
Graphons

I We introduce graphons to study graph filters and GNNs in the limit of large number of nodes

1



Graphon Definition

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Can think of a graphon as a weighted symmetric graph with uncountable nodes

⇒ The labels are the graphon arguments ⇒ u ∈ [0, 1].

⇒ The weights are the graphon values ⇒ W (u, v) = W (v , u)
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Graphon Examples

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

Uniform (Erdős-Rényi)

W (u, v) = p

Balanced stochastic block model (SBM)

W (u, v) = p � W (u, v) = q

Unbalanced (SBM)

W (u, v) = p � W (u, v) = q
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The Purpose of a Graphon

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Practice ⇒ Graph sets where graphs in the set have large number of nodes and similar structure

I Theory ⇒ A generative model of graph families via deterministic or stochastic edge sampling

I Theory ⇒ A limit object for a sequence of graphs
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The Product Similarity “Graphon”

I Product similarity graphs, even with different number of nodes, “look like each other”

I Abstract similarities between graphs into a limit object ⇒ The product similarity “graphon”

n = 30 products n = 50 products n = 100 products
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The Product Similarity “Graphon”

I We never compute the product similarity “graphon”

⇒ Use abstract idea of graphon to work with all of these graphs as if they were the same object

n = 30 products n = 50 products n = 100 products
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Graphons as Generative Models

I Vertices: For an n-node graph, sample n points {u1, u2, . . . , un} from the unit interval [0, 1]

⇒ Points can be sampled on a grid, uniformly at random, etc.

⇒ Each sample ui corresponds to a node i ∈ {1, 2, 3, . . . , n} of the graph

I Edges: Evaluate W(ui , uj) for edge (i , j)

⇒ Stochastic: Connect i and j with an unweighted undirected edge with probability W(ui , uj)

⇒ Weighted: Connect i and j with weighted undirected edge with weight W(ui , uj)
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Uniform Graphons as Generative Models

I Use uniform Graphon
W (u, v) = p

To generate random graphs with the same

Or different number of nodes

n = 50 nodes n = 50 nodes n = 100 nodes
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Balanced SBM Graphons as Generative Models

I Use balanced SBM

Graphon

q p

p q

To generate balanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Unbalanced SBM Graphons as Generative Models

I Use Unbalanced SBM

Graphon

q p

p q

To generate unbalanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Uniform Graphons as a Limit Object

I As we consider random graphs with larger numbers of nodes the graphs approach a limit

⇒ It is unclear what that limit is. The graphon is the limit. As we will see

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Convergence of Graph Sequences

I A graphon is the limit of a sequence of graphs that converges in terms of homomorphism densities
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Convergent Graph Sequences

I Sequence of graphs with growing number of nodes n ⇒
{
Gn = (Vn,En, Sn)

}∞
n=1

.

I The graph sequence {Gn}∞n=1 converges to a graphon W ⇒ In what sense?

⇒ We need to introduce three concepts: Motifs, homomorphisms, and homomorphism densities

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Motifs and Graph Homomorphisms

I A motif F is a graph. But think of it as a small graph that we embed in another larger graph
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I Homomorphisms are adjacency preserving maps from motif F = (V ′,E ′) into graph G = (V ,E)

β : V ′ → V such that
(
i , j
)
∈ E ′ implies

(
β(i), β(j)

)
∈ E
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Homomorphism Count

I Given motif F and graph G , there are multiple homomorphism functions β
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I We define hom(F ,G) to represent the number of homomorphisms between motif F and graph G
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Homomorphism Density

I If the graph G has n nodes and the motif F has n′ nodes, there are nn′ different maps from F to G

I Homomorphism density of motif F in graph G is the fraction of maps that are homomorphisms

t(F ,G) =
hom(F ,G)

nn′

I Density t(F ,G) is a relative measure of the number of ways in in which F can be mapped into G
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Homomorphism Density for Weighted Graphs

I Consider weighted graph G = (V ,E ,S) with adjacency matrix S

I Homomorphism density of motif F in weighted graph G with the adjacency matrix S is

t(F ,G) = =

∑
β

∏
(i,j)∈E′

[
S
]
β(i)β(j)

nn′

I Weight each motif embedding by the product of the edge weights in the homomorphism image.
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Homomorphism Density for Graphons

I The Homomorphism density of a motif F into a given graphon W is defined as

t(F ,W ) =

∫
[0,1]n

′

∏
(i,j)∈E′

W (ui , uj)
∏
i∈V′

dui

I The homomorphism density is the probability of drawing the motif F from the graphon W
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Convergence in Homomorphism Density Sense

Definition (Convergent graph sequence)

A sequence of undirected graphs Gn converges to the graphon W if and only if for all motifs F

lim
n→∞

t(F ,Gn) = t(F ,W )

I We say that the sequence Gn converges to W in the homomorphism density sense

I It can be proven that every graphon is the limit object of a sequence of convergent graphs

I It can be proven that every convergent graph sequence converges to a graphon
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Example of Convergent Graph Sequence

I Consider a sequence of random graphs {Gn} sampled from the graphon W. Graphs Gn have

⇒ Labels ui ∼ U[0, 1] drawn uniformly at random from the interval [0, 1]

⇒ Edge sets such that (ui , uj) ∈ E with probability W (ui , uj)

I We have lim
n→∞

t(F ,Gn) = t(F ,W ) in the homomorphism density sense almost surely

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Induced Graphons

I Every undirected graph admits a graphon representation which we call its induced graphon

I Consider a graph G = {V, E ,S} with |V| = n and normalized graph shift operator S

I Regular partition of the unit interval with n subintervals ⇒ Ii =
[

(i − 1)/n, i/n
)

I We define the induced graphon WG ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

1
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6

→

Cycle graph G with n = 6 nodes Graphon WG induced by the graph G
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Graphon Signals

I Graph signals are signals supported on graphons. They are limit objects of graph signals
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Graphon Signals

I Graphon signals are pairs (W ,X ) where W is a graphon and X : [0, 1]→ R is a function

I Function X (u) ∈ L2
(
[0, 1]

)
has finite energy ⇒

∫ 1

0

|X (u)|2du <∞.

0 1 u

x(u)

I Generative models of graph signals. And limits of convergent sequences of graph signals
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Graphon Signals as Generative Models

I We generate graph signals (Sn, xn) by taking n samples of the graphon signal (W ,X )

I Sample the graphon at node labels ui . Sample the function X at node labels ui ⇒ xi = X (ui )

I Graph signal sampled from the unit interval in the same coordinates ui where graphon is sampled

0 1 u

x(u)
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Induced Graphon Signals

I Every graph signal x supported on graph G induces a graphon signal (WG ,XG )

I Regular partition of unit interval with n subintervals Ii =
[

(i − 1)/n, i/n
)

⇒ Induced signal XG (u) = xi I(u ∈ Ii )

⇒ WG is the graphon induced by the graph G ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

0 1 u

x(u)
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Convergent Sequences of Graph Signals

Definition (Convergent sequences of graph signals)

A sequence of graph signals (Gn, xn) is said to converge to the graphon signal (W ,X ), if there

exists a sequence of permutations πn such that for all motifs F we have

t(F ,Gn)→ t(F ,W ), and
∥∥∥Xπn(Gn) − X

∥∥∥
L2
→ 0

We say (W ,X ) is the limit of the graph signal sequence and write (Gn, xn)→ (W ,X )

I The permutation is used here to make the convergence definition independent of labels

I To enable comparison of the vector xn and the function X we use the induced signal in the L2 norm
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Graphon Shift Operator

I The Graphon W can be used to define an integral linear operator ⇒ TW : L2([0, 1]
)
→ L2([0, 1]

)
I When applied to the graphon signal X , the operator TW produces the signal TWX with values

(TWX )(v) =

∫ 1

0

W (u, v)X (u) du

I This is a Hilbert-Schmidt operator because W is bounded and compact. It’s a matrix multiplication

I We say that the linear operator TW is the graphon shift operator (WSO) of the graphon W

⇒ Applying the WSO TW to the graphon signal X diffuses X over the graphon W
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Graphon Fourier Transform

I We define a graphon Fourier transform to enable spectral representation of graphon signals.
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The WSO is a self adjoint Hilbert-Schmidt operator ⇒ (TWX )(v) =

∫ 1

0

W(u, v)X (u) du

I The function ϕ : [0, 1]→ R is an eigenfunction of TW with associated eigenvalue λ if

(TWϕ)(v) =

∫ 1

0

W(u, v)ϕ(u) du = λϕ(v)

I TW has a countable number of eigenvalue-eigenfunction pairs ⇒
{

(λi , ϕi )
}∞

i=1

I We assume eigenfunctions are normalized to unit energy ⇒ ‖ϕi‖2 =

∫ 1

0

ϕ(u)du = 1
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The (countable number of) eigenfunctions of the operator Tw are an orthonormal basis of L2
(
[0, 1]

)

I We can thus decompose the graphon W in the basis
{
ϕi

}∞
i=1

of eigenfunctions of the operator TW

W(u, v) =
∞∑
i=0

λi ϕi (u)ϕi (v)

I More or less the same as the eigenvector decomposition ⇒ S = VΛVH =
∞∑
i=0

λi vi vT
i
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The Range of the Graphon Eigenvalues

I TW is self adjoint and 0 ≤W (x , y) ≤ 1 ⇒ Eigenvalues are real and lie in the interval [−1, 1]

I Order them as ⇒ −1 ≤ λ−1 ≤ λ−2 ≤ . . . ≤ 0 ≤ . . . ≤ λ2 ≤ λ1 ≤ 1

-1 0 1λ−2λ−1 λ2 λ1
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Eigenvalues Concentrate Around Zero

I Graphon eigenvalues accumulate at λ = 0 ⇒ lim
i→∞

λi = lim
i→∞

λ−i = 0. And only at λ = 0

I For any c > 0, the number of eigenvalues with
∣∣λi

∣∣ ≥ c is finite ⇒ #
{
λi :

∣∣λi

∣∣ ≥ c
}

= nc <∞

I All eigenvalues that are not λj = 0 have finite multiplicity

-1 0 1λ−2λ−1 λ2 λ1−c +c
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Eigenvalues of a Convergent Graph Sequence Converge to those of the Graphon

Theorem (Eigenvalue Convergence of a Graph Sequence)

If a graph sequence {Gn} converges to a graphon W in the homomorphism density sense , then

lim
n→∞

λj(Sn)

n
= λj(TW) = lim

n→∞
λj(TWn ) for all j

I For any convergent graph sequence, the eigenvalues of the graph converge to those of the graphon

Borgs-Chayes-Lovász-Sós-Vesztergombi, Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics,
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Eigenvalues of a Convergent Graph Sequence Converge to Those of the Graphon

I For a convergent graph sequence, eigenvalues of the graph converge to those of the limit graphon

-1 0 1

I Convergence holds in the sense that ⇒ ∃ n0 s.t. for all n > n0,

∣∣∣∣λj(Sn)

n
− λj(TW)

∣∣∣∣ < ε , ε > 0

I But n0 will be different for each j . Eigenvalue convergence is not uniform
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The Graphon Shift Operator Induces a Transform

I The graphon shift operator can be rewritten as

(TWφ)(v) =
∞∑
j=0

λjϕj(v)

∫ 1

0

ϕj(u)X (u)du

I Integral terms correspond to inner products 〈X , ϕj〉 between the signal and the eigenfunctions

I Moreover, the eigenfunctions form a complete orthonormal basis of L2([0, 1])

I Thus, the inner products can provide a complete representation of the signal on the graphon basis

I That change of basis is called the graphon Fourier Transform
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The Graphon Fourier Transform (WFT)

Definition (Graphon Fourier transform)

The graphon Fourier transform (WFT) of a graphon signal X is defined as a functional X̂ =

WFT(X ) with continuous input X and discrete output

X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u)du

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I The eigenvalues λj are countable ⇒ The graphon Fourier transform X̂ can always be defined

35



The Inverse Graphon Fourier Transform (iWFT)

Definition (Inverse graphon Fourier transform)

The inverse graphon Fourier transform (iWFT) of a graphon Fourier transform X̂ is defined as

iWFT(X̂ ) =
∑

j∈Z/{0}

X̂ (λj)ϕj = X

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I Eigenfunctions {ϕj}j∈Z/{0} are orthonormal. The iWFT is a proper inverse of the WFT
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The GFT converges to the WFT

I We discuss the convergence of the GFT to the WFT for graph sequences that converge to graphons.

I This need us to review convergence of eigenvectors and eigenvalues of graph sequences
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Graph signal sequence (Gn, xn) converges to graphon signal (W ,X ) ⇒ Conjecture GFT convergence

GFT(Gn, xn) → WFT(W ,X )

I Eigenvalue convergence holds ⇒ λnj → λj . Conjecture is reasonable GFT convergence should hold
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Alas, this conjecture is wrong ⇒ GFT convergence to the WFT does not hold in general

GFT(Gn, xn) 6→ WFT(W ,X )

I GFT and WFT are projections on eigenvectors and eigenfunctions. Not eigenvalues
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Convergence to Graphon Eigenvectors

I Convergence of two eigenvectors depends on how close the eigenvalues of other eigenvectors are

I Eigenvalues accumulate around λ = 0. They all converge. But different eigenvalues are close

I It makes the eigenvectors slow to converge ⇒ They all converge but convergence is not uniform

-1 0 1λ3 λ2 λ1
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Eigenvalue Margin for Linear Operators

I Consider eigenvalues λj of graphon W and λnj of graph Gn with the same index j

⇒ Compare graphon eigenvalue λj to the closest graph eigenvalue other than λnj

⇒ Compare graph eigenvalue λni to the closest graphon eigenvalue other than λj

d(λj , λnj) = min

(
d1 = min

i 6=j

∣∣∣λj − λni

∣∣∣, d2 = min
i 6=j

∣∣∣λnj − λi

∣∣∣ )
⇒ The minimum of these two is the eigenvalue margin d(λj , λnj) for the eigenvalue pair (λj , λnj)

λj λnjλj − d1 λj + d1 λj λnjλnj − d2 λnj + d2
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Convergence of Eigenfunctions

Theorem (Davis-Kahan)

Given graphon W and graphon WGn induced by graph Gn we consider graphon eigenvalue λj and

graph eigenvalue λnj . The distance between the associated eigenfunctions is bounded by

‖ϕj − ϕnj‖ ≤
π

2

‖W −WGn‖
d(λj , λnj)

where d(λj , λnj) is the eigenvalue margin for the eigenvalue pair (λj , λnj)

I Graph eigenvectors converge to graphon eigenfunctions if graph sequence converges to graphon

I When the distance to other eigenvalues decreases, the distance between eigenvectors increases
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The GFT Does Not Converge to the WFT

I For eigenvalues close to 0 the margin d(λj , λnj) vanishes ⇒ There are infinite eigenvalues in [−c, c]

I Thus for any n and ε > 0 we have some j for which ⇒ π

2

‖W − Gn‖
d(λj , λnj)

> ε

I Opposite of a convergence claim. ⇒ For any ε > 0, all n > n0, and j ⇒ π

2

‖W − Gn‖
d(λj , λnj)

≤ ε

-1 0 1−c +c
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Graphon Bandlimited Signals

Definition (Graphon bandlimited signals)

A graphon signal (W ,X ) is c-bandlimited, with bandwith c ∈ (0, 1], if X̂ (λj) = 0 for all |λj | < c.

-1 0 1−c +c
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Bandlimited and Not-Bandlimited Graphon Signals

I Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited

I To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (−c, c)

-1 0 1−c +c
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-1 0 1−c +c
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Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (GFT convergence for graphon bandlimited signals)

Let (Gn, xn) be a sequence of graph signals converging to the c-bandlimited graphon signal (W ,X ).

There exists a sequence of permutations πn such that

GFT
(
πn(Gn), πn(xn)

)
→ WFT

(
W ,X

)

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Inverse Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (iGFT convergence for graphon bandlimited signals)

Let (Gn, x̂n) be a sequence of GFTs converging to the WFT (W ,X ). The WFT is associated to a

c-bandlimited graphon signal. There exists a sequence of permutations {πn} such that

πn

(
iGFT(x̂n)

)
→ iWFT

(
X̂
)

.

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graph Fourier Transform Convergence for Bandlimited Signals

I Convergence of GFT depends on convergence of graph eigenvalues to graphon eigenvalues

I As the number of nodes n grows, the eigenvalues of Gn converge to the eigenvalues of W .

-1 0 1−c +c
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Graph Fourier Transform Convergence for Bandlimited Signals

I However, for large |j | the graph and graphon eigenvalues become difficult to tell apart

I Therefore, the GFT only converges to the WFT for graphon bandlimited signals

-1 0 1−c +c
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Graphon Filters

I We define graphon filters and prove their frequency response, which is independent of the graphon.
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Graphon Filters

I Apply the Graphon shift operator recursively to create the graphon diffusion sequence

(
T

(k)
W X

)
(v) =

∫ 1

0

W(u, v)
(
T

(k−1)
W X

)
(u) du T

(0)
W X = X

I A graphon filter of order K is defined by the filter coefficients hk and produces outputs as per

Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v) = (THX )(v)

I A linear combination of the elements of the diffusion sequence modulated by coefficients hk
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Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter ⇒ Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v)

I Only difference is a change of shift operator ⇒ TWX : (TW )X (v) =

∫ 1

0

W(u, v)X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y
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Graphon Filters in the Graphon Fourier Transform Domain

⇒ WFTs of input signal ⇒ X̂j =

∫ 1

0

X (u)ϕj(u)du ⇒ WFT of output ⇒ Ŷj =

∫ 1

0

Y (u)ϕj(u)du

Theorem (Graph frequency representation of graphon filters)

Given a graphon filter TH with coefficients hk , the components of the graphon Fourier transforms

of the input and output signals are related by

Ŷj =
K∑

k=0

hkλ
k
j X̂j

I The same polynomial that defines the filter but with the eigenvalue λi as a variable

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graphon Frequency Response

I Graphon filters are pointwise in the WFT domain ⇒ Ŷj =
K∑

k=0

hkλ
k
j X̂j = h(λj) X̂j

Definition (Frequency response of a graphon filter)

Given a graphon filter with coefficients h = {hk}∞k=1 the frequency response is the polynomial

h(λ) =
∞∑
k=0

hkλ
k

I This is also the exact same definition of the frequency response of a graph filter with coefficients hk
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Frequency Response of Graphs and Graphons

I The frequency response of a graphon filter and a graph filter with the same coefficients are the same

I Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues

I If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers

-1 0 1
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I The frequency response of a graphon filter and a graph filter with the same coefficients are the same

I Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues

I If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers

-1 0 1
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Convergence of Graph Filters in the Spectral Domain

I Convergence of graph filter sequences towards graphon filters for convergent graph signal sequences

1



Graphon Filters and Sequences of Graph Filters

I Given coefficients hk consider a graph filter sequence and a graphon filter with the same coefficients

H(Sn) =
K∑

k=1

hkS
k
n

xn yn
TH =

K∑
k=1

hkT
(k)
W

X Y

I Does the graph filter sequence converge to the graphon filter? ⇒ Not the most pertinent question

⇒ Filter convergence is important inasmuch as it implies convergence of filter outputs

2



Graphon Filters and Sequences of Graph Filters

I Given coefficients hk consider a graph filter sequence and a graphon filter with the same coefficients

yn =
K∑

k=1

hkS
k
nxn

xn yn
yn =

K∑
k=1

hkT
(k)
W X

X Y

I Consider a convergent sequence of graph signals (Gn, xn)→ (W ,X )

⇒ Input graph signal xn to graph filter H(Sn) to produce output graph signal yn

⇒ Input graphon signal X to graphon filter TH to produce output graphon signal Y

I The graph signal sequence (Gn, yn) converges to the graphon signal (W ,Y ) under some conditions

2



Graph Filters, Graphon Filters, and Their Frequency Representations

I Given filter coefficients hk we have five polynomials which are the same except for their variables

I Two polynomials are representations in the node domain

⇒ The graph filter sequence defined on variable Sn ⇒ H(Sn) =
K∑

k=1

hkSk
n

⇒ The graphon filter defined on variable TW ⇒ TH =
K∑

k=1

hkT
(k)
W

3



Graph Filters, Graphon Filters, and Their Frequency Representations

I Given filter coefficients hk we have five polynomials which are the same except for their variables

I Three polynomials are representations in the spectral domain

⇒ The frequency response of the graph and graphon filters with variable λ ⇒ h̃(λ) =
K∑

k=1

hkλ
(k)

⇒ The frequency representation of the graph filters with variable λnj ⇒ h̃(λnj) =
K∑

k=1

hkλ
(k)
nj

⇒ The frequency representation of the graphon filter with variable λj ⇒ h̃(λj) =
K∑

k=1

hkλ
(k)
j

3



Convergence of Graph Filters Sequences in the Frequency Domain

⇒ Frequency representation of graph filters ⇒ h̃(λnj) =
K∑

k=1

hkλ
k
nj

⇒ Frequency representation of graphon filter ⇒ h̃(λj) =
K∑

k=1

hkλ
k
j

Theorem (Convergence of graph filter sequences in the frequency domain)

Consider filter coefficients hk generating a sequence of graph filters H(Sn) supported on the graph

sequence Gn and a graphon filter TH supported on the graphon W . If Gn →W

lim
n→∞

h̃(λnj) = h̃(λj)

4



Frequency Domain Convergence is Not Much

I Graph filter GFT representations converge to graphon filter WFT representation ⇒ lim
n→∞

h̃(λnj) = h̃(λj)

I This is true because eigenvalues converge and the frequency responses are the same

I This is not much to say ⇒ GFT and WFT are representations. ⇒ Filters operate in the node domain

-1 0 1
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Convergence of Graph Filters in the Node Domain

I We leverage spectral domain convergence to prove convergence of graph filters in the node domain

⇒ Provides a first approach to the study of transferability of graph filters

6



From Frequency Representations to Node Representations

I To prove convergence in the node domain we can go to the frequency domain and back

GFTn h̃(λnj ) iGFTn.
xn x̃n ỹn yn

WFT h̃(λnj ) iWFT.
X X̂ Ŷ Y

I Frequency representation of graph filters converge to frequency representation of graphon filter

⇒ But the GFT and the iGFT do not converge ⇒ Unless the signals are graphon bandlimited

7



Graph Filter Convergence for Bandlimited Inputs

I Input graph signal sequence (Gn, xn) ⇒ Generates output sequence (Gn, yn) with yn = H(Sn) xn

I Input graphon signal (W ,X ) ⇒ Generates output signal (W ,Y ) with Y = TH X

Theorem (Graph filter convergence for bandlimited inputs)

Given convergent graph signal sequence (Gn, xn) → (W ,X ) and filters H(Sn) and TH generated

by the same coefficients hk . If the input signals are c-bandlimited

(Gn, yn) → (W,Y )

The sequence of output graph signals converges to the output graphon signal

8



Lipschitz Graphon Filters

I Convergence for bandlimited input is easy. Also weak. Therefore cheap. A stronger result is possible

I Lipschitz graphon filters are filters with frequency responses that are Lipschitz in [−1, 1]

∣∣∣ h(λ1)− h(λ2)
∣∣∣ ≤ L

∣∣∣λ1 − λ2

∣∣∣, for all λ1, λ2 ∈ [0, 1]

I Claim convergence of graph filter sequence, despite lack of convergence of the GFT and the iGFT

9



Graph Filter Convergence for Lipschitz Graphon Filters

Theorem (Graph filter convergence for Lipschitz continuous filters)

Given convergent graph signal sequence (Gn, xn) → (W ,X ) and filters H(Sn) and TH generated

by the same coefficients hk . If the frequency response h̃(λ) is Lipschitz

(Gn, yn) → (W,Y )

The sequence of output graph signals converges to the output graphon signal

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Remarks on the Proof of Convergence for Lipschitz Graphon Filters

I The challenge of filter convergence comes from the accumulation of eigenvalues around λ = 0

I Which causes complications with eigenvector convergence.

I Lipschitz continuity renders the effect void. All components are multiplied by similar numbers

-0.4 0 0.4-0.1 0.1

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Remarks on the Convergence of Lipschitz Graphon Filters

I We identify a fundamental issue ⇒ Transferability is counter to discriminability

⇒ If the filter converges, it can’t separate eigenvectors associated to eigenvalues close to λ = 0

I Characterization is just a limit ⇒ Work on a finite-n transference bounding

-0.4 0 0.4-0.1 0.1
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Graphon Filters are Generative Models for Graph Filters

I Graph filters can approximate graphon filters under certain conditions. We discuss them now.

13



Graphon Filters are Generative Models for Graph Filters

I For a converging graph sequence, graph filters converge asymptotically to graphon filters

I Thus, as n grows, the graph filters become more similar to the graphon filter

yn =
K∑

k=1

hkS
k
nxn

xn yn
yn =

K∑
k=1

hkT
(k)
W X

X Y

I And we can then use a graph filter as a surrogate for the graphon filter

I We now want to quantify the quality of that approximation for different values of n

14



Small Eigenvalues are Hard to Discriminate

I Graphon eigenvalues accumulate at λ = 0

I Making it hard to match graph eigenvalues to the corresponding graphon eigenvalues if λ is small

-0.4 0 0.4-0.1 0.1
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Small Eigenvalues are Hard to Discriminate

I Which in turn makes it hard to discriminate consecutive eigenvalues in that range

I If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently

I To obtain good approximations, we must then assume filters do not change much around λ = 0

0 0.35
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Small Eigenvalues are Hard to Discriminate

I Which in turn makes it hard to discriminate consecutive eigenvalues in that range

I If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently

I To obtain good approximations, we must then assume filters do not change much around λ = 0

-0.4 0 0.4-0.1 0.1
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Low-Pass Lipschitz Filters

I Graphon eigenvalues tend to zero as the index i grows ⇒ limi→∞ λi = limi→∞ λ−i = 0

I Low-pass graphon filters must thus be zero for λ < c. Constant c determines the filter’s band.

0 c 1

I The filter removes high frequency components. But low-frequency components are not affected.
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Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1
∣∣ +

∣∣ v2 − v1
∣∣ )

(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1
∣∣

18



Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W

19



Graph-Graphon Filter Approximation Theorem for Low-Pass Lipschitz Filters

Theorem (Graphon filter approximation by graph filter for low-pass filters)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) is zero for |λ| < c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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High-Pass Filters

I High-pass filters have null frequency response for |λ| > c, removing low-frequency components

I Moreover, we consider filters that have low variability around λ = 0

0 c 1

I This makes it easier to match graph eigenvalues to graphon eigenvalues around λ = 0
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Graph-Graphon Filter Approximation Theorem for High-Pass Filters

Theorem (Graphon filter approximation by graph filter for high-pass filters)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) is zero for |λ| > c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤ L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Lipschitz Filters with Variable Band

I Filter response has low variability for |λ| < c. Where the eigenvalues of the graphon accumulate

I For |λ| > c, graphon eigenvalues are countable. And easier to match to those of the graph

0 c 1

I A Lipschitz filter with variable band is the composition of a low-pass filter and a high-pass one
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Graph-Graphon Filter Approximation Theorem for Lipschitz Filters with Variable Band

Theorem (Graphon filter approximation by graph filter)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) has low variability for |λ| < c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖

24



Proof

I Filter with variable band is the sum of an L2-Lipschitz filter h1(λ) with h1(λ) = 0 for |λ| < c

I And a high-pass filter h2(λ) with h2(λ) showing low variability for |λ| < c and 0 otherwise

I Thus, by the triangle inequality

‖Y − Yn‖L2 = ‖THX − THn‖L2 ≤ ‖TH1X − TH1n
Xn‖L2 + ‖TH2X − TH2n

Xn‖L2

I We know the first-term on the right-hand side. It’s the bound for low-pass filters

I And the second-term on the right-hand side is the bound for constant filters

I Summing up the two bounds, we then prove our result for Lipschitz filters with variable band
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Parse the Bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖

I Bound depends on the filter transferability constant and on the difference between X and Xn

I Transferability constant depends on the graphon via L1 which also affects the graphon variability

I As n grows, the transferability constant dominates the bound
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Filter Response Determines the Approximation Bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖

I Transferability constant depends on the filter parameters L2, nc and δnc

I Filter’s Lipschitz constant L2 and filter’s band [c, 1] determine variability of the spectral response

I Number of eigenvalues in the passing band has to be limited: nc <
√
n

I This ensures eigenvalues of Wn converge to those of W. And thus so does the filter approximation
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Discriminability - Approximation Trade-Off

I We identify a fundamental issue ⇒ Good approximations are counter to discriminability

⇒ Tight approximation bounds require filters with low variability around λ = 0

⇒ But then the filter can’t discriminate components associated to eigenvalues close to λ = 0

I That is less of an issue for larger graphs. Filter approximation requires nc <
√
n

⇒ As n grows, we can afford a larger number of eigenvalues nc in the passing band

⇒ Improving discriminability without penalizing the approximation bound
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Transferability of Graph Filters: Theorem

I We show that graph filters are transferable across graphs that are drawn from a common graphon

29



Comparing Graph Filters through their Generating Graphon Filter

I Have not proven transferability ⇒ Have proven that graph filters are close to graphon filters

⇒ Graph Gn with n nodes sampled from graphon W

⇒ Have shown that graph filter H(Sn) running on Gn is close to the graphon filter TH

-1 0 1
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Comparing Graph Filters through their Generating Graphon Filter

I Transferability means that two different graphs with different number of nodes are close

⇒ Graph Gn and graph Gm with n 6= m nodes. Both sampled from graphon W

⇒ Want to show that graph filter H(Sn) and graph filter H(Sm) are close

-1 0 1
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Comparing Graph Filters through their Generating Graphon Filter

I But graph filters are close because they are both close to the graphon filter

⇒ Graph filter H(Sn) close to graphon filter TH . Graph filter H(Sm) close to graphon filter TH

⇒ Graph filter H(Sn) is close to graph filter H(Sm) ⇒ This is just the triangle inequality

-1 0 1
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Running the Same Filter on Different Graphs

I Consider graph signals (Sn, xn) and (Sm, xm) sampled from the graphon signal (W ,X )

I Given filter coefficients hk we process signals on their respective graphs

⇒ Run filter with coefficients hk on graph Sn to process xn ⇒ yn = H(Sn)xn =
K∑

k=1

hkSk
nxn

⇒ Run filter with coefficients hk on graph Sm to process xm ⇒ ym = H(Sm)xm =
K∑

k=1

hkSk
mxn

I Since they have different number of components we compare induced graphon signals Yn and Ym
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Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1
∣∣ +

∣∣ v2 − v1
∣∣ )

(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1
∣∣
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Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Transferability Theorem

Theorem (Graph filter transferability)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W ,X ) along with

filter outputs yn = H(Sn)xn and ym = H(Sm)xm. With Assumptions (A1)-(A3) and Definitions

(D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Transferability of Graph Filters: Remarks

I We present remarks on the transferability theorem of graph filters sampled from a graphon filter

35



Thing 1, Thing 2 and Thing 3

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

Thing 1: A term that comes from the discretization of the graphon signal ⇒ Not very important

Thing 2: A term coming from filter variability at eigenvalues |λ| > c ⇒ The easy components

Thing 3: A term coming from filter variability at eigenvalues |λ| ≤ c ⇒ The difficult components

36



All Filters are Transferable in the Limit

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I As (n,m)→∞ most of the transferability error decreases with the square root of the graph sizes

I We can also afford smaller bandwidth limit c ⇒ Transfer filters closer to λ = 0

I Sharper filter responses (larger Lipschitz constant L2) ⇒ Transfer more discriminative filters
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Rates of Change of Graphons and Graphon Signals

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Graph signals and graphons with rapid variability make filter transference more difficult

I This is because of sampling approximation error ⇒ Not fundamental

I The constants can be sharpened with modulo-permutation Lipschitz constants
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Filter Discriminability

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Filters that are more discriminative are more difficult to transfer

⇒ True in the part of the bound related to easy components associated with eigenvalues |λ| > c

⇒ True in the part of the bound related to difficult components associated with eigenvalues |λ| ≤ c
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Spectral Properties of the Graphon

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Bound is parametric on the bandwidth c ⇒ Different c result in different values for the bound

I Increase c-band cardinality or decrease c-eigenvalue margin ⇒ More challenging transferability

I A property of the graphon ⇒ Since eigenvalues converge Bnc and δnc converge
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Transferability vs Discriminability Non-Tradeoff

I If we fix n and m we observe emergence of a transferability vs discriminability non-tradeoff

I Discriminating around λ = 0 needs large Lipschitz constant L2 ⇒ Useless transferability bound

I To make transferability and discriminability compatible ⇒ Graph Neural Networks

0 0.35
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Transferability of GNNs

I We define graphon neural networks and discuss their interpretation as generative models for GNNs

I We show that graph neural networks inherit the transferability properties of graph filters
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Graphon Neural Networks

I Graph filters are transferable ⇒ we can expect GNNs to inherit transferability from graph filters

I To analyze GNN transferability, we we first define Graphon Neural Networks (WNNs)

I The lth layer of a WNN composes a graphon convolution with parameters h and a nonlinearity σ

X f
l = σ

Fl−1∑
g=1

hfg
klT

(k)
W X g

l−1


L layers, 1 ≤ f ≤ Fl output features per layer. WNN input is X0 = X . Output is Y = XL

I Can be represented as Y = Φ(H;W ;X ) with coefficients H = {hfg
kl }k,l,f ,g . Just like the GNN
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WNNs as Generative Models for GNNs

I As in the GNN map Φ(H; S ; x), in the WNN Φ(H;W ;X ), the set H doesn’t depend on the graphon

I Therefore, we can use WNNs to instantiate GNNs ⇒ the WNN is a generative model for GNNs

WNN GNNH

W

X

G8

x8

I We will consider GNNs Φ(H;Sn; xn) instantiated from Φ(H;W ;X ) on weighted graphs Gn

[Sn]ij = W (ui , uj) [xn]i = X (ui )
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Sampling a GNN from the WNN

I Consider a graph signal (Sn, xn) sampled from the graphon signal (W ,X )

I Given WNN coefficients H for L layers, width Fl = F for 1 ≤ l < L, and F0 = FL = 1

⇒ Run WNN with coefficients H on graphon W to process X ⇒ Y = Φ(H;W ,X )

⇒ Run GNN with coefficients H on graph Sn to process xn ⇒ yn = Φ(H; Sn, xn)

I Since one is a vector and the other a function we consider the induced graphon signal Yn
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Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1
∣∣ +

∣∣ v2 − v1
∣∣ )

(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1
∣∣

(A4) The nonlinearities σ are normalized Lipschitz and σ(0) = 0 ⇒ For all x and y

|σ(x)− σ(y) | ≤ |x − y |
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Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Approximation Theorem

Theorem (GNN-WNN approximation)

Consider the graph signal (Sn, xn) sampled from the graphon signal (W ,X ) along with the GNN

output yn = Φ(H; Sn, xn) and WNN output Y = Φ(H;W ,X ). With Assumptions (A1)-(A4) and

Definitions (D1)-(D2) the norm difference ‖Yn − Y ‖ is bounded by

‖Y − Yn‖ ≤ LF L−1
√
L1

(
L2 + π

Bnc

δnc

)(
1√
n

)
‖X‖+

L3√
3

(
1√
n

)
+ LF L−1L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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From WNNs to GNN Transferability

I The error incurred when using a GNN to approximate a WNN can be upper bounded

I Same comments as for graph and graphon filters apply. With additional dependence on L and F

I Distances between GNNs and WNN can be combined to calculate distance between GNNs

I GNNs Yn = Φ(H;Wn, xn) and Ym = Φ(H;Wm, xm) instantiated from WNN Y = Φ(H;W ,X )

‖Yn − Ym‖ = ‖Yn − Y + Y − Ym‖ ≤ ‖Yn − Y ‖+ ‖Y − Ym‖

I The inequality follows from the triangle inequality. By which we have proved GNN transferability
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Running the Same GNN on Different Graphs

I Consider graph signals (Sn, xn) and (Sm, xm) sampled from the graphon signal (W ,X )

I Given GNN coefficients H for L layers, width Fl = F for 1 ≤ l < L, and F0 = FL = 1

⇒ Run GNN with coefficients H on graph Sn to process xn ⇒ yn = Φ(H; Sn, xn)

⇒ Run filter with coefficients H on graph Sm to process xm ⇒ ym = Φ(H; Sm, xn)

I Since they have different number of components we compare induced graphon signals Yn and Ym
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Transferability Theorem

Theorem (GNN transferability)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W ,X ) along with GNN

outputs yn = Φ(H; Sn, xn) and ym = Φ(H; Sm, xm). With Assumptions (A1)-(A4) and Definitions

(D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

‖Yn−Ym‖ ≤ LF L−1
√
L1

(
L2+π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+ L3√

3

(
1√
n

+
1√
m

)
+LF L−1L2c‖X‖

I Same comments as in the case of graph filter transferability. With additional dependence on L,F
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Transferability-Discriminability Trade-off for GNNs

I The transferability-discriminability trade-off looks the same. But it is helped by the nonlinearities

I At each layer of the GNN, the nonlinearities σ scatter eigenvalues from |λ| ≤ c to |λ| > c

-1 -c 0 c 1

I Nonlinearities allows ↓ c and ↑ L2 ⇒ increasing discriminability while retaining transferability

I For the same level of discriminability, GNNs are more transferable than graph filters
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