
Permutation Equivariance of Graph Filters

I We will show that graph convolutional filters are equivariant to permutations
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n

and it further satisfies P1 = 1 and PT1 = 1.

I The product PTx reorders the entries of the vector x.

I The product PTSP is a consistent reordering of the rows and columns of S
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n

and it further satisfies P1 = 1 and PT1 = 1.

I Since P1 = PT1 = 1 with binary entries ⇒ Exactly one nonzero entry per row and column of P

I Permutation matrices are unitary ⇒ PTP = I. Matrix PT undoes the reordering of matrix P
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Relabeling of Graph Signals

I If (S, x) is a graph signal, (PTSP,PTx) is a relabeling of (S, x). Same signal. Different names
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I Processing should be label-independent ⇒ Permutation equivariance of graph filters and GNNs
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Graph Filters and the Permutation of Graph Signals

I Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S)x =
K−1∑
k=0

hkSkx

I We consider running the same filter on (S, x) and permuted (relabeled) (Ŝ, x̂) = (PTSP,PTx)

H(S)x =
K−1∑
k=0

hkSkx H(Ŝ)x̂ =
K−1∑
k=0

hk Ŝk x̂

I Filter H(S)x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

I Filter H(Ŝ)x̂ ⇒ Same Coefficients hk . Permuted Input signal x̂. Instantiated on permuted shift Ŝ
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Permutation Equivariance of Graph Filters

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PTx. Then

H(Ŝ)x̂ = PTH(S)x

I Graph filters are equivariant to permutations ⇒ Permute input and shift ≡ Permute output

5



Proof or Permutation Equivariance of Graph Filters

Proof: Write filter output in polynomial form. Use permutation definitions Ŝ = PTSP and x̂ = PTx

H(Ŝ)x̂ =
K−1∑
k=0

hk Ŝk x̂ =
K−1∑
k=0

hk
(

PTSP
)k

PTx

I In the powers
(

PTSP
)k

, P and PT undo each other (PTP = I) ⇒
(

PTSP
)k

= PT
(

S
)k

P

I Substitute this into filter’s output expression. Cancel remaining PPT = I product. Factor PT

H(Ŝ)x̂ =
K−1∑
k=0

hkPTSkPPTx =
K−1∑
k=0

hkPTSk Ix = PT
K−1∑
k=0

hkSkx = PTH(S)x �
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Signal Processing with Graph Filters is Independent of Labeling

I We requested signal processing independent of labeling ⇒ Graph filters fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Graph signal x̂ = PT x supported on Ŝ = PT SP
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Signal Processing with Graph Filters is Independent of Labeling

I We requested signal processing independent of labeling ⇒ Graph filters fulfill this request
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Filter’s Output H(Ŝ)x̂ supported on Ŝ
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Permutation Equivariance of Graph Neural Networks

I We will show that graph neural networks inherit the permutation equivariance of graph filters
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Graph Neural Networks and the Permutation of Graph Signals

I L layers recursively process outputs of previous layers. GNN Output parametrized by tensor H

x` = σ

[
K−1∑
k=0

h`k Sk x`−1

]
= σ

[
H`(S) x`−1

]
Φ
(

x; S, H
)

= xL

I We consider running the same GNN on (S, x) and permuted (relabeled) (Ŝ, x̂) = (PTSP,PTx)

Φ
(

x; S, H
)

Φ
(

x̂; Ŝ, H
)

I GNN Φ
(
x; S,H

)
⇒ Tensor H. Input signal x. Instantiated on shift S

I GNN Φ
(
x̂; Ŝ,H

)
⇒ Same Tensor H. Permuted Input signal x̂. Instantiated on permuted shift Ŝ
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Permutation Equivariance of Graph Neural Networks

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PTx. Then

Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

I GNNs equivariant to permutations ⇒ Permute input and shift ≡ Permute output
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Proof or Permutation Equivariance of Graph Neural Networks

Proof: GNN Layer ` recursion on signal x`−1 and shift S ⇒ x` = σ

[
K−1∑
k=0

h`k Sk x`−1

]
= σ

[
H`(S)x`−1

]

GNN Layer ` recursion on signal x̂`−1 and shift Ŝ ⇒ x̂` = σ

[
K−1∑
k=0

h`k Ŝk x̂`−1

]
= σ

[
H`(Ŝ)x̂`−1

]

I Assume Layer ` inputs satisfy x̂`−1 = PTx`−1. Filters are equivariant. Linearity is pointwise

x̂` = σ

[
H`(Ŝ)x̂`−1

]
= σ

[
PTH`(S)x`−1

]
= PTσ

[
H`(S)x`−1

]
= PTx`

I This in an induction step At Layer 1 we have x̂ = PTx by hypothesis. Induction is complete. �
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Signal Processing with GNNs is Independent of Labeling

I GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Graph signal x̂ = PT x supported on Ŝ = PT SP
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Signal Processing with GNNs is Independent of Labeling

I GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x; S,H) supported on S
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GNN Φ(x̂; Ŝ,H) = PT Φ(x; S,H) on Ŝ = PT SP
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Equivariance to Permutations and Signal Symmetries

I Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals

I By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

I Equivariance theorem implies ⇒ Φ
(

PTx; S,H
)

= Φ
(

PTx; PTSP,H
)

= PTΦ
(

x; S,H
)
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Symmetry is Rare but Quasi-Symmetry is Common

I Graph not symmetric but close to symmetric ⇒ perturbed version of a permutation of itself
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I We will show conditions for stability to deformations ⇒ Approximate (close to) equivariance
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Operator Distance Modulo Permutation

Definition (Operator Distance Modulo Permutation)

For operators Ψ and Ψ̂, the operator distance modulo permutation is defined as∥∥Ψ− Ψ̂
∥∥
P = min

P∈P
max

x:‖x‖=1

∥∥PTΨ(x) − Ψ̂(PTx)
∥∥

where P is the set of n × n permutation matrices and where ‖ · ‖ stands for the `2-norm.

I Equivariance to permutations of graph filters ⇒ If
∥∥Ŝ− S

∥∥
P = 0. Then

∥∥H(Ŝ)−H(S)
∥∥
P = 0

I Equivariance to permutations GNNs ⇒ If
∥∥Ŝ− S

∥∥
P = 0. Then

∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥
P = 0

I When distance
∥∥Ŝ− S

∥∥
P is small? (not zero) ⇒ Stability properties of graph filters and GNNs
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Lipschitz and Integral Lipschitz Filters

I Classes of filters to study discriminablity of GNNs ⇒ Lipschitz and integral Lipschitz graph filters
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Graph Convolutional Filters

I Graph filters are polynomials on shift operators S with given coefficients hk ⇒ H(S) =
∞∑
k=0

hkSk

I Filter’s frequency response is the same polynomial with scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I Frequency response determined by filter coefficients hk . Independent of particular given graph

λ

h̃(λ)
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Lipschitz Filters

Definition (Lipschitz Filter)

Given a graph filter with coefficients h = {hk}∞k=1, and graph frequency response

h̃(λ) =
∞∑
k=0

hkλ
k ,

we say that the filter is Lipschitz if there exists a constant C > 0 such that for λ1 and λ2∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ C

∣∣λ2 − λ1

∣∣.

I Change in values of frequency response is at most linear with rate C ⇒ Derivative h̃′(λ) ≤ C
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Discriminability of Lipschitz Filters

I Frequency response h̃(λ) of Lipschitz filter is Lipschitz continuous ⇒ Maximum slope is h̃′(λ) ≤ C

λ

h̃(λ)

I Lipschitz constant determines discriminability ⇒ Small / Large C ≡ Low / High discriminability
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Lipschitz Frames

I A Lipschitz frame with constant C is made up of Lipschitz filters with constant C

I Larger C allows for sharper filters, that can discriminate more signals. Tighter packing

I The discriminability of the frame is (or can be) the same at all frequencies.

λ

h̃(λ)
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Integral Lipschitz Filters

Definition (Integral Lipschitz Filter)

Consider graph filter with coefficients hk and graph frequency response h̃(λ) =
∞∑
k=0

hkλ
k . The

filter is said integral Lipschitz if there exists constant C > 0 such that for all λ1 and λ2,

|h̃(λ2)− h̃(λ1)| ≤ C
|λ2 − λ1|
|λ1 + λ2|/2

.

I Lipschitz with a constant that is inversely proportional to the interval’s midpoint ⇒ 2C/|λ1 + λ2|.

I Letting λ2 → λ1 we get that λh̃′(λ) ≤ C ⇒ The filter can’t change for large λ.
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Discriminability of Integral Lipschitz Filters

I At medium frequencies, integral Lipschitz filters are akin to Lipschitz filters. Roughly speaking

I At low frequencies integral Lipschitz filters can be arbitrarily thin ⇒ arbitrary discriminability

I At high frequencies integral Lipschitz filters have to be flat ⇒ They lose discriminability

λ

h̃(λ)

22



Integral Lipschitz Frames

I As Lipschitz frames, integral Lipschitz frames are more discriminative for larger C . Tighter packing

I Except that around λ = 0, filters can be thin no matter C ⇒ High discriminability

I But for large λ filters have to be wide no matter C ⇒ No discriminability

λ

h̃(λ)
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Stability of Graph Filters to Scaling

I Scaling of shift operators is a perturbation form that illustrates proof techniques and insights

I We show that graph filters are stable with respect to scaling
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Scaling of Shift Operators

I Graphs are subject to estimation error and changes ⇒ Running filters on similar graphs

I We scale edges by (1 + ε). Scaling deformation of the shift operator ⇒ Ŝ = (1 + ε) S

I Deformation model is reasonable ⇒ Edges change proportional to their values

I Also unrealistic ⇒ All of the edges change by the same proportion

⇒ Illuminating for discussions. Stability proof contains essential arguments of more generic proof.
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Stability of Graph Filters to Scaling

Theorem (Integral Lipschitz Graph Filters are Stable to Scaling)

Given graph shift operators S and Ŝ = (1 + ε) S and an integral Lipschitz filter with constant C .

The operator norm difference between filters H(S) and H(Ŝ) is bounded as∥∥H(Ŝ)−H(S)
∥∥ ≤ C ε + O(ε2).

I Stability to scaling is possible. ⇒ But it requires a restriction to the use of integral Lipschitz filters.
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Proof Preliminaries

I The key arguments of the proof are in the GFT domain. We provide two preliminary spectral facts.

Fact 1:

If x̃ = VHx is the GFT of x we can write ⇒ x =
n∑

i=1

x̃ivi , where vi are the eigenvectors of S

Proof: Write x using the inverse GFT ⇒ x = Vx̃ =
[
v1, . . . , vn

]
×

 x̃1

...
x̃n

 = x̃1v1 + . . .+ x̃nvn
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Proof Preliminaries

I The key arguments of the proof are in the GFT domain. We provide two preliminary spectral facts.

Fact 2:

The frequency response derivative is h̃′(λ) =
∞∑
k=0

k hk λ
k−1 . Consequently λh̃′(λ) =

∞∑
k=0

k hk λ
k .

Proof: Frequency response is the series ⇒ h̃(λ) =
∞∑
k=0

hk λ
k . The summands’ derivatives are k hk λ

k−1.
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Proof Step 1: From Shift Perturbations to Filter Perturbations

Proof: Filter difference given by graph filter definition H(S) =
∞∑
k=0

hkSk . Further write Ŝ = (1 + ε) S

H(Ŝ)−H(S) =
∞∑
k=0

hk Ŝk −
∞∑
k=0

hkSk =
∞∑
k=0

hk
[ (

(1 + ε) S
)k − Ŝk

]

I Expand binomial
(

(1 + ε) S
)k

to first order only. Group all high order terms in matrix Ok(ε)

(
(1 + ε) S

)k
= (1 + kε) Sk + Ok(ε)

I Upon substitution the terms Sk cancel out ⇒ H(Ŝ)−H(S) =
∞∑
k=0

hkkεS
k + O(ε)

I The matrix O(ε) satisfies 0 < lim
ε→0

‖O(ε)‖
ε2

<∞ because filter is analytic. Term is of order O(ε2)
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Proof Step 2: Evaluating and Reducing the Operator Norm

I Have reduced the filter difference to ⇒ H(Ŝ)−H(S) =
∞∑
k=0

hkkεS
k + O(ε) = ∆(S) + O(ε)

I Where we have defined the filter variation ∆(S) = ε

∞∑
k=0

khkSk to simplify notation

I Triangle inequality ⇒ ‖H(Ŝ)−H(S)‖ ≤ ‖∆(S)‖ + O(ε) = ‖∆(S)‖ + O(ε2)

I Since ‖∆(S)‖ = max
‖x‖=1

‖∆(S)x‖ theorem follows if we prove ‖∆(S)x‖ ≤ Cε for all x with ‖x‖ = 1
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Proof Step 3: Shifting to the GFT Domain

I Product of filter variation with unit norm x. Write the iGFT of the input x =
n∑

i=1

x̃ivi (Svi = λivi )

∆(S) x = ε
∞∑
k=0

k hk Sk x = ε
∞∑
k=0

k hk Sk ×

[
n∑

i=1

x̃ivi

]
=

n∑
i=1

x̃i ε
∞∑
k=0

k hk Sk vi

I Since the vi are eigenvectors of S ⇒ Skvi = λk
i vi . With λi the associated eigenvalue

∆(S)x = ε
n∑

i=1

x̃i

∞∑
k=0

k hk Skvi = ε
n∑

i=1

x̃i

∞∑
k=0

k hk λ
k
i vi = ε

n∑
i=1

x̃i

∞∑
k=0

k hk λ
k
i vi = ε

n∑
i=1

x̃i

∞∑
k=0

k hk λ
k
i vi = ε

n∑
i=1

x̃i
(
λi h̃
′(λi )

)
vi

I The derivative of the filter’s response appears ⇒
∞∑
k=0

k hk λ
k
i = λi h̃

′(λi )
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Proof Step 4: Leveraging the Integral Lipschitz Condition

I End up with remarkably simple equation ⇒ ∆(S)x = ε

n∑
i=1

x̃i

∞∑
k=0

k hk λ
k
i vi = ε

n∑
i=1

x̃i
(
λi h̃
′(λi )

)
vi

I Which involves the quantity we bound with the integral Lipschitz condition ⇒
∣∣λi h̃

′(λi )
∣∣ ≤ C

I Compute energy. Use integral Lipschitz bound. Recall that signal has unit energy, ‖x‖2 = ‖x̃‖2 = 1

‖∆(S)x‖2 = ε2
n∑

i=1

x̃2
i

(
λi h̃
′(λi )

)2

≤ ε2
n∑

i=1

x̃2
i C

2 = (Cε)2

I Take square root �
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The Stability / Discriminability Non-Tradeoff

I Integral Lipschitz filters are necessary for stability to deformations of the supporting graph

I This is not an artifact of the analysis. The result is tight. The term
∞∑
k=0

k hk λ
k
i = λi h

′(λi ) appears.

λ

h̃(λ)
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The Stability / Discriminability Non-Tradeoff

I One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.

I Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

I It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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Stability of Graph Neural Networks to Scaling

I Scaling of shift operators is a perturbation form that illustrates proof techniques and insights

I We show that Graph Neural Networks are stable with respect to scaling

33



Normalizations

I To avoid appearance of meaningless constants we normalize the filters and the nonlinearity.

I At each layer of the GNN, the filters have unit operator norm ⇒
∥∥H`(S)

∥∥ = 1

⇒ Easy to achieve with scaling ⇒ Equivalent to max
λ

h̃`(λ) = 1

I The nonlinearity σ is Lipschitz and normalized so that ⇒
∥∥σ(x2)− σ(x1)

∥∥ ≤ ∥∥ x2 − x1

∥∥
⇒ Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value

I Joining both assumptions ⇒ If input energy is ‖x‖ ≤ 1, all layer outputs have energy ‖x`‖ ≤ 1
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Stability of GNNs to Scaling

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators S and Ŝ = (1 + ε) S and a GNN operator Φ(·; S,H) with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with

constant C . The nonlinearity σ is normalized Lipschitz. Then

∥∥Φ(·; S,H)− Φ(·; Ŝ,H)
∥∥ ≤ C L ε + O(ε2).

I GNNs inherit the stability of graph filters. It’s the same bound. Propagated through L layers
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Proof Step 1: Eliminating the Pointwise Nonlinearity

Proof: The theorem is true because the nonlinearity is pointwise. It is unaware of the graph.

I Formally ⇒ Let x` be the Layer ` output of GNN Φ(x; S,H)

⇒ Let x̂` be the Layer ` output of GNN Φ(x̂; Ŝ,H)

I Layer ` is a perceptron with filter H` ⇒
∥∥ x` − x̂`

∥∥ =

∥∥∥∥σ[H`(S)x`−1

]
− σ

[
H`(Ŝ)x̂`−1

] ∥∥∥∥
I Nonlinearity is normalized Lipschitz ⇒

∥∥ x` − x̂`
∥∥ ≤ ∥∥∥H`(S)x`−1 −H`(Ŝ)x̂`−1

∥∥∥
I This is the critical step of the proof. The rest of the proof is just algebra.
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Proof Step 2: Implementing Norm Manipulations

I In last bound, add and subtract H`(Ŝ)x`−1. Triangle inequality. Submultiplicative property of norms∥∥∥ x` − x̂`
∥∥∥ ≤ ∥∥∥H`(S)x`−1 − H`(Ŝ)x̂`−1 + H`(Ŝ)x`−1 − H`(Ŝ)x`−1

∥∥∥
≤
∥∥∥H`(S)−H`(Ŝ)

∥∥∥× ∥∥∥ x`−1

∥∥∥+
∥∥∥H`(Ŝ)

∥∥∥× ∥∥∥ x`−1 − x̂`−1

∥∥∥
I Since filters are normalized ⇒ Filter norm

∥∥H`(Ŝ)
∥∥= 1. Signal norm ⇒

∥∥ x`−1

∥∥≤ 1

I The theorem on stability of filters to scaling holds ⇒
∥∥H`(S)−H`(Ŝ)

∥∥ ≤ εC + O(ε2)

I Put all bounds together ⇒
∥∥ x` − x̂`

∥∥ ≤ εC × 1 + 1 ×
∥∥ x`−1 − x̂`−1

∥∥ + O(ε2)

I Apply recursively from Layer L back to Layer 1. The L factor appears �
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The Stability / Discriminability Tradeoff of GNNs

I GNNs have the same stability properties of graph filters. They need integral Lipschitz filters.

I Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

I It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I GNNs have the same stability properties of graph filters. They need integral Lipschitz filters.

I On the flip side, integral Lipschitz filter can be very sharp at low frequencies

I We can be very discriminative at low frequencies. And at the same very stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies

I Where they can be discriminated sharply with a stable filter at the next layer

I Thus, they can be stable and discriminative. Something that linear graph filters can’t be

λ

h̃(λ)
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Additive Perturbations of Graph Filters

I We define additive perturbations of the graph support

1



A Graph Filter can be Perturbed in Three Ways but Only One is Interesting

I Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S) x =
K−1∑
k=0

hkSkx

I Perturbations of the input ⇒ The filter is linear in x. Scale error by filter’s norm.

I Perturbations of the coefficients ⇒ Filter is linear in hk . Plus, hk is a design parameter.

I Perturbations of the shift operator S ⇒ It is not easy (nonlinear). And it is necessary.

⇒ The graph is estimated (recommendation systems). The graph changes (distributed systems)

⇒ Quasi-symmetries in graphs that are quasi-invariant to permutations
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Perturbations of Graph Filters

I Apply the same filter h to the same signal x on different graphs shift operators S and Ŝ

H(S) x =
K−1∑
k=0

hkSkx H(Ŝ) x =
K−1∑
k=0

hk Ŝkx

I Filter H(S) x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

I Filter H(Ŝ) x̂ ⇒ Same Coefficients hk . Same Input signal x. Instantiated on perturbed shift Ŝ

I We investigated scalings Ŝ = (1 + ε)S are an example. But we are after more generic models.

3



Additive Perturbation

I Additive perturbation model ⇒ Ŝ = S + E .

I Error matrix E = Ŝ− S exists for any pair S, Ŝ. ⇒ It’s norm ‖E‖ quantifies their difference

I A flaw ⇒ Graphs S and Ŝ = PTSP are the same (relabeling). Yet we may not have ‖E‖ = 0.

I We know better ⇒ Operator distances modulo permutation
∥∥ Ŝ− S

∥∥
P = min

P

∥∥ ŜPT − PTS
∥∥
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Additive Perturbation Modulo Permutation

I We need a concrete handle on the error matrix. Start from set of symmetric error matrices

E(S, Ŝ) =
{

Ẽ : PT Ŝ P = S + Ẽ , P ∈ P
}

I For each permutation P ∈ P we have a different error matrix Ẽ = PT ŜP− S in the set E(S, Ŝ)

I Error matrix modulo permutation is the one with smallest norm ⇒ E = argmin
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Rewrite the distance modulo permutation as ⇒ d(S, Ŝ) = ‖E‖ = min
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Error norm ‖E‖ = d(S, Ŝ) measures how far S and Ŝ are from being permutations of each other
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Eigenvector Misalignement Constant

I Consider eigenvector decompositions of the shift S = VΛVH and the error E = UMUH

I Define the eigenvector misalignment between the shift operator S and the error matrix E as

δ =
(∥∥U− V

∥∥+ 1
)2
− 1

I Since U and V are unitary matrices ‖U‖ = ‖V‖ = 1 ⇒ δ ≤ 8 = [(2 + 1)2 − 1]

⇒ The eigenvector misalignment δ is never large. It can be small. Depending on the error model.
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Stability of Lipschitz Filters to Additive Perturbations

I We show that Lipschitz filters are stable to additive perturbations of the graph support.

7



Lipschitz Filters are Stable to Additive Perturbations

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) Shift operators S and Ŝ are related by PT ŜP = S + E with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The filter h is Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).
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Parse the Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I If shifts S and Ŝ are ε-close the filters H(S) and H(Ŝ) are ε-close. Modulo permutation

I Proportional to the Lipschitz constant of the filter’s frequency response. Not integral Lipschitz

I Proportional to (1 + δ
√
n). Not great for large graphs. Unless misalignement decreases with n.

I Growth with n is at most (1 + 8
√
n) ≥ (1 + δ

√
n). Because δ ≤ 8. Not that bad
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Stability is Stronger than Continuity

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Filter perturbations are first order Lipschitz continuous with respect to the perturbation’s size ε

⇒ With Lipschitz constant ⇒ C
(

1 + δ
√
n
)

I Stronger than plain continuity. Which would say “output changes are small if input changes are”
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Universality of the Stability Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound is universal for all graphs with a given number of nodes n. Bound depends on:

⇒ A property of the filter’s frequency response. The filter’s Lipschitz constant C

⇒ And properties of the perturbation E. The eigenvector misalignement δ and the norm ‖E‖ = ε

I There is no constant in the bound that depends on the graph shift operator S. Save for n.
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The Filter’s Lipschitz Constant is a Controllable Design Parameter

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I The filter’s Lipschitz constant C is a parameter that we can affect with judicious filter choice

I Discriminability / stability tradeoff. Larger C improves discriminability at the cost of stability
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The Eigenvector Misalignment is an Uncontrollable Property of the Perturbation

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

⇒ Not very relevant in studying stability / discriminability tradeoffs of different filters.

I Meaningless asymptotically on n. Don’t know much about perturbations in the limit of large n
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Lipschitz Filters are Good News

I Stability to additive perturbations requires Lipschitz filters. Not integral Lipschitz as with scalings

I Genuine stability / discriminability tradeoff ⇒ Larger C tradeoffs stability for discriminability

I We can always discriminate, regardless of frequency, if we tolerate enough discriminability.

λ

h̃(λ)
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Relative Perturbations of Graph Filters

I Proved enticing stability properties with respect to additive perturbations. Alas, not meaningful

I We switch focus to relative perturbations. Which tie perturbations to the graph structure
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Limitations of Additive Perturbations

I Additive perturbations are not meaningful

PT ŜP = S + E

I With w � 1�W .

⇒ Is this perturbation small or large?

I Edges with small weights w can change a lot

because other edges have large weights W
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Relative Perturbations are Meaningful

I Relative perturbations are more meaningful

PT ŜP = S + E = S + εIS

I With w � 1�W and ε� 1

⇒ Is this perturbation small or large?

I It’s small. Edges with small weights change

little. Edges with large weights change more
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Relative Perturbations Modulo Permutations

I Relative perturbation model ⇒ Ŝ = S + ES + SE. We must account for permutations (relabeling)

I Set of relative error matrices modulo permutation. Matrices Ẽ are symmetric, Ẽ = ẼT

E(S, Ŝ) =
{

Ẽ : PT ŜP = S + ẼS + SẼ , P ∈ P
}

I Relative error matrix modulo permutation is the one with smallest norm ⇒ E = argmin
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Define relative distance modulo permutation as ⇒ d(S, Ŝ) = ‖E‖ = min
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Norm ‖E‖ = d(S, Ŝ) is a relative measure of how far Ŝ is from being a permutation of S
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Relative Perturbations are Tied to the Local Structure of the Graph

I Relative perturbations tie changes in the edge weights to the local structure of the graph

I Compare edge weights in the given matrix S and the permuted version of the perturbations Ŝ

(
PT ŜP

)
ij

= S ij +
(

ES
)
ij

+
(

SE
)
ij

= S ij +
∑
k∈n(j)

EikSkj +
∑
k∈n(i)

SikEkj

I Edge changes are proportional to the degree of the incident nodes. Scaled by entries of error matrix

I Parts of the graph with weaker connectivity see smaller changes than parts with stronger links

I In generic additive perturbations weights can change the same regardless of local connectivity
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Stability of Integral Lipschitz Filters to Relative Perturbations

I We show that integral Lipschitz filters are stable to relative perturbations of the graph support.
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Integral Lipschitz Filters are Stable to Relative Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) S and Ŝ are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) Error matrix has norm ‖E‖ = ε and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).
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Of Relative and Additive Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Save for the 2 factor, it is the same bound we have for the case of additive perturbations.

I The difference is in hypotheses (H1) and (H3). Hypothesis (H2) does not change

(H1) The perturbation is relative. ⇒ PT ŜP = S + ES + SE. Not additive.

(H3) The filter is integral Lipschitz with constant C . Not regular Lipschitz.
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Parse the bound

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I If S and Ŝ are ε-close in relative terms, the filters H(S) and H(Ŝ) are ε-close. Modulo permutation

I Proportional to the integral Lipschitz constant of the filter’s frequency response.

I Proportional to (1 + δ
√
n). Not great for large graphs. Unless the misalignment decreases with n.
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Stability is Stronger than Continuity

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Filter perturbations are first order Lipschitz continuous with respect to the perturbation’s size ε

⇒ With Lipschitz constant ⇒ 2C
(

1 + δ
√
n
)

I Stronger than plain continuity. Which would say “output changes are small if input changes are”

I Input perturbation measure is relative ⇒ Norm ‖E‖ = ε in mulitplicative perturbation ES + SE
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Universality of the Stability Bound

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound is universal for all graphs with a given number of nodes n. Bound depends on:

⇒ A property of the filter’s frequency response. The filter’s integral Lipschitz constant C

⇒ And properties of the perturbation E. The eigenvector misalignement δ and the norm ‖E‖ = ε

I There is no constant in the bound that depends on the graph shift operator S. Save for n.
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The Eigenvector Misalignment is an Uncontrollable Property of the Perturbation

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

I Meaningless asymptotically on n. Growth is not terrible. It is at most 1 + 8
√
n
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Filter’s are Required to be Integral Lipschitz

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound depends on integral Lipschitz constant C . Very different from Lipschitz constant

I Can decrease C to increase stability. But effect on Discriminability depends on the frequency.

⇒ Discriminative at low frequencies regardless of C

⇒ Non-discriminative at high frequencies regardless of C
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Integral Lipschitz Filters are Not Good News

I Stability to relative perturbations requires integral Lipschitz filters. As in the case of dilations

I No stability vs discriminability tradeoff ⇒ Stability and discriminability are incompatible

I No discriminability for large λ. Regardless of how much instability we tolerate by increasing C .

λ

h̃(λ)
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Stability Properties of Graph Neural Networks

I The stability properties we studied for graph filters are inherited by GNNs
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Integral Lipschitz Filters are Stable to Dilations

I We proved that integral Lipschitz filters are stable to dilations of the shift operator

Theorem (Integral Lipschitz Graph Filters are Stable to Scaling)

Given graph shift operators S and Ŝ = (1 + ε) S and an integral Lipschitz filter with constant C .

The operator norm difference between filters H(S) and H(Ŝ) is bounded as

∥∥H(Ŝ)−H(S)
∥∥ ≤ C ε + O(ε2).
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GNNs with Integral Lipschitz Layers are Stable to Dilations

I And that GNNs with integral Lipschitz layers inherit the stability of the filters to these dilations

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators S and Ŝ = (1 + ε) S and a GNN operator Φ(·; S,H) with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with constant

C . The nonlinearity σ is normalized Lipschitz. Then

∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥ ≤ C L ε + O(ε2).
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GNNs Inherit Any Stability Properties that Filters May Have

I The proof has nothing that is specific to dilations

⇒ Any stability property that a class of graph filters has is inherited to a respective GNN

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators S and Ŝ = (1 + ε) S and a GNN operator Φ(·; S,H) with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with constant

C . The nonlinearity σ is normalized Lipschitz. Then

∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥ ≤ C L ε + O(ε2).
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GNNs Inherit Any Stability Properties that Filters May Have

I Lipschitz filters are stable to additive deformations of the shift operator

⇒ GNNs with Lipschitz layers are stable to additive deformations of the shift operator

I Integral Lipschitz filters are stable to relative deformations of the shift operator

⇒ GNNs with integral Lipschitz layers are stable to relative deformations of the shift operator
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Normalizations

I Reminders and precision are redundant but not unnecessary. Normalize filters and nonlinearities.

I At each layer of the GNN, the filters have unit operator norm ⇒
∥∥H`(S)

∥∥ = 1

⇒ Easy to achieve with scaling ⇒ Equivalent to max
λ

h̃`(λ) = 1

I The nonlinearity σ is Lipschitz and normalized so that ⇒
∥∥σ(x2)− σ(x1)

∥∥ ≤ ∥∥ x2 − x1

∥∥
⇒ Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value

I Joining both assumptions ⇒ If input energy is ‖x‖ ≤ 1, all layer outputs have energy ‖x`‖ ≤ 1
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Stability of GNNs to Additive Perturbations

Theorem (GNN Stability to Additive Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + E. With P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ C

(
1 + δ

√
n
)
Lε + O(ε2).
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The GNN Inherits the Stability of Lipschitz Filters

Theorem (GNN Stability to Additive Perturbations)

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·; S, h)
∥∥
P ≤ C

(
1 + δ

√
n
)
L ε + O(ε2).

I It is essentially the same bound we have for the case of Lipschitz filters. Propagated over L layers

I A GNN in which layers are made up of Lipschitz inherits the stability of the Lipschitz filter class

I The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).
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The GNN Inherits the Stability of Integral Lipschitz Filters

Theorem (Single Feature GNN Stability to Relative Perturbations)

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·; S, h)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
L ε + O(ε2).

I It is essentially the same bound we have for integral Lipschitz filters. Propagated over L layers

I A GNN in which layers are integral Lipschitz inherits the stability of integral Lipschitz filters

I The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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GNNs Inherit the Stability Properties of Graph Filters

I Let’s do the proof for relative perturbations and integral Lipschitz filters.

I But this time we pay attention to the fact that steps apply to any stability claim on any filter class.

I And take the chance to discuss how GNNs inherit their stability properties from graph filters
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).
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Relative Perturbations Proof, Step 1: Eliminating the Pointwise Nonlinearity

Proof: Let x` be the Layer ` output of GNN Φ(x; S,H). Input signal x with ‖x‖ = 1

Let x̂` be the Layer ` output of GNN Φ(x; Ŝ,H). Input signal x with ‖x‖ = 1

I Layer ` is a perceptron with filter H` ⇒
∥∥ x̂` − x`

∥∥ =

∥∥∥∥σ[H`(Ŝ)x̂`−1

]
− σ

[
H`(S)x`−1

] ∥∥∥∥
I Nonlinearity is normalized Lipschitz ⇒

∥∥ x̂` − x`
∥∥ ≤ ∥∥∥H`(Ŝ)x̂`−1 −H`(S)x`−1

∥∥∥
I This is the critical step of the proof. The rest of the proof is just algebra.
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Relative Perturbations Proof, Step 2: Implementing Norm Manipulations

I In last bound, add and subtract H`(Ŝ)x`−1. Triangle inequality. Submultiplicative property of norms∥∥∥ x̂` − x`
∥∥∥ ≤ ∥∥∥H`(Ŝ)x̂`−1 − H`(S)x`−1 + H`(Ŝ)x`−1 − H`(Ŝ)x`−1

∥∥∥
≤
∥∥∥H`(Ŝ)−H`(S)

∥∥∥× ∥∥∥ x`−1

∥∥∥+
∥∥∥H`(Ŝ)

∥∥∥× ∥∥∥ x̂`−1 − x`−1

∥∥∥
I Since filters are normalized ⇒ Filter norm

∥∥H`(Ŝ)
∥∥= 1. Signal norm ⇒

∥∥ x`−1

∥∥≤ 1

I Relative perturbations and integral Lipschitz ⇒
∥∥H`(Ŝ)−H`(S)

∥∥ ≤ 2C
(
1 + δ

√
n
)
ε + O(ε2)

I Put all bounds together ⇒
∥∥ x̂` − x`

∥∥ ≤ 2C
(
1 + δ

√
n
)
ε × 1 + 1 ×

∥∥ x̂`−1 − x`−1

∥∥ + O(ε2)

I Apply recursively from Layer L back to Layer 1. The L factor appears �
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GNNs Inherit the Stability of Graph Filters

GNNs Inherit the Stability of Graph Filters

Since Stability is inherited from graph filters, mutatis mutandis, the same observations hold here.

I We claim stability. Which is stronger than continuity.

I The stability bounds are universal for all graphs with a given number of nodes

I Bounds depend on filter’s Lipschitz constant C and the number of layers L. Which we control.

I And the eigenvector misalignment constant. Which we don’t control. Depends on the perturbation.
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GNNs and Additive Perturbations

I GNNs whose layers are made up of Lipschitz graph filters are stable to additive deformations

I This is good news ⇒ We have a genuine stability vs discriminability tradeoff

I Alas, a bit of a mirage ⇒ Graph perturbations are more naturally measured in relative tems

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

I Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

I It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

I On the flip side, integral Lipschitz filter can be very sharp at low frequencies

I We can be very discriminative at low frequencies. And at the same very stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies

I Where they can be discriminated sharply with a stable filter at the next layer

I Thus, they can be stable and discriminative. Something that linear graph filters can’t be

λ

h̃(λ)
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