_n) = \sum_{k=1}^{K} h_k S_n^k \xrightarrow{y_n} X \xrightarrow{X} T_H = \sum_{k=1}^{K} h_k T_W^{(k)} \xrightarrow{Y}$$

- **>** Does the graph filter sequence converge to the graphon filter? \Rightarrow Not the most pertinent question
 - \Rightarrow Filter convergence is important inasmuch as it implies convergence of filter outputs

• Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients

- ▶ Consider a convergent sequence of graph signals $(G_n, x_n) \rightarrow (W, X)$
 - \Rightarrow Input graph signal x_n to graph filter H(S_n) to produce output graph signal y_n
 - \Rightarrow Input graphon signal X to graphon filter T_H to produce output graphon signal Y
- ▶ The graph signal sequence (G_n, y_n) converges to the graphon signal (W, Y) under some conditions

- Given filter coefficients h_k we have five polynomials which are the same except for their variables
- Two polynomials are representations in the node domain

$$\Rightarrow$$
 The graph filter sequence defined on variable $S_n \Rightarrow H(S_n) = \sum_{k=1}^{K} h_k S_n^k$

$$\Rightarrow$$
 The graphon filter defined on variable $T_{W} \Rightarrow T_{H} = \sum_{k=1}^{K} h_{k} T_{W}^{(k)}$

- Given filter coefficients h_k we have five polynomials which are the same except for their variables
- Three polynomials are representations in the spectral domain

 \Rightarrow The frequency response of the graph and graphon filters with variable $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=1}^{K} h_k \lambda^{(k)}$

 \Rightarrow The frequency representation of the graph filters with variable $\lambda_{nj} \Rightarrow \tilde{h}(\lambda_{nj}) = \sum_{k=1}^{\kappa} h_k \lambda_{nj}^{(k)}$

 \Rightarrow The frequency representation of the graphon filter with variable $\lambda_j \Rightarrow \tilde{h}(\lambda_j) = \sum_{k=1}^{K} h_k \lambda_j^{(k)}$

Convergence of Graph Filters Sequences in the Frequency Domain

$$\Rightarrow \text{ Frequency representation of graph filters} \Rightarrow \tilde{h}(\lambda_{nj}) = \sum_{k=1}^{n} \frac{h_k}{\lambda_{nj}^k}$$

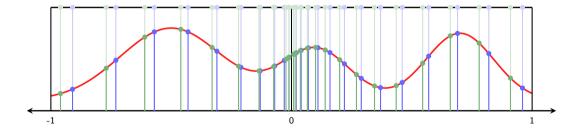
 \Rightarrow Frequency representation of graphon filter $\Rightarrow \tilde{h}(\lambda_j) = \sum_{k=1}^{n} \frac{h_k \lambda_j^k}{k}$

Theorem (Convergence of graph filter sequences in the frequency domain) Consider filter coefficients h_k generating a sequence of graph filters $H(S_n)$ supported on the graph sequence G_n and a graphon filter T_H supported on the graphon W. If $G_n \to W$

ĸ

 $\lim_{n\to\infty}\tilde{h}(\lambda_{nj})=\tilde{h}(\lambda_j)$

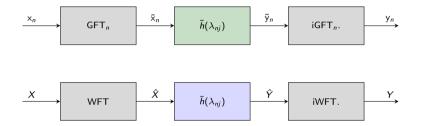
- Graph filter GFT representations converge to graphon filter WFT representation $\Rightarrow \lim_{n \to \infty} \tilde{h}(\lambda_{nj}) = \tilde{h}(\lambda_j)$
- ▶ This is true because eigenvalues converge and the frequency responses are the same
- ▶ This is not much to say \Rightarrow GFT and WFT are representations. \Rightarrow Filters operate in the node domain



Convergence of Graph Filters in the Node Domain

- ▶ We leverage spectral domain convergence to prove convergence of graph filters in the node domain
 - \Rightarrow Provides a first approach to the study of transferability of graph filters

► To prove convergence in the node domain we can go to the frequency domain and back



Frequency representation of graph filters converge to frequency representation of graphon filter

 \Rightarrow But the GFT and the iGFT do not converge \Rightarrow Unless the signals are graphon bandlimited

- ▶ Input graph signal sequence $(G_n, x_n) \Rightarrow$ Generates output sequence (G_n, y_n) with $y_n = H(S_n)x_n$
- ▶ Input graphon signal $(W, X) \Rightarrow$ Generates output signal (W, Y) with $Y = T_H X$

Theorem (Graph filter convergence for bandlimited inputs)

Given convergent graph signal sequence $(G_n, \times_n) \to (W, X)$ and filters $H(S_n)$ and T_H generated

by the same coefficients h_k . If the input signals are *c*-bandlimited

 $(\mathsf{G}_n,\mathsf{y}_n)\to(\mathsf{W},\mathsf{Y})$

The sequence of output graph signals converges to the output graphon signal

Convergence for bandlimited input is easy. Also weak. Therefore cheap. A stronger result is possible

Lipschitz graphon filters are filters with frequency responses that are Lipschitz in [-1,1]

$$\Big| h(\lambda_1) - h(\lambda_2) \Big| \ \leq \ L \Big| \lambda_1 - \lambda_2 \Big|, \quad ext{for all } \lambda_1, \lambda_2 \in [0,1]$$

Claim convergence of graph filter sequence, despite lack of convergence of the GFT and the iGFT

Theorem (Graph filter convergence for Lipschitz continuous filters)

Given convergent graph signal sequence $(G_n, x_n) \rightarrow (W, X)$ and filters $H(S_n)$ and T_H generated

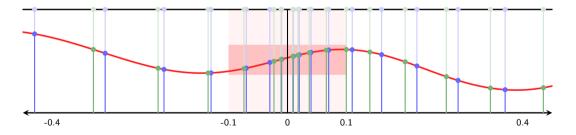
by the same coefficients h_k . If the frequency response $\tilde{h}(\lambda)$ is Lipschitz

 $(\mathsf{G}_n,\mathsf{y}_n)\to (\mathsf{W},\,\mathsf{Y})$

The sequence of output graph signals converges to the output graphon signal

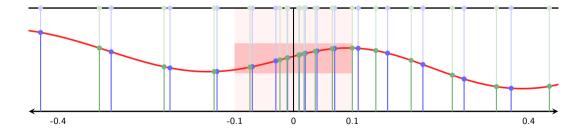
Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- The challenge of filter convergence comes from the accumulation of eigenvalues around $\lambda = 0$
- ▶ Which causes complications with eigenvector convergence.
- Lipschitz continuity renders the effect void. All components are multiplied by similar numbers



Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- We identify a fundamental issue \Rightarrow Transferability is counter to discriminability
 - \Rightarrow If the filter converges, it can't separate eigenvectors associated to eigenvalues close to $\lambda = 0$
- Characterization is just a limit \Rightarrow Work on a finite-*n* transference bounding



Graphon Filters are Generative Models for Graph Filters

• Graph filters can approximate graphon filters under certain conditions. We discuss them now.

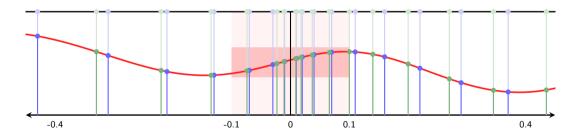
- ► For a converging graph sequence, graph filters converge asymptotically to graphon filters
- ▶ Thus, as *n* grows, the graph filters become more similar to the graphon filter

$$\xrightarrow{X_n} y_n = \sum_{k=1}^{K} h_k S_n^k x_n \xrightarrow{Y_n} \xrightarrow{X} y_n = \sum_{k=1}^{K} h_k T_W^{(k)} X \xrightarrow{Y}$$

And we can then use a graph filter as a surrogate for the graphon filter

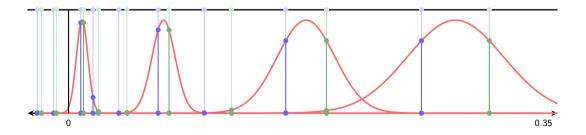
• We now want to quantify the quality of that approximation for different values of n

- Graphon eigenvalues accumulate at $\lambda = 0$
- Making it hard to match graph eigenvalues to the corresponding graphon eigenvalues if λ is small



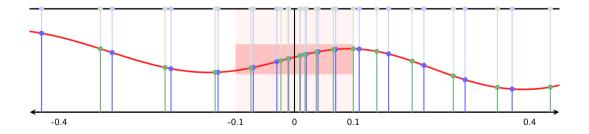
Small Eigenvalues are Hard to Discriminate

- Which in turn makes it hard to discriminate consecutive eigenvalues in that range
- ▶ If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently
- \blacktriangleright To obtain good approximations, we must then assume filters do not change much around $\lambda=0$



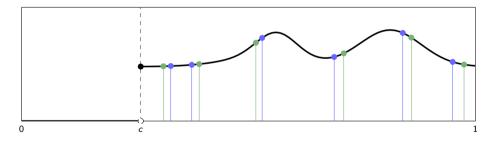
Small Eigenvalues are Hard to Discriminate

- Which in turn makes it hard to discriminate consecutive eigenvalues in that range
- ▶ If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently
- \blacktriangleright To obtain good approximations, we must then assume filters do not change much around $\lambda = 0$



2_{enn}

- Graphon eigenvalues tend to zero as the index i grows $\Rightarrow \lim_{i\to\infty} \lambda_i = \lim_{i\to\infty} \lambda_{-i} = 0$
- **•** Low-pass graphon filters must thus be zero for $\lambda < c$. Constant c determines the filter's band.



The filter removes high frequency components. But low-frequency components are not affected.

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$\Big| W(u_2, v_2) - W(u_1, v_1) \Big| \leq L_1 \Big(\Big| u_2 - u_1 \Big| + \Big| v_2 - v_1 \Big| \Big)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

$$ig| \left| \widetilde{h}(\lambda_2) - \widetilde{h}(\lambda_1)
ight| \leq L_2 ig| \lambda_2 - \lambda_1 ig| \quad ext{ and } \quad ig| h(\lambda) ig| \leq 1$$

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq L_3 |u_2 - u_1|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc}=\#\Big\{\,\lambda_{ni}\,:\,|\lambda_{ni}|>c\,\Big\}$$

(D2) The *c*-eigenvalue margin of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ \left| \lambda_{ni} - \lambda_j \right| : \left| \lambda_{ni} \right| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W

Theorem (Graphon filter approximation by graph filter for low-pass filters)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ is zero for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}}$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ▶ High-pass filters have null frequency response for $|\lambda| > c$, removing low-frequency components
- Moreover, we consider filters that have low variability around $\lambda = 0$

• This makes it easier to match graph eigenvalues to graphon eigenvalues around $\lambda = 0$

Theorem (Graphon filter approximation by graph filter for high-pass filters)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

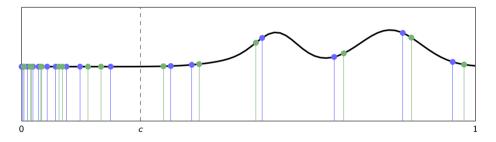
(A4) $h(\lambda)$ is zero for $|\lambda| > c$

The difference between \mathbf{Y} and $Y_n = \Phi(X_n; \mathbf{h}, \mathbf{W}_n)$ (graph filter induced by y_n) is bounded by

 $\|\mathbf{Y}-Y_n\|_{L_2}\leq \mathbf{L_2c}\|\mathbf{X}\|$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- Filter response has low variability for $|\lambda| < c$. Where the eigenvalues of the graphon accumulate
- For $|\lambda| > c$, graphon eigenvalues are countable. And easier to match to those of the graph



A Lipschitz filter with variable band is the composition of a low-pass filter and a high-pass one

Theorem (Graphon filter approximation by graph filter)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ has low variability for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- Filter with variable band is the sum of an L₂-Lipschitz filter $h_1(\lambda)$ with $h_1(\lambda) = 0$ for $|\lambda| < c$
- And a high-pass filter $h_2(\lambda)$ with $h_2(\lambda)$ showing low variability for $|\lambda| < c$ and 0 otherwise
- Thus, by the triangle inequality

$$\|\mathbf{Y} - Y_n\|_{L_2} = \|T_H X - T_{H_n}\|_{L_2} \le \|T_{H_1} X - T_{H_{1_n}} X_n\|_{L_2} + \|T_{H_2} X - T_{H_{2_n}} X_n\|_{L_2}$$

- We know the first-term on the right-hand side. It's the bound for low-pass filters
- And the second-term on the right-hand side is the bound for constant filters
- Summing up the two bounds, we then prove our result for Lipschitz filters with variable band

Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- **b** Bound depends on the filter transferability constant and on the difference between X and X_n
- Transferability constant depends on the graphon via L₁ which also affects the graphon variability
- As n grows, the transferability constant dominates the bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

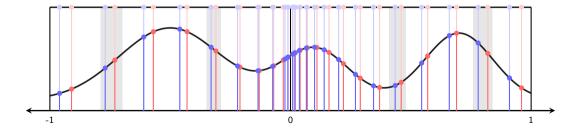
- Transferability constant depends on the filter parameters L_2 , n_c and δ_{nc}
- Filter's Lipschitz constant L_2 and filter's band [c, 1] determine variability of the spectral response
- Number of eigenvalues in the passing band has to be limited: $n_c < \sqrt{n}$
- > This ensures eigenvalues of W_n converge to those of W. And thus so does the filter approximation

- We identify a fundamental issue \Rightarrow Good approximations are counter to discriminability
 - \Rightarrow Tight approximation bounds require filters with low variability around $\lambda = 0$
 - \Rightarrow But then the filter can't discriminate components associated to eigenvalues close to $\lambda = 0$
- That is less of an issue for larger graphs. Filter approximation requires $n_c < \sqrt{n}$
 - \Rightarrow As n grows, we can afford a larger number of eigenvalues n_c in the passing band
 - \Rightarrow Improving discriminability without penalizing the approximation bound

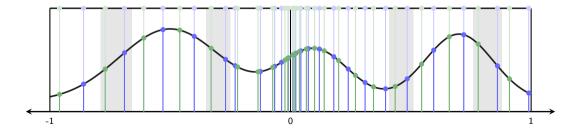
Transferability of Graph Filters: Theorem

▶ We show that graph filters are transferable across graphs that are drawn from a common graphon

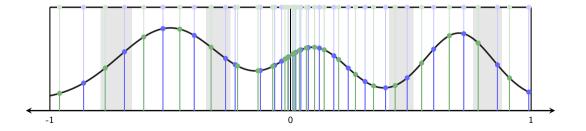
- \blacktriangleright Have not proven transferability \Rightarrow Have proven that graph filters are close to graphon filters
 - \Rightarrow Graph G_n with *n* nodes sampled from graphon *W*
 - \Rightarrow Have shown that graph filter H(S_n) running on G_n is close to the graphon filter T_H



- Transferability means that two different graphs with different number of nodes are close
 - \Rightarrow Graph G_n and graph G_m with $n \neq m$ nodes. Both sampled from graphon W
 - \Rightarrow Want to show that graph filter H(S_n) and graph filter H(S_m) are close



- But graph filters are close because they are both close to the graphon filter
 - \Rightarrow Graph filter H(S_n) close to graphon filter T_H. Graph filter H(S_m) close to graphon filter T_H
 - \Rightarrow Graph filter H(S_n) is close to graph filter H(S_m) \Rightarrow This is just the triangle inequality



• Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from the graphon signal (W, X)

• Given filter coefficients h_k we process signals on their respective graphs

 $\Rightarrow \text{ Run filter with coefficients } h_k \text{ on graph } S_n \text{ to process } x_n \Rightarrow y_n = H(S_n) x_n = \sum_{k=1}^{K} h_k S_n^k x_n$

 \Rightarrow Run filter with coefficients h_k on graph S_m to process $x_m \Rightarrow y_m = H(S_m)x_m = \sum_{k=1}^{\kappa} h_k S_m^k x_n$

• Since they have different number of components we compare induced graphon signals Y_n and Y_m

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$\Big| W(u_2, v_2) - W(u_1, v_1) \Big| \leq L_1 \Big(|u_2 - u_1| + |v_2 - v_1| \Big)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

$$ig| \left| \widetilde{h}(\lambda_2) - \widetilde{h}(\lambda_1)
ight| \leq L_2 ig| \lambda_2 - \lambda_1 ig| \quad ext{ and } \quad ig| h(\lambda) ig| \leq 1$$

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq L_3 |u_2 - u_1|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc}=\#\Big\{\,\lambda_{ni}\,:\,|\lambda_{ni}|>c\,\Big\}$$

(D2) The c-eigenvalue margin of of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ \left| \lambda_{ni} - \lambda_j \right| : \left| \lambda_{ni} \right| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W

Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from graphon signal (W, X) along with filter outputs $y_n = H(S_n)x_n$ and $y_m = H(S_m)x_m$. With Assumptions (A1)-(A3) and Definitions

(D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

$$\|\boldsymbol{Y}_n - \boldsymbol{Y}_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|\boldsymbol{X}\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|\boldsymbol{X}\|$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

Transferability of Graph Filters: Remarks

▶ We present remarks on the transferability theorem of graph filters sampled from a graphon filter

The difference norm of the respective graphon induced signals is bounded by

$$\|Y_n - Y_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|X\|$$

Thing 1: A term that comes from the discretization of the graphon signal \Rightarrow Not very important

Thing 2: A term coming from filter variability at eigenvalues $|\lambda| > c \Rightarrow$ The easy components

Thing 3: A term coming from filter variability at eigenvalues $|\lambda| \leq c \Rightarrow$ The difficult components

The difference norm of the respective graphon induced signals is bounded by

$$\|\boldsymbol{Y}_n - \boldsymbol{Y}_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|\boldsymbol{X}\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|\boldsymbol{X}\|$$

- As $(n,m) \rightarrow \infty$ most of the transferability error decreases with the square root of the graph sizes
- We can also afford smaller bandwidth limit $c \Rightarrow$ Transfer filters closer to $\lambda = 0$
- ▶ Sharper filter responses (larger Lipschitz constant L_2) \Rightarrow Transfer more discriminative filters

The difference norm of the respective graphon induced signals is bounded by

$$\|\boldsymbol{Y}_n - \boldsymbol{Y}_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|\boldsymbol{X}\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|\boldsymbol{X}\|$$

- Graph signals and graphons with rapid variability make filter transference more difficult
- ▶ This is because of sampling approximation error \Rightarrow Not fundamental
- ▶ The constants can be sharpened with modulo-permutation Lipschitz constants

The difference norm of the respective graphon induced signals is bounded by

$$\|Y_n - Y_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|X\|$$

Filters that are more discriminative are more difficult to transfer

 \Rightarrow True in the part of the bound related to easy components associated with eigenvalues $|\lambda| > c$

 \Rightarrow True in the part of the bound related to difficult components associated with eigenvalues $|\lambda| \leq c$

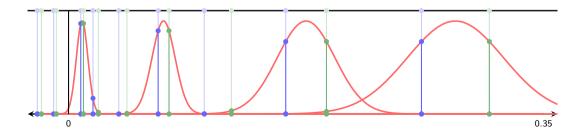
The difference norm of the respective graphon induced signals is bounded by

$$\|\boldsymbol{Y}_n - \boldsymbol{Y}_m\| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(\boldsymbol{B}_{nc}, \boldsymbol{B}_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|\boldsymbol{X}\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|\boldsymbol{X}\|$$

• Bound is parametric on the bandwidth $c \Rightarrow$ Different c result in different values for the bound

- ▶ Increase *c*-band cardinality or decrease *c*-eigenvalue margin \Rightarrow More challenging transferability
- A property of the graphon \Rightarrow Since eigenvalues converge B_{nc} and δ_{nc} converge

- If we fix n and m we observe emergence of a transferability vs discriminability non-tradeoff
- ▶ Discriminating around $\lambda = 0$ needs large Lipschitz constant $L_2 \Rightarrow$ Useless transferability bound
- ► To make transferability and discriminability compatible ⇒ Graph Neural Networks



Transferability of GNNs

▶ We define graphon neural networks and discuss their interpretation as generative models for GNNs

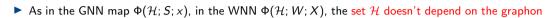
▶ We show that graph neural networks inherit the transferability properties of graph filters

- Graph filters are transferable \Rightarrow we can expect GNNs to inherit transferability from graph filters
- ► To analyze GNN transferability, we we first define Graphon Neural Networks (WNNs)
- **b** The *I*th layer of a WNN composes a graphon convolution with parameters h and a nonlinearity σ

$$X_l^f = \sigma \left(\sum_{g=1}^{F_{l-1}} h_{kl}^{fg} T_W^{(k)} X_{l-1}^g \right)$$

L layers, $1 \le f \le F_l$ output features per layer. WNN input is $X_0 = X$. Output is $Y = X_L$

• Can be represented as $Y = \Phi(\mathcal{H}; W; X)$ with coefficients $\mathcal{H} = \{h_{kl}^{fg}\}_{k,l,f,g}$. Just like the GNN



• Therefore, we can use WNNs to instantiate GNNs \Rightarrow the WNN is a generative model for GNNs



• We will consider GNNs $\Phi(\mathcal{H}; S_n; x_n)$ instantiated from $\Phi(\mathcal{H}; W; X)$ on weighted graphs G_n

 $[S_n]_{ij} = W(u_i, u_j) \qquad [x_n]_i = X(u_i)$

nn

• Consider a graph signal (S_n, x_n) sampled from the graphon signal (W, X)

- ▶ Given WNN coefficients \mathcal{H} for *L* layers, width $F_I = F$ for $1 \leq I < L$, and $F_0 = F_L = 1$
 - \Rightarrow Run WNN with coefficients \mathcal{H} on graphon W to process $X \Rightarrow Y = \Phi(\mathcal{H}; W, X)$
 - \Rightarrow Run GNN with coefficients \mathcal{H} on graph S_n to process $x_n \Rightarrow y_n = \Phi(\mathcal{H}; S_n, x_n)$

\triangleright Since one is a vector and the other a function we consider the induced graphon signal Y_n

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$\Big| W(u_2, v_2) - W(u_1, v_1) \Big| \le L_1 \Big(\Big| u_2 - u_1 \Big| + \Big| v_2 - v_1 \Big| \Big)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

$$\left| \left. \widetilde{h}(\lambda_2) - \widetilde{h}(\lambda_1) \right| \le L_2 \left| \lambda_2 - \lambda_1 \right| \quad \text{and} \quad \left| \left. h(\lambda) \right| \le 1$$

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq |L_3|u_2 - u_1|$$

(A4) The nonlinearities σ are normalized Lipschitz and $\sigma(0) = 0 \Rightarrow$ For all x and y

$$|\sigma(x) - \sigma(y)| \leq |x - y|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc}=\#\Big\{\,\lambda_{ni}\,:\,|\lambda_{ni}|>c\,\Big\}$$

(D2) The c-eigenvalue margin of of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ \left| \lambda_{ni} - \lambda_j \right| : \left| \lambda_{ni} \right| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W

Theorem (GNN-WNN approximation)

Consider the graph signal (S_n, x_n) sampled from the graphon signal (W, X) along with the GNN output $y_n = \Phi(\mathcal{H}; S_n, x_n)$ and WNN output $Y = \Phi(\mathcal{H}; W, X)$. With Assumptions (A1)-(A4) and

Definitions (D1)-(D2) the norm difference $||Y_n - Y||$ is bounded by

$$\|\boldsymbol{Y} - \boldsymbol{Y}_n\| \leq LF^{L-1}\sqrt{L_1}\left(\boldsymbol{L}_2 + \pi \frac{\boldsymbol{B}_{nc}}{\delta_{nc}}\right)\left(\frac{1}{\sqrt{n}}\right)\|\boldsymbol{X}\| + \frac{L_3}{\sqrt{3}}\left(\frac{1}{\sqrt{n}}\right) + LF^{L-1}\boldsymbol{L}_2\boldsymbol{C}\|\boldsymbol{X}\|$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ▶ The error incurred when using a GNN to approximate a WNN can be upper bounded
- ▶ Same comments as for graph and graphon filters apply. With additional dependence on L and F
- Distances between GNNs and WNN can be combined to calculate distance between GNNs

• GNNs $Y_n = \Phi(\mathcal{H}; W_n, x_n)$ and $Y_m = \Phi(\mathcal{H}; W_m, x_m)$ instantiated from WNN $Y = \Phi(\mathcal{H}; W, X)$

$$\|Y_n - Y_m\| = \|Y_n - Y + Y - Y_m\| \le \|Y_n - Y\| + \|Y - Y_m\|$$

The inequality follows from the triangle inequality. By which we have proved GNN transferability

• Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from the graphon signal (W, X)

- ▶ Given GNN coefficients \mathcal{H} for *L* layers, width $F_l = F$ for $1 \leq l < L$, and $F_0 = F_L = 1$
 - \Rightarrow Run GNN with coefficients \mathcal{H} on graph S_n to process $x_n \Rightarrow y_n = \Phi(\mathcal{H}; S_n, x_n)$
 - \Rightarrow Run filter with coefficients \mathcal{H} on graph S_m to process $x_m \Rightarrow y_m = \Phi(\mathcal{H}; S_m, x_n)$

• Since they have different number of components we compare induced graphon signals Y_n and Y_m

Theorem (GNN transferability)

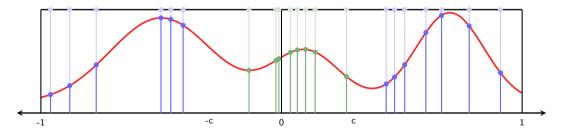
Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from graphon signal (W, X) along with GNN outputs $y_n = \Phi(\mathcal{H}; S_n, x_n)$ and $y_m = \Phi(\mathcal{H}; S_m, x_m)$. With Assumptions (A1)-(A4) and Definitions (D1) (D2) the difference norm of the respective graphon induced signals is bounded by

$$\|Y_{n} - Y_{m}\| \leq LF^{L-1}\sqrt{L_{1}}\left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})}\right)\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right)\|X\| + \frac{L_{3}}{\sqrt{3}}\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) + LF^{L-1}L_{2}c\|X\|$$

▶ Same comments as in the case of graph filter transferability. With additional dependence on L, F

Transferability-Discriminability Trade-off for GNNs

- > The transferability-discriminability trade-off looks the same. But it is helped by the nonlinearities
- At each layer of the GNN, the nonlinearities σ scatter eigenvalues from $|\lambda| \leq c$ to $|\lambda| > c$



- ▶ Nonlinearities allows $\downarrow c$ and $\uparrow L_2 \Rightarrow$ increasing discriminability while retaining transferability
- For the same level of discriminability, GNNs are more transferable than graph filters

Denn