

Nodes, Edges and Weights

> A graph is a triplet G = (V, £,V), which includes vertices V), edges &, and weights W
= Vertices or nodes are a set of n labels. Typical labels are V = {1, ..., n}
= Edges are ordered pairs of labels (/,). We interpret (i,j) € £ as “/ can be influenced by j."

= Weights w;; € R are numbers associated to edges (i,j). “Strength of the influence of j on /.”

W42 W46

e

9\/0\/

Directed Graphs

> Edge (i,j) is represented by an arrow pointing from j into /. Influence of node j on node i
= This is the opposite of the standard notation used in graph theory
» Edge (i,)) is different from edge (j,i) = It is possible to have (i,j) € .€ and (j,i) ¢ £
> If both edges are in the edge set, the weights can be different = It is possible to have w; # w;;

W42 W46

OAOAO

Symmetric Graphs

» A graph is symmetric or undirected if both, the edge set and the weight are symmetric
= Edges come in pairs = We have (i,j) € £ if and only if (j,/) € £

= Weights are symmetric = We must have wj; = wj; for all (i,j) € £

W24 Wa6
VY L =
f/’ 6 <8
w34 Wos Wse Wa7
wo3 We7

Unweighted Graphs

» A graph is unweighted if it doesn’t have weights
= Equivalently, we can say that all weights are units = w; =1 for all (i,j) € £

» Unweighted graphs could be directed or symmetric

OAO/\O

Unweighted Graphs

» A graph is unweighted if it doesn’t have weights
= Equivalently, we can say that all weights are units = w; =1 for all (i,j) € £

» Unweighted graphs could be directed or symmetric

s,

Ovﬂvﬁ

Weighted Symmetric Graphs

» Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.

» Most of the graphs we encounter in practical situations are symmetric and weighted

W24 W46

e

9\/0\/0

Graph Shift Operators

» Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)

Adjacency Matrices

» The adjacency matrix of graph G = (V, £, W) is the sparse matrix A with nonzero entries
Aij = wy, forall (i,j) €&

> If the graph is symmetric, the adjacency matrix is symmetric = A = A" . As in the example

W = Wap
VS
wip = wy 0 wip wiz 0O 0
wpp O woz wag O
A= w3 ws O 0 wss
0 W32 = w23 Wi = Wss 0 way 0 0 Was

0 0 wsz wsgq O
w31 = wi
7

W53 = W35

Adjacency Matrices for Unweighted Graphs

» For the particular case in which the graph is unweighted. Weights interpreted as units

Aj =1, forall (i,j)eé&

® 1
0. 0

OO RREO
O R R OR
= OO R
O ORO
OREROO

Neighborhoods and Degrees

» The neighborhood of node i is the set of nodes that influence i = n(i):={j: (i,j) € £}

» Degree d; of node i is the sum of the weights of its incident edges = d; = Z wij = Z wij
Jj€n(i) J:(i)eEY

W24 = Wa2

f/ u > Node 1 neighborhood = n(1) = {2,3}
<W32 = w23 > W5 = Wsg

> Node 1 degree = n(1) = wiz + wis

10

Degree Matrix

» The degree matrix is a diagonal matrix D with degrees as diagonal entries = D; = d;
> Write in terms of adjacency matrix as D = diag(Al). Because (Al); = > wy = d;
1
Ve
070
o - 1
~-Q._0
~__ 7
1

[=NeNeNoN b
OO o wWwo
OO wWwo o
ON O OO
NO O OO

11

Laplacian Matrix

» The Laplacian matrix of a graph with adjacency matrix Ais = L =D — A = diag(Al) — A
» Can also be written explicitly in terms of graph weights Aj = w;
= Off diagonal entries = L; = —A; = —wj

= Diagonal entries = L; =d; = Z Wij
jen(i)

O O
1
1 -1 0o o0 /

2
-1 3 -1 -1 0
L=| -1 -1 3 0o -1 0 1 1
0 -1 0 2 -1
0

12

Normalized Matrix Representations: Adjacencies

» Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

1/2 A Wij

> Normalized adjacency matrix = A := D ?AD "/? = Results in entries (A); = —
idj

» The normalized adjacency is symmetric if the graph is symmetric = A7 = A.

Normalized Matrix Representations: Laplacians

» Normalized Laplacian matrix = L := D Y2LDY/2. Same normalization of adjacency matrix

» Given definitions normalized representations = L = D /2 (D — A)D_l/2 =1-A

= The normalized Laplacian and adjacency are essentially the same linear transformation.

» Normalized operators are more homogeneous. The entries in the vector Al tend to be similar.

Graph Shift Operator

» The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix Laplacian Matrix Normalized Adjacency Normalized Laplacian

S=A s=L s=A s=L

» If the graph is symmetric, the shift operator S is symmetric = S =57

» The specific choice matters in practice but most of results and analysis hold for any choice of S

Graph Signals

» Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing

Graph Signal

» Consider a given graph G with n nodes and shift operator S
> A graph signal is a vector x € R” in which component x; is associated with node i

» To emphasize that the graph is intrinsic to the signal we may write the signal as a pair = (S,x)

X2 X4 X6

N aX8

X3 X7
X5

» The graph is an expectation of proximity or similarity between components of the signal x

17

Graph Signal Diffusion

» Multiplication by the graph shift operator implements diffusion of the signal over the graph

» Define diffused signal y = Sx = Components are y; = Z Wij Xj = Z Wij Xj
jen(i) J

= Stronger weights contribute more to the diffusion output

= Codifies a local operation where components are mixed with components of neighboring nodes.

w,

Y2 o4 X4 o wag X6
VR P
‘}V) (%‘
X1 w34 Wos Wse wy7 Xg
=
~__ 7 -~ 7
X3 w3s w57 X7

X5

18

The Diffusion Sequence

» Compose the diffusion operator to produce diffusion sequence =- defined recursively as
xUD — Sx(k)7 with x©@ =x

» Can unroll the recursion and write the diffusion sequence as the power sequence =- x) = skx

Some Observations about the Diffusion Sequence

> The kth element of the diffusion sequence x*) diffuses information to k-hop neighborhoods

= One reason why we use the diffusion sequence to define graph convolutions

» We have two definitions. One recursive. The other one using powers of S

= Always implement the recursive version. The power version is good for analysis

x(0) = x = S0x x(1) = §x(0) = g1y x(2) = sx(1) = §24 x(3) = sx(2) = §3x

Graph Convolutional Filters

» Graph convolutional filters are the tool of choice for the linear processing of graph signals

Graph Filters

> Given graph shift operator S and coefficients hy, a graph filter is a polynomial (series) on S
H(S) =) hs"
k=0
» The result of applying the filter H(S) to the signal x is the signal

y = HS)x = > S
k=0

» We say that y = h %s x is the graph convolution of the filter h = {h¢}?2, with the signal x

From Local to Global Information

» Graph convolutions aggregate information growing from local to global neighborhoods

> Consider a signal x supported on a graph with shift operator S. Along with filter h = {hy 2(:—01

x3

Xa /

X5

K—1
» Graph convolution output = y = h*sx = hoS°x +mS'x +hS*x +hS x +...= Z heS* x
k=0

Transferability of Filters Across Different Graphs

» The same filter h = {hi}72, can be executed in multiple graphs = We can transfer the filter

Graph Filter on a Graph Same Graph Filter on Another Graph
Xp Wo4 X4 W46 X6
X3 & T
— wip (\
X4 / X /(w3y W5 Wi w47 > Xg
\ \ /
— w13 V78
X5 x5 Y P Y e
o0
. _ _ 0 1 2 3 _ k
» Graph convolution output = y=hxsx= hS"x +mS x +mS x +h3S x +...= Z heS™ x
k=0

» Output depends on the filter coefficients h, the graph shift operator S and the signal x

Graph Convolutional Filters as Diffusion Operators

» A graph convolution is a weighted linear combination of the elements of the diffusion sequence

» Can represent graph convolutions with a shift register = Convolution = Shift. Scale. Sum

hoSOX

Time Convolutions as a Particular Case of Graph Convolutions

Convolutions in Time

» Convolutional filters process signals in time by leveraging the time shift operator

x_1 0
X

X(X(
x_p 0 X x_p 0
1 ° X_p X1 =3 x_,

Xp—1 = shift(x,) Xp—2 = shift2(x,,) Xp—3 = shift3(xn)

il Sl

N N

hoxp hixp—1 haxp—2 h3xp—3

Yn

» The time convolution is a linear combination of time shifted inputs = y, = Z R Xn—k

27

Time Signals Represented as Graph Signals

» Time signals are representable as graph signals supported on a line graph S = The pair (S, x)

X0 X0 X0 0
Y x_1 X x—1 x_1
a8 0 o, x_o o x1 =3 x_, o
[[] ° [} L4 .
- »6»&»&» »&» »é»&» »é» > »é» »6»&’» >0
X Sx S2x S°x

» Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

o 0 o0 x_3
$'x = s[s°x] = s[s(sx)] = é 2 81’ 2=

» Components of the shift sequence are powers of the adjacency matrix applied to the original signal

= We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph

The Convolution as a Polynomial on the Line Adjacency

» The convolution operation is a linear combination of shifted versions of the input signal

0 L0 L0 o, 0
a2 . P . x1 x_3 Y
° . ° X_2 @ xX_o ®
shift(x shift?(x shift®(x
X
ho h hy hs
/D) y=hxx
+ + + +

hoxn hixp—1 hoxn—2 h3xp—3

2

9

The Convolution as a Polynomial on the Line Adjacency

» The convolution operation is a linear combination of shifted versions of the input signal

» But we now know that time shifts are multiplications with the adjacency matrix S of line graph

X0 X(X1 x0 x1)

X1 0 X
[X1 ° X_2 ® X1 X3 X_2 ®
° ? . . ° .
S%x S'x

ho hy ho hs
y = h xg x
u u N

&/ N

hoSOX hlslx hzszx h353X

K—1
» Time convolution is a polynomial on adjacency matrix of line graph =y =h*x = Z h S x
k=0

The Time Convolution Generalized to Arbitrary Graphs

» If we let S be the shift operator of an arbitrary graph we recover the graph convolution

Graph Fourier Transform

» The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems

Eigenvectors and Eigenvalues of Shift Operator

» We work with symmetric graph shift operators = S = S"/

» Introduce eigenvectors v; and eigenvalues \; of graph shift operator S = Sv; = \jv;

= For symmetric S eigenvalues are real. We have ordered them = X < A1 < ... <\,

» Define eigenvector matrix V = [v1,...,v,] and eigenvalue matrix A = diag([A1;...; As])

= Eigenvector decomposition of Graph Shift Operator = S = VAV With v/'v = |

The Graph Fourier Transform

Graph Fourier Transform

Given a graph shift operator S = VAV, the graph Fourier transform (GFT) of graph signal x is

% = V'x

» The GFT is a projection on the eigenspace of the graph shift operator.

> We say X is a graph frequency representation of x. A representation in the graph frequency domain

The Inverse Graph Fourier Transform

Inverse Graph Fourier Transform

Given a graph shift operator S = VAV, the inverse graph Fourier transform (iGFT) of GFT % is

X = V&

» Given that V'V =1, the iGFT of the GFT of signal x recovers the signal x

i:vx:v(v”x)=|x=x

Graph Frequency Response of Graph Filters

» Graph filters admit a pointwise representation when projected into the shift operator’s eigenspace

Graph Fiters in the Graph Frequency Domain

Theorem (Graph frequency representation of graph filters)

Consider graph filter h with coefficients hx, graph signal x and the filtered signal y = Z heS*x.
k=0

The GFTs % = V"x and § = V'y are related by

§= i hN*%
k=0

» The same polynomial but on different variables. One on S. The other on eigenvalue matrix A

Proof of Theorem

Proof: Since S = VAV", can write shift operator powers as S* = VAV Therefore filter output is

y = hS x = " VAV x
k=0 k=0

> Multiply both sides by V¥ on the left = V'y = V"> " hVA“V"x
k=0

» Copy and identify terms. Output GFT V"y = §. Input GFT V/x = %. Cancel out V'V

vy = V"> R VAV x =
k=0

<2

= i heN*s]
k=0

Graph Frequency Response

» In the graph frequency domain graph filters are a diagonal matrices = § = Z hN*%
k=0

» Thus, graph convolutions are pointwise in the GFT domain = y; = Z R = le()\,-)fq
k=0

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hx}72;, the graph frequency response is the polynomial

LOED NP
k=0

Observations on the Graph Frequency Response

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hy}72;, the graph frequency response is the polynomial

h(A) = hiA"
k=0

» Frequency response is the same polynomial that defines the graph filter =- but on scalar variable A
» Frequency response is independent of the graph =- Depends only on filter coefficients

» The role of the graph is to determine the eigenvalues on which the response is instantiated

Graph Frequency Response is Independent of the Graph

» Graph filter frequency response is a polynomial on a scalar variable A =- h) = Z A A*

» Completely determined by the filter coefficients h = {hi}72; . The Graph has nothing to do with it

The Graph Instantiates Specific Eigenvalues

> A given (another) graph instantiates the response on its given (different) specific eigenvalues \;

» Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

AL\ A Xi An A, A

Learning with Graph Signals

» Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals

Empirical Risk Minimization

» In this course, machine learning (ML) on graphs = empirical risk minimization (ERM) on graphs.
» In ERM we are given:

= A training set 7 containing observation pairs (x,y) € 7. Assume equal length x.y, ¢ R".
= A loss function £(y, §) to evaluate the similarity between y and an estimate §

= A function class C

» Learning means finding function ®* € C that minimizes loss E(y, <1>(x)) averaged over training set

®" = argmin Z E(y, ,)

deC (xy)ET

» We use ®*(x) to estimate outputs § = ®*(x) when inputs x are observed but outputs y are unknown

Empirical Risk Minimization with Graph Signals

» In ERM, the function class C is the degree of freedom available to the system’s designer

®* = argmin Ly, d(x)
gmin 3 ((y0)

» Designing a Machine Learning = finding the right function class C

» Since we are interested in graph signals, graph convolutional filters are a good starting point

Learning with a Graph Convolutional Filter

» Input / output signals x / y are graph signals supported on a common graph with shift operator S

K—1
» Function class = graph filters of order K supported on S = ®(x) = Z hS*x = d(x;S,h)
k=0

w4 z=®(x;S,h)
x z= Z hy Sk x —
k=0

» Learn ERM solution restricted to graph filter class = h™ = argmin Z Z(y, d(x; S, h))
(x,y)eT

= Optimization is over filter coefficients h with the graph shift operator S given

When the Output is Not a Graph Signal: Readout

» QOutputs y € R” are not graph signals = Add readout layer at filter's output to match dimensions
P y grapn sig

K—1
» Readout matrix A € R™*" yields parametrization = A x ®(x;S,h) = A x heS*x
y
k=0

K=t z=®(x;S,h A x ®(x; S,h)
— z= Z By S* x () A >
k=0

» Making A trainable is inadvisable. Learn filter only. = h™ = argmin Z E(y, A X O(x; S,h))
(x,y)eT

» Readouts are simple. Read out node i = A = e/. Read out signal average = A =17,

Graph Neural Networks (GNNs)

Pointwise Nonlinearities

» A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries
x1 o(x1)
. o . X2 a(x2)
» The result of applying pointwise o to a vector x is = (r[x] =0 | . = .
Xn o(xn)
» A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector
> ReLU: o(x)=max(0, x). Hyperbolic tangent: o(x)=(e* —1)/(e* +1). Absolute value: o(x)=|x|.
» Pointwise nonlinearities decrease variability. = They function as demodulators.

Learning with a Graph Perceptron

» Graph filters have limited expressive power because they can only learn linear maps

K—1
> A first approach to nonlinear maps is the graph perceptron = ®(x) = a[Z hkSkx] = ®(x; S,h)
k=0

X1 o(x1)
K—1 ®(x;S, h X o(x2)
x;) z:thSkx z o’[z] —(>) U[X]:U . =
k=0 :
Perceptron Xn J(X")

» Optimal regressor restricted to perceptron class = h™ = argmin Z E(y, d(x; S, h))
(xy)ET

= Perceptron allows learning of nonlinear maps = More expressive. Larger Representable Class

Graph Neural Networks (GNNs)

» To define a GNN we compose several graph perceptrons = We layer graph perceptrons
» Layer 1 processes input signal x with the perceptron hy = [hio, ..., hi k—_1] to produce output x;
K-1
X1 :O'|:21:| = O'|:Z hlkSkx]
k=0

» The Output of Layer 1 x; becomes an input to Layer 2. Still x; but with different interpretation

> Repeat analogous operations for L times (the GNNs depth) =- Yields the GNN predicted output x;

Graph Neural Networks (GNNs)

» To define a GNN we compose several graph perceptrons = We layer graph perceptrons

» Layer 2 processes its input signal x; with the perceptron hy = [hoo, ..., ho k1] to produce output x»

K-1
X2 :a[zz] —0|:Z thSkxl]

k=0
» The Output of Layer 2 x, becomes an input to Layer 3. Still x, but with different interpretation

> Repeat analogous operations for L times (the GNNs depth) =- Yields the GNN predicted output x;

The GNN Layer Recursion

» A generic layer of the GNN, Layer ¢, takes as input the output x,_1 of the previous layer (£ — 1)

> Layer ¢ processes its input signal x,—1 with perceptron hy = [ho, ..., he,k—1] to produce output x,

K—1
Xp = U[Zz} = 0'|:Z hzkskle]

k=0
» With the convention that the Layer 1 input is xg = X, this provides a recursive definition of a GNN
» If it has L layers, the GNN output = x; = d>(x; S, hl,...,hL) = ¢(X; S, H)
» The filter tensor H = [h1,..., h.] is the trainable parameter. The graph shift is prior information

GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= hy sk x Al g = U[Zl}
k=0
Layer 1
x1
» Feed input signal x = xp into Layer 1 X1
K—1
K-1 k 2
2 = hyy S” x1 X3 =02
xla[zl]a[z hlkst0:| kz:o [}
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x;S, H)
K—1
23
] 13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)

GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= 3 hyShx z g = U[Zl}
k=0
Layer 1
X1
» Feed Layer 1 output as an input to Layer 2 X1
K—1
K—1 k 2
7 = hoy S” x1 X2 = 0|22
X2U[Z2]U|:Z thSkX1:| kz:o [}
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x; S, H)
K—1 -
13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)

GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= hy sk x Al g = U[Zl}
k=0
Layer 1
x1
» Feed Layer 2 output as an input to Layer 3 X1
K—1
K—1 2
o] o[] Ene [et
3k 2 k=0
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x;S, H)
K—1 o
13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)

Some Observations about Graph Neural Networks

The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

» A composition of L layers. Each of which itself a...

= Compositions of Filters & Pointwise nonlinearities

Xp = X

|

K—1 71
11:Zh1k5kx XIIO’I:ZI}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)

The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

> Filters are parametrized by...

= Coefficients hy, and graph shift operators S

Xg = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)

The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

» Output x; = ®(x; S, H) parametrized by...

= Learnable Filter tensor H = [hy, ..., h/]

Xp = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)

Learning with a Graph Neural Network

» Learn Optimal GNN tensor H* = (h},h}, h}) as

H* = argmin Z E(Cb(x;S,H),y)
(x,y)eT

> Optimization is over tensor only. Graph S is given

= Prior information given to the GNN

Xp = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
k 3
13:2113;(5 X2 X3 = [23}
k=0
L Layer 3
x3 = ®(x; S, H)

Graph Neural Networks and Graph Filters

» GNNSs are minor variations of graph filters

» Add pointwise nonlinearities and layer compositions
= Nonlinearities process individual entries

= Component mixing is done by graph filters only

» GNNs do work (much) better than graph filters
= Which is unexpected and deserves explanation

= Which we will attempt with stability analyses

Xg = X

|

K—1
7 = Z hyg skx
k=0

1

X] =0 [11 }
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)

Transference of GNNs Across Graphs

Xp = X

|

K—1
z) = Z hyg skx
k=0

1

X1 = o’[zl}
Layer 1
» GNN Output depends on the graph S. e
x1
X1
» Interpret S as a parameter
o) K—1 o
= Encodes prior information. As we have done so far = hysx X2 = 0[22}
k=0
Layer 2
X1
X1
K—1
z3
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)

Transference of GNNs Across Graphs

» But we can reinterpret S as an input of the GNN
= Enabling transference across graphs
o(x;S,H) = d(x; S, H)
= Same as we enable transference across signals
®d(x;S,H) = d(X;S,H)

» A trained GNN is just a filter tensor H*

Xg = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
k 23
13:2113;(5 x2 x3 = [23}
k=0
L Layer 3
x3 = ®(x; S, H)

CNNs and GNNs

» There is no difference between CNNs and GNNs

» To recover a CNN just particularize the shift operator
the adjacency matrix of the directed line graph

» GNNs are proper generalizations of CNNs

Xp = X

|

K—1
7 = z hyg skx
k=0

z1

x| =0 [11 }
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=o'[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)

Fully Connected Neural Networks

The Road Not Taken: Fully Connected Neural Networks

» We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals
» We argued this is a good idea because they are generalizations of convolutional filters and CNNs

» We can explore this better if we go back to the road not taken = Fully connected neural networks

Learning with a Linear Classifier

> Instead of graph filters, we choose arbitrary linear functions = ®(x) = ®(x; H) = Hx

—> z=Hx

z = ®(x; H)

» Optimal regressor is ERM solution restricted to linear class = H™ = argmin Z E(d)(x; H),y)

(xy)eT

Learning with a Linear Perceptron

> We increase expressive power with the introduction of a perceptrons = ®(x) = ®(x; H) = U[HX]

z=Hx

7]

Perceptron

®(x; H)

» Optimal regressor restricted to perceptron class = H" = argmin Z €(¢(x; H),y)

(xy)eT

Fully Connected Neural Networks (FCNN)

> A generic layer, Layer ¢ of a FCNN, takes as input the output x,—1 of the previous layer (¢ — 1)

» Layer / processes its input signal x,—1 with a linear perceptron H; to produce output x,
Xy = 0'|:Zg:| = O'|:H5X¢,1:|
» With the convention that the Layer 1 input is xg = X, this provides a recursive definition of a GNN

» If it has L layers, the FCNN output = x;, = ¢(X;H17...,HL> = CD(X;H)

» The filter tensor H = [Hi,...,H,] is the trainable parameter.

Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed input signal x = xp into Layer 1
zy = Hyxp 22 x2=o'[22}
X1 = o[zl] = O'[HlkXO]
X2
X2
» Output ®(x; #) Parametrized by 7 = [H1, Ho, H3] 25 = Hsx z3 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)

Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed Layer 1 output as an input to Layer 2
zy = Hyxp 22 x2=o'[22}
Xy = 0[22] = U[ngl]
X2
X2
> Output ®(x; H) Parametrized by H = [H1, Ha, H3] 25 = Hsx 23 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)

Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed Layer 2 output as an input to Layer 3
zy = Hyxp 22 x2=o'[22}
X3 = 0[23] = U[H3X2]
X2
X2
» Output ®(x; #) Parametrized by 7 = [H1, Ho, H3] 25 = Hsx z3 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)

Neural Networks vs Graph Neural Networks

Which is Better: A Graph NN or a Fully Connected NN?

» Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

m|n Z ()g mq_iLn Z Z(tb(x;S,H),y)

(xy)eT (x.y)eT

» The fully connected NN does better. But this holds for the training set

» In practice, the GNN does better because it generalizes better to unseen signals

= Because it exploits internal symmetries of graph signals codified in the graph shift operator

Generalization with a Neural Network

» Suppose the graph represents a recommendation system where we want to fill empty ratings
» We observe ratings with the structure in the left. But we do not observe examples like the other two

» From examples like the one in the left, the NN learns how to fill the middle signal but not the right

Generalization with a Graph Neural Network

» The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

» The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal

Permutation Equivariance of Graph Neural Network

» The GNN exploits symmetries of the signal to effectively multiply available data

» This will be formalized later as the permutation equivariance of graph neural networks

Graph Filter Banks

» Filters isolate features. When we are interested in multiple features, we use Banks of filters

Graph Filter Banks

» A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank

> Filter f in the bank uses coefficients h” = [hf;...; hfc_;] = Output z* is a graph signal

=
L
=
L
=
L

z' = h,{Skx zZ:thSkx e o o ZF = hfSkx
k=0 k=0 k=0
zlJ ZZJ ° ° ‘ ZFJ
» Filter bank output is a collection of F graph signals = Matrix graph signal Z = [zl., . ,zF]

Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components Xx;.
» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node.
ng X40 X6° :
X3° X5° X7‘)

31

Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components x;.
» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node. Columns of Z are graph signals z.

1 f F
z23 zf zg’ T A | 7
2 2 2
z5 z; z;
1 1 1
4 3 — 1 —
,7 : ,% Z=| gz Z; Zj =
z Z .
1A 198 X : . .
5 ‘ K ‘ . : : -
3 3 3 o 1 .. f . F z,
>3 2 %5 Y27 Zn Z, Z,
z5 z z
173 177

31

Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components x;.

» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node. Rows of Z are node features z;
4 d o Af] ra
5 2y b23 . . .
Z= Z,-l B Z,-f - ziF = z;
z; zg . . .
z} z,: z: Zn

SR
z3 z5 z7
‘ ° ‘ =z - L ... F]

31

Output Energy of a Graph Filter in the GFT Domain

Theorem (Output Energy of a Graph Filter)
Consider graph filter h with coefficients hx and frequency response 71()\) = Z A\ . The energy
k=0

of the filter's output z = Z hS*x is given by
k=0

2P =3 (Ao %)’

i=1

where); are eigenvalues of symmetric S and % are components of the GFT of x, X = Vx is

Proof of Output Energy Theorem

Proof: The GFT is a unitary transform that preserves energy. Indeed, with z = V"z we have
H
|z =2"2 = (V'2) " (V"2) = "Wz =2"1z= ||z |

» We know that graph filters are pointwise in the frequency domain = z = Fl(/\,-)f(,-

n n

2| =2"2=>#= (/"f(/\,)fq)2

i=1 i=1
» We have the energy expressed in the form we want. Except that it is in the frequency domain.
n

> But we have just seen the GFT preserves energy = ||z H2 =z ||2 = Z (IN1()\,-) >”<,-)2 []
i—1

Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

A1 A2 An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z

Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

al rIIIr.ee

A1 A2 Ai An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z

Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

-.!TIIII‘Tf..---- ol

A1 A2 An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z

Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

oA

A1 A2 Ai An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z

Filter Banks as Transforms

» The filter bank isolates groups of frequency components

s n . s
= Energy of bank output z' = Z hiS¥x is area under the curve = ||z’ H2 = Z (hf(/\;))?;>
k=0 i1

i IN

» We use the filter bank to identify signals with different spectral signatures.

)\1)\2 >\i

35

Energy Conservation in Filter Banks

» The GFT preserves energy = It scatters information. But it doesn’t loose information

F
> A filter bank is a frame if there exist constants m < M = m ||x||2 < Z ”sz2 <M Htz
f—1

F
> A filter banks is a tight frameif m=M=1 = Hx“zzz ||zf||2
F=1

» No signal is vanquished by a frame. Energy is preserved by a tight frame

Frames in the Graph Frequency Domain

F
N 2
» Because filters are pointwise in the GFT domain, a frame must satisfy = m < E [hf()\)] <M
=1

. 2
> All frequencies A must have at least one filter h with response m < [hf(A)]

Tight Frames in the Graph Frequency Domain

F
. 2
> Likewise, a tight frame must be such that for all A = Z [hf()\)} =1
=1

» A Sufficient condition is that all frequencies accumulate unit energy when summing across all filters

| L t |
A1 A2 Ai An

» We will not design filter banks. We will learn them. But keeping them close to frames is good.

Multiple Feature GNNs

» We leverage filter banks to create GNNs that process multiple features per layer

Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node

K—1 K—1 K—1
2= h,l(Skx 2= E hiSkx 2f = E hfSkx

k=0 k=0 k=0

le z2l ZFJv

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.

Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.

40

Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node
22‘ 240 Zﬁ°

Zse
13° Zse 170

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.

Z1

40

Multiple-Input-Multiple-Output (MIMO) Graph Filters

K—1
> Each of the F features x” is processed with G filters with coefficients h = u® = Z h s* x"
k=0

l L]

K—1 K—1 K—1
f1 f1 gk f2 2 gk G G gk
uzghka uzzhka u=Ehka
k=0 k=0 k=0

o i i

u

41

Multiple-Input-Multiple-Output (MIMO) Graph Filters

» This Multiple-Input-Multiple-Output Graph Filter generates an output with F x G features

T T
1
x | | |
; L 1 ; L 1 P — K—1
X [x X
K—1 K—1 K—1
X X X
K—1 K-1 K—1
12 ok 16 16 ok
u'l = g h}(lskx u'? = E hS" x ul = E h,” S" x
k=0 k=0 k=0
u u }I
N .
! u? 2G
u't u'? ul®
2 =ul+ut 4+ .. +uft 22 =u?+u? 4. . +u" 22 =0 4 . e

Multiple-Input-Multiple-Output (MIMO) Graph Filters

MIMO Graph Filters with Matrix Graph Signals

» MIMO graph filters are cumbersome, not difficult. Just F x G filters. Or F filter banks.

> Easier with matrices = G x F coefficient matrix H, with entries (Hk> = h
fg

x
L

Z = S¥ x X x Hy

,r
Il
S)

» This is a more compact format of the MIMO filter. It is equivalent

11 1g 16

Wl RE . pl

K—1 : : :

[zl - 8 . ZG] = Zsk X [xl -oxf xF] X At h,’:g - h€
k=0 : : :

F1 Fg FG

REL o hE . A

MIMO GNN / Multiple Feature GNN

» MIMO GNN stacks MIMO perceptrons = Compose of MIMO filters with pointwise nonlinearities
» Layer ¢ processes input signal X;—1 with perceptron Hy = [Hyo, ..., H/ k—1] to produce output X,
K—1
XZ = O'|:Ze:| = O'|:Z SkX[,l HU(:|
k=0
» Denoting the Layer 1 input as Xo = X, this provides a recursive definition of a MIMO GNN

> If it has L layers, the GNN output = X, = ¢(x; s, H1,...,HL) - ¢(x; s, 7-[,)
» The filter tensor H = [Hi,...,H,] is the trainable parameter. The graph shift is prior information

MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed input signal X = Xj into Layer 1

K—-1
Xlza[zl] —0'|:Z SkXOHlk:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H, H3]

Xo = X

!

Z;

K—1
7= s XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)

MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed Layer 1 output as an input to Layer 2

K—-1
X2 :U[ZQ] —0'|:Z Skxl H2k:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H2, H3]

Xo = X

!

Z;

K—1
7= s¥XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)

MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed Layer 2 output as an input to Layer 3

K—-1
X3 :U[Zg] —0'|:Z SkX2 H3l<:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H2, H3]

Xo = X

!

Z;

K—1
7= s¥XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)

	lecture_3_handout
	Graphs
	Graph Shift Operators
	Graph Signals
	Graph Convolutional Filters
	Time Convolutions as a Particular Case of Graph Convolutions
	Graph Frequency Response of Graph Filters

	lecture_4_handout
	Multiple Feature GNNs

