
Graphs

1

Nodes, Edges and Weights

I A graph is a triplet G = (V, E ,W), which includes vertices V, edges E , and weights W

⇒ Vertices or nodes are a set of n labels. Typical labels are V = {1, . . . , n}

⇒ Edges are ordered pairs of labels (i , j). We interpret (i , j) ∈ E as “i can be influenced by j .”

⇒ Weights wij ∈ R are numbers associated to edges (i , j). “Strength of the influence of j on i .”

1

2

3

4

5

6

7

8

w12

w42

w52

w31

w23

w43

w46

w74w65

w76

w86

w87

w53

w35

w75

w57

2

Directed Graphs

I Edge (i , j) is represented by an arrow pointing from j into i . Influence of node j on node i

⇒ This is the opposite of the standard notation used in graph theory

I Edge (i , j) is different from edge (j , i) ⇒ It is possible to have (i , j) ∈ .E and (j , i) /∈ E

I If both edges are in the edge set, the weights can be different ⇒ It is possible to have wij 6= wji

1

2

3

4

5

6

7

8

w52

w31

w23

w43 w74w65

w76

w86

w87

w12

1

2

w42 w46

w53

w35

w75

w57

3

Symmetric Graphs

I A graph is symmetric or undirected if both, the edge set and the weight are symmetric

⇒ Edges come in pairs ⇒ We have (i , j) ∈ E if and only if (j , i) ∈ E

⇒ Weights are symmetric ⇒ We must have wij = wji for all (i , j) ∈ E

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47w56

w67

w68

w57

w78

w53 = w35

4

Unweighted Graphs

I A graph is unweighted if it doesn’t have weights

⇒ Equivalently, we can say that all weights are units ⇒ wij = 1 for all (i , j) ∈ E

I Unweighted graphs could be directed or symmetric

1

2

3

4

5

6

7

8

5

Unweighted Graphs

I A graph is unweighted if it doesn’t have weights

⇒ Equivalently, we can say that all weights are units ⇒ wij = 1 for all (i , j) ∈ E

I Unweighted graphs could be directed or symmetric

1

2

3

4

5

6

7

8

5

Weighted Symmetric Graphs

I Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.

I Most of the graphs we encounter in practical situations are symmetric and weighted

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56

w67

w68

w57

w78

6

Graph Shift Operators

I Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)

7

Adjacency Matrices

I The adjacency matrix of graph G = (V, E ,W) is the sparse matrix A with nonzero entries

Aij = wij , for all (i , j) ∈ E

I If the graph is symmetric, the adjacency matrix is symmetric ⇒ A = AT . As in the example

1

2

3

4

5

w12 = w21

w31 = w13

w24 = w42

w32 = w23 w45 = w54

w53 = w35

A =

0 w12 w13 0 0
w21 0 w23 w24 0
w31 w32 0 0 w35

0 w42 0 0 w45

0 0 w53 w54 0

 .

8

Adjacency Matrices for Unweighted Graphs

I For the particular case in which the graph is unweighted. Weights interpreted as units

Aij = 1, for all (i , j) ∈ E

1

2

3

4

5

1

1

1

1 1

1

A =

0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 0

 .

9

Neighborhoods and Degrees

I The neighborhood of node i is the set of nodes that influence i ⇒ n(i) := {j : (i , j) ∈ E}

I Degree di of node i is the sum of the weights of its incident edges ⇒ di =
∑
j∈n(i)

wi j =
∑

j :(i,j)∈E}

wi j

1

2

3

4

5

w24 = w42

w32 = w23 w45 = w54

w53 = w35

1

2

3

w12

w13

I Node 1 neighborhood ⇒ n(1) = {2, 3}

I Node 1 degree ⇒ n(1) = w12 + w13

10

Degree Matrix

I The degree matrix is a diagonal matrix D with degrees as diagonal entries ⇒ Dii = di

I Write in terms of adjacency matrix as D = diag(A1). Because (A1)i =
∑

j wij = di

1

2

3

4

5

1

1

1

1 1

1

D =

2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

11

Laplacian Matrix

I The Laplacian matrix of a graph with adjacency matrix A is ⇒ L = D− A = diag(A1)− A

I Can also be written explicitly in terms of graph weights Aij = wij

⇒ Off diagonal entries ⇒ Lij = −Aij = −wij

⇒ Diagonal entries ⇒ Lii = di =
∑
j∈n(i)

wij

L =

2 −1 −1 0 0

−1 3 −1 −1 0
−1 −1 3 0 −1
0 −1 0 2 −1
0 0 −1 −1 2

 1

2

3

4

5

1

1

1

1 1

1

12

Normalized Matrix Representations: Adjacencies

I Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

I Normalized adjacency matrix ⇒ Ā := D−1/2AD−1/2 ⇒ Results in entries (Ā)ij =
wij√
didj

I The normalized adjacency is symmetric if the graph is symmetric ⇒ ĀT = Ā.

13

Normalized Matrix Representations: Laplacians

I Normalized Laplacian matrix ⇒ L̄ := D−1/2LD−1/2. Same normalization of adjacency matrix

I Given definitions normalized representations ⇒ L̄ = D−1/2
(

D− A
)

D−1/2 = I− Ā

⇒ The normalized Laplacian and adjacency are essentially the same linear transformation.

I Normalized operators are more homogeneous. The entries in the vector A1 tend to be similar.

14

Graph Shift Operator

I The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix

S = A

Laplacian Matrix

S = L

Normalized Adjacency

S = Ā

Normalized Laplacian

S = L̄

I If the graph is symmetric, the shift operator S is symmetric ⇒ S = ST

I The specific choice matters in practice but most of results and analysis hold for any choice of S

15

Graph Signals

I Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing

16

Graph Signal

I Consider a given graph G with n nodes and shift operator S

I A graph signal is a vector x ∈ Rn in which component xi is associated with node i

I To emphasize that the graph is intrinsic to the signal we may write the signal as a pair ⇒ (S, x)

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56

w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8

I The graph is an expectation of proximity or similarity between components of the signal x

17

Graph Signal Diffusion

I Multiplication by the graph shift operator implements diffusion of the signal over the graph

I Define diffused signal y = Sx ⇒ Components are yi =
∑
j∈n(i)

wi j xj =
∑
j

wij xj

⇒ Stronger weights contribute more to the diffusion output

⇒ Codifies a local operation where components are mixed with components of neighboring nodes.

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56

w67

w68

w57

w78

x1

y2

x3

x4

x5

x6

x7

x8

18

The Diffusion Sequence

I Compose the diffusion operator to produce diffusion sequence ⇒ defined recursively as

x(k+1) = Sx(k), with x(0) = x

I Can unroll the recursion and write the diffusion sequence as the power sequence ⇒ x(k) = Skx

x(0) = x = S0x x(1) = Sx(0) = S1x x(2) = Sx(1) = S2x x(3) = Sx(2) = S3x

19

Some Observations about the Diffusion Sequence

I The kth element of the diffusion sequence x (k) diffuses information to k-hop neighborhoods

⇒ One reason why we use the diffusion sequence to define graph convolutions

I We have two definitions. One recursive. The other one using powers of S

⇒ Always implement the recursive version. The power version is good for analysis

x(0) = x = S0x x(1) = Sx(0) = S1x x(2) = Sx(1) = S2x x(3) = Sx(2) = S3x

20

Graph Convolutional Filters

I Graph convolutional filters are the tool of choice for the linear processing of graph signals

21

Graph Filters

I Given graph shift operator S and coefficients hk , a graph filter is a polynomial (series) on S

H(S) =
∞∑
k=0

hkSk

I The result of applying the filter H(S) to the signal x is the signal

y = H(S) x =
∞∑
k=0

hkSkx

I We say that y = h ?S x is the graph convolution of the filter h = {hk}∞k=0 with the signal x

22

From Local to Global Information

I Graph convolutions aggregate information growing from local to global neighborhoods

I Consider a signal x supported on a graph with shift operator S. Along with filter h = {hk}K−1
k=0

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8
9

x9

10

x10

11
x11

12
x12

I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
K−1∑
k=0

hkSk x

23

Transferability of Filters Across Different Graphs

I The same filter h = {hk}∞k=0 can be executed in multiple graphs ⇒ We can transfer the filter

Graph Filter on a Graph

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8
9

x9

10

x10

11
x11

12
x12

Same Graph Filter on Another Graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8

I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
∞∑
k=0

hkSk x

I Output depends on the filter coefficients h, the graph shift operator S and the signal x

24

Graph Convolutional Filters as Diffusion Operators

I A graph convolution is a weighted linear combination of the elements of the diffusion sequence

I Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

y = h ?S x

25

Time Convolutions as a Particular Case of Graph Convolutions

26

Convolutions in Time

I Convolutional filters process signals in time by leveraging the time shift operator

x0

x1

x2 x3

xn

x−1
x0

x1

x2

xn−1 = shift(xn)

x−2

x−1
x0

x1

xn−2 = shift2(xn)

x−3 x−2

x−1
x0

xn−3 = shift3(xn)

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

yn

h0xn h1xn−1 h2xn−2 h3xn−3

I The time convolution is a linear combination of time shifted inputs ⇒ yn =
K−1∑
k=0

hkxn−k

27

Time Signals Represented as Graph Signals

I Time signals are representable as graph signals supported on a line graph S ⇒ The pair (S, x)

x0

x1

x2 x3

0 1 2 3

x

x−1
x0

x1

x2

0 1 2 3

Sx

x−2

x−1
x0

x1

0 1 2 3

S2x

x−3 x−2

x−1
x0

0 1 2 3

S3x

I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S3 x = S
[

S2 x
]

= S
[

S
(

S x
)]

=

: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :

:
x0
x1
x2
x3
:

 =

:

x−3
x−2
x−1
x0
:

I Components of the shift sequence are powers of the adjacency matrix applied to the original signal

⇒ We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph

28

The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph

x0

x1

x2 x3
x−1

x0

x1

x2
x−2

x−1
x0

x1
x−3 x−2

x−1
x0

z−1 z−1 z−1

+ + + +

x shift(x) shift2(x) shift3(x)

h0 h1 h2 h3

y = h ? x

h0xn h1xn−1 h2xn−2 h3xn−3

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx

29

The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph

x0

x1

x2 x3

0 1 2 3

x−1
x0

x1

x2

0 1 2 3

x−2

x−1
x0

x1

0 1 2 3

x−3 x−2

x−1
x0

0 1 2 3

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ?S x

h0S0x h1S1x h2S2x h3S3x

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx

29

The Time Convolution Generalized to Arbitrary Graphs

I If we let S be the shift operator of an arbitrary graph we recover the graph convolution

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ?S x

h0S0x h1S1x h2S2x h3S3x

30

Graph Fourier Transform

I The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems

31

Eigenvectors and Eigenvalues of Shift Operator

I We work with symmetric graph shift operators ⇒ S = SH

I Introduce eigenvectors vi and eigenvalues λi of graph shift operator S ⇒ Svi = λivi

⇒ For symmetric S eigenvalues are real. We have ordered them ⇒ λ0 ≤ λ1 ≤ . . . ≤ λn

I Define eigenvector matrix V = [v1, . . . , vn] and eigenvalue matrix Λ = diag([λ1; . . . ;λn])

⇒ Eigenvector decomposition of Graph Shift Operator ⇒ S = VΛVH . With VHV = I

32

The Graph Fourier Transform

Graph Fourier Transform

Given a graph shift operator S = VΛVH , the graph Fourier transform (GFT) of graph signal x is

x̃ = VH x

I The GFT is a projection on the eigenspace of the graph shift operator.

I We say x̃ is a graph frequency representation of x. A representation in the graph frequency domain

33

The Inverse Graph Fourier Transform

Inverse Graph Fourier Transform

Given a graph shift operator S = VΛVH , the inverse graph Fourier transform (iGFT) of GFT x̃ is

˜̃x = V x̃

I Given that VHV = I, the iGFT of the GFT of signal x recovers the signal x

˜̃x = V x̃ = V
(

VH x
)

= Ix = x

34

Graph Frequency Response of Graph Filters

I Graph filters admit a pointwise representation when projected into the shift operator’s eigenspace

35

Graph Fiters in the Graph Frequency Domain

Theorem (Graph frequency representation of graph filters)

Consider graph filter h with coefficients hk , graph signal x and the filtered signal y =
∞∑
k=0

hkSkx.

The GFTs x̃ = VHx and ỹ = VHy are related by

ỹ =
∞∑
k=0

hkΛk x̃

I The same polynomial but on different variables. One on S. The other on eigenvalue matrix Λ

36

Proof of Theorem

Proof: Since S = VΛVH , can write shift operator powers as Sk = VΛkVH . Therefore filter output is

y =
∞∑
k=0

hkSkx =
∞∑
k=0

hkVΛkVHx

I Multiply both sides by VH on the left ⇒ VHy = VH
∞∑
k=0

hkVΛkVHx

I Copy and identify terms. Output GFT VHy = ỹ. Input GFT VHx = x̃. Cancel out VHV

VHy = VH
∞∑
k=0

hkVΛkVHx ⇒ ỹ =
∞∑
k=0

hkΛk x̃ �

37

Graph Frequency Response

I In the graph frequency domain graph filters are a diagonal matrices ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I Thus, graph convolutions are pointwise in the GFT domain ⇒ ỹi =
∞∑
k=0

hkλ
k
i x̃i = h̃(λi)x̃i

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

38

Observations on the Graph Frequency Response

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I Frequency response is the same polynomial that defines the graph filter ⇒ but on scalar variable λ

I Frequency response is independent of the graph ⇒ Depends only on filter coefficients

I The role of the graph is to determine the eigenvalues on which the response is instantiated

39

Graph Frequency Response is Independent of the Graph

I Graph filter frequency response is a polynomial on a scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I Completely determined by the filter coefficients h = {hk}∞k=1 . The Graph has nothing to do with it

λ

h̃(λ)

40

The Graph Instantiates Specific Eigenvalues

I A given (another) graph instantiates the response on its given (different) specific eigenvalues λi

I Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)

41

Learning with Graph Signals

I Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals

1

Empirical Risk Minimization

I In this course, machine learning (ML) on graphs ≡ empirical risk minimization (ERM) on graphs.

I In ERM we are given:

⇒ A training set T containing observation pairs (x, y) ∈ T . Assume equal length x, y,∈ Rn.

⇒ A loss function `(y, ŷ) to evaluate the similarity between y and an estimate ŷ

⇒ A function class C

I Learning means finding function Φ∗ ∈ C that minimizes loss `
(

y,Φ(x)
)

averaged over training set

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x),
)

I We use Φ∗(x) to estimate outputs ŷ = Φ∗(x) when inputs x are observed but outputs y are unknown

2

Empirical Risk Minimization with Graph Signals

I In ERM, the function class C is the degree of freedom available to the system’s designer

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x)
)

I Designing a Machine Learning ≡ finding the right function class C

I Since we are interested in graph signals, graph convolutional filters are a good starting point

a

aboard

about
against

all

along
an

and
anotherany

aro
undas

as
id

eat

aw
aybo

thbu
tbyca

nde
sp

ite

do
w

n

ea
ch

ei
th

er

en
ou

gh

fo
r

fr
om

he
nc

e
if

in

in
to

it
lik

e
litt

le

m
an

y

may

might

more

most

much

must

neither

next

no

none

nor

nothing

of

on

once
one

or
other our

out
round shall should

so

som
e

such than that

the them

then

thence

therefore

these

they

this

those
through

to

until
unto

up
upon

us

what

when

where

whether

which

while

will

with

would

yet

3

Learning with a Graph Convolutional Filter

I Input / output signals x / y are graph signals supported on a common graph with shift operator S

I Function class ⇒ graph filters of order K supported on S ⇒ Φ(x) =
K−1∑
k=0

hkSkx = Φ(x;S,h)

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

I Learn ERM solution restricted to graph filter class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ(x; S, h)
)

⇒ Optimization is over filter coefficients h with the graph shift operator S given

4

When the Output is Not a Graph Signal: Readout

I Outputs y ∈ Rm are not graph signals ⇒ Add readout layer at filter’s output to match dimensions

I Readout matrix A ∈ Rm×n yields parametrization ⇒ A× Φ(x;S,h) = A×
K−1∑
k=0

hkSkx

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

A
A × Φ(x; S,h)

I Making A trainable is inadvisable. Learn filter only. ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, A× Φ(x; S, h)
)

I Readouts are simple. Read out node i ⇒ A = eT
i . Read out signal average ⇒ A = 1T .

5

Graph Neural Networks (GNNs)

6

Pointwise Nonlinearities

I A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries

I The result of applying pointwise σ to a vector x is ⇒ σ
[

x
]

= σ

x1

x2

...
xn

 =

σ(x1)
σ(x2)

...
σ(xn)

I A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector

I ReLU: σ(x)=max(0, x). Hyperbolic tangent: σ(x)=(e2x − 1)/(e2x + 1). Absolute value: σ(x)= |x |.

I Pointwise nonlinearities decrease variability. ⇒ They function as demodulators.

7

Learning with a Graph Perceptron

I Graph filters have limited expressive power because they can only learn linear maps

I A first approach to nonlinear maps is the graph perceptron ⇒ Φ(x) = σ

[
K−1∑
k=0

hkSkx

]
= Φ(x; S,h)

Perceptron

x
z =

K−1∑
k=0

hkSk x σ
[

z
]z Φ(x; S, h)

σ
[

x
]

= σ

x1

x2

...
xn

 =

σ(x1)
σ(x2)

...
σ(xn)

I Optimal regressor restricted to perceptron class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ(x; S, h)
)

⇒ Perceptron allows learning of nonlinear maps ⇒ More expressive. Larger Representable Class

8

Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 1 processes input signal x with the perceptron h1 = [h10, . . . , h1,K−1] to produce output x1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x

]

I The Output of Layer 1 x1 becomes an input to Layer 2. Still x1 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL

9

Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 2 processes its input signal x1 with the perceptron h2 = [h20, . . . , h2,K−1] to produce output x2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I The Output of Layer 2 x2 becomes an input to Layer 3. Still x2 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL

9

The GNN Layer Recursion

I A generic layer of the GNN, Layer `, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with perceptron h` = [h`0, . . . , h`,K−1] to produce output x`

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a GNN

I If it has L layers, the GNN output ⇒ xL = Φ
(

x; S, h1, . . . , hL

)
= Φ

(
x; S, H

)
I The filter tensor H = [h1, . . . , hL] is the trainable parameter. The graph shift is prior information

10

GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x0

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)x3

11

GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)x3

11

GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
K−1∑
k=0

h3k Sk x2

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)x3

11

Some Observations about Graph Neural Networks

12

The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I A composition of L layers. Each of which itself a...

⇒ Compositions of Filters & Pointwise nonlinearities

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

13

The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Filters are parametrized by...

⇒ Coefficients h`k and graph shift operators S

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

13

The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Output xL = Φ(x; S,H) parametrized by...

⇒ Learnable Filter tensor H = [h1, . . . , hL]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

13

Learning with a Graph Neural Network

I Learn Optimal GNN tensor H∗ = (h∗1 , h
∗
2 , h
∗
3) as

H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I Optimization is over tensor only. Graph S is given

⇒ Prior information given to the GNN

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

14

Graph Neural Networks and Graph Filters

I GNNs are minor variations of graph filters

I Add pointwise nonlinearities and layer compositions

⇒ Nonlinearities process individual entries

⇒ Component mixing is done by graph filters only

I GNNs do work (much) better than graph filters

⇒ Which is unexpected and deserves explanation

⇒ Which we will attempt with stability analyses

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

15

Transference of GNNs Across Graphs

I GNN Output depends on the graph S.

I Interpret S as a parameter

⇒ Encodes prior information. As we have done so far

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

16

Transference of GNNs Across Graphs

I But we can reinterpret S as an input of the GNN

⇒ Enabling transference across graphs

Φ(x; S,H) ⇒ Φ(x; S̃,H)

⇒ Same as we enable transference across signals

Φ(x; S,H) ⇒ Φ(x̃; S,H)

I A trained GNN is just a filter tensor H∗

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

16

CNNs and GNNs

I There is no difference between CNNs and GNNs

I To recover a CNN just particularize the shift operator

the adjacency matrix of the directed line graph

S =

: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

I GNNs are proper generalizations of CNNs

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)

17

Fully Connected Neural Networks

18

The Road Not Taken: Fully Connected Neural Networks

I We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals

I We argued this is a good idea because they are generalizations of convolutional filters and CNNs

I We can explore this better if we go back to the road not taken ⇒ Fully connected neural networks

a

aboard

about
against

all

along
an

and
anotherany

aro
undas

as
id

eat

aw
aybo

thbu
tbyca

nde
sp

ite

do
w

n

ea
ch

ei
th

er

en
ou

gh

fo
r

fr
om

he
nc

e
if

in

in
to

it
lik

e
litt

le

m
an

y

may

might

more

most

much

must

neither

next

no

none

nor

nothing

of

on

once
one

or
other our

out
round shall should

so

som
e

such than that

the them

then

thence

therefore

these

they

this

those
through

to

until
unto

up
upon

us

what

when

where

whether

which

while

will

with

would

yet

19

Learning with a Linear Classifier

I Instead of graph filters, we choose arbitrary linear functions ⇒ Φ(x) = Φ(x; H) = H x

x
z = H x

z = Φ(x; H)

I Optimal regressor is ERM solution restricted to linear class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)

20

Learning with a Linear Perceptron

I We increase expressive power with the introduction of a perceptrons ⇒ Φ(x) = Φ(x; H) = σ
[

Hx
]

Perceptron

x
z = H x σ

[
z
]z

Φ(x; H)

I Optimal regressor restricted to perceptron class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)

21

Fully Connected Neural Networks (FCNN)

I A generic layer, Layer ` of a FCNN, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with a linear perceptron H` to produce output x`

x` = σ
[

z`
]

= σ
[

H` x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a GNN

I If it has L layers, the FCNN output ⇒ xL = Φ
(

x; H1, . . . ,HL

)
= Φ

(
x;H

)
I The filter tensor H = [H1, . . . ,HL] is the trainable parameter.

22

Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
H1k x0

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)

23

Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
H2 x1

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)

23

Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
H3 x2

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)

23

Neural Networks vs Graph Neural Networks

24

Which is Better: A Graph NN or a Fully Connected NN?

I Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

min
H

∑
(x,y)∈T

`
(

Φ(x;H), y
)
≤ min

H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I The fully connected NN does better. But this holds for the training set

I In practice, the GNN does better because it generalizes better to unseen signals

⇒ Because it exploits internal symmetries of graph signals codified in the graph shift operator

25

Generalization with a Neural Network

I Suppose the graph represents a recommendation system where we want to fill empty ratings

I We observe ratings with the structure in the left. But we do not observe examples like the other two

I From examples like the one in the left, the NN learns how to fill the middle signal but not the right

1

x1

2
x2

3
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

26

Generalization with a Graph Neural Network

I The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

I The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal

1

x1

2
x2

3
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

27

Permutation Equivariance of Graph Neural Network

I The GNN exploits symmetries of the signal to effectively multiply available data

I This will be formalized later as the permutation equivariance of graph neural networks

1

x1

2
x2

3
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

28

Graph Filter Banks

I Filters isolate features. When we are interested in multiple features, we use Banks of filters

29

Graph Filter Banks

I A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank

I Filter f in the bank uses coefficients hf = [hf
1; . . . ; hf

K−1] ⇒ Output zf is a graph signal

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x • • • zF =

K−1∑
k=0

hFk Sk x

x
• • •

z1 z2
• • •

zF

I Filter bank output is a collection of F graph signals ⇒ Matrix graph signal Z = [z1, . . . , zF]

30

Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8 x =

x1

.

.

.
xi
.
.
.
xn

31

Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi

1

1

2

3

4

5

6

7

8
z3

1

z3
2

z3
3

z3
4

z3
5

z3
6

z3
7

z3
8

1
1

2

3

4

5

6

7

8
z2

1

z2
2

z2
3

z2
4

z2
5

z2
6

z2
7

z2
8

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

z1
1

z1
2

z1
3

z1
4

z1
5

z1
6

z1
7

z1
8

Z =

z1
1 · · · z f1 · · · zF1
.
.
.

.

.

.
.
.
.

z1
i · · · z fi · · · zFi
.
.
.

.

.

.
.
.
.

z1
n · · · z fn · · · zFn

=

z1

.

.

.
zi
.
.
.

zn

=
[

z1 · · · zf · · · zF
]

31

Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

z1

z2

z3

z4

z5

z6

z7

z8

Z =

z1
1 · · · z f1 · · · zF1
.
.
.

.

.

.
.
.
.

z1
i · · · z fi · · · zFi
.
.
.

.

.

.
.
.
.

z1
n · · · z fn · · · zFn

=

z1

.

.

.
zi
.
.
.

zn

=
[

z1 · · · zf · · · zF
]

31

Output Energy of a Graph Filter in the GFT Domain

Theorem (Output Energy of a Graph Filter)

Consider graph filter h with coefficients hk and frequency response h̃(λ) =
∞∑
k=0

hkλ
k . The energy

of the filter’s output z =
∞∑
k=0

hkSkx is given by

∥∥ z
∥∥2

=
n∑

i=1

(
h̃(λi) x̃i

)2

where λi are eigenvalues of symmetric S and x̃i are components of the GFT of x, x̃ = VHx is

32

Proof of Output Energy Theorem

Proof: The GFT is a unitary transform that preserves energy. Indeed, with z̃ = VHz we have

∥∥ z̃
∥∥2

= z̃H z̃ =
(

VHz
)H(

VHz
)

= zHVVHz = zH I z =
∥∥ z
∥∥2

I We know that graph filters are pointwise in the frequency domain ⇒ z̃i = h̃(λi)x̃i

∥∥ z̃
∥∥2

= z̃H z̃ =
n∑

i=1

z̃2
i =

n∑
i=1

(
h̃f (λi) x̃i

)2

I We have the energy expressed in the form we want. Except that it is in the frequency domain.

I But we have just seen the GFT preserves energy ⇒
∥∥ z
∥∥2

=
∥∥ z̃
∥∥2

=
n∑

i=1

(
h̃(λi) x̃i

)2

�

33

Filter Banks in the Graph Frequency Domain

I The energy that graph filters let pass is a sort of “area under the frequency response curve.”

I Graph Filter banks are helpful in identifying frequency signatures of different signals

λ1 λ2 λi λn

I Filter banks scatter the energy of signal x into the signals zf at the output of the filters.

⇒ Different signals concentrate energy on different outputs zf

34

Filter Banks in the Graph Frequency Domain

I The energy that graph filters let pass is a sort of “area under the frequency response curve.”

I Graph Filter banks are helpful in identifying frequency signatures of different signals

λ1 λ2 λi λn

I Filter banks scatter the energy of signal x into the signals zf at the output of the filters.

⇒ Different signals concentrate energy on different outputs zf

34

Filter Banks in the Graph Frequency Domain

I The energy that graph filters let pass is a sort of “area under the frequency response curve.”

I Graph Filter banks are helpful in identifying frequency signatures of different signals

λ1 λ2 λi λn

I Filter banks scatter the energy of signal x into the signals zf at the output of the filters.

⇒ Different signals concentrate energy on different outputs zf

34

Filter Banks in the Graph Frequency Domain

I The energy that graph filters let pass is a sort of “area under the frequency response curve.”

I Graph Filter banks are helpful in identifying frequency signatures of different signals

λ1 λ2 λi λn

I Filter banks scatter the energy of signal x into the signals zf at the output of the filters.

⇒ Different signals concentrate energy on different outputs zf

34

Filter Banks as Transforms

I The filter bank isolates groups of frequency components

⇒ Energy of bank output zf =
∞∑
k=0

hf
kSkx is area under the curve ⇒

∥∥ zf
∥∥2

=
n∑

i=1

(
h̃f (λi) x̃i

)2

λ1 λ2 λi λn

I We use the filter bank to identify signals with different spectral signatures.

35

Energy Conservation in Filter Banks

I The GFT preserves energy ⇒ It scatters information. But it doesn’t loose information

I A filter bank is a frame if there exist constants m ≤ M ⇒ m
∥∥x
∥∥2 ≤

F∑
f =1

∥∥zf
∥∥2 ≤ M

∥∥x
∥∥2

I A filter banks is a tight frame if m = M = 1 ⇒
∥∥x
∥∥2

=
F∑

f =1

∥∥zf
∥∥2

I No signal is vanquished by a frame. Energy is preserved by a tight frame

36

Frames in the Graph Frequency Domain

I Because filters are pointwise in the GFT domain, a frame must satisfy ⇒ m ≤
F∑

f =1

[
h̃f (λ)

]2

≤ M

I All frequencies λ must have at least one filter hf with response m ≤
[
h̃f (λ)

]2

λ1 λ2 λi λn

37

Tight Frames in the Graph Frequency Domain

I Likewise, a tight frame must be such that for all λ ⇒
F∑

f =1

[
h̃f (λ)

]2

= 1

I A Sufficient condition is that all frequencies accumulate unit energy when summing across all filters

λ1 λ2 λi λn

I We will not design filter banks. We will learn them. But keeping them close to frames is good.

38

Multiple Feature GNNs

I We leverage filter banks to create GNNs that process multiple features per layer

39

Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF]

I The F graph signals zf represent F features per node. A vector zi supported at each node

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x zF =

K−1∑
k=0

hFk Sk x

x

z1 z2 zF

I We would now like to process multiple feature graph signals. Process each feature with a filterbank.

40

Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF]

I The F graph signals zf represent F features per node. A vector zi supported at each node

1

1

2

3

4

5

6

7

8
z3

1

z3
2

z3
3

z3
4

z3
5

z3
6

z3
7

z3
8

1
1

2

3

4

5

6

7

8
z2

1

z2
2

z2
3

z2
4

z2
5

z2
6

z2
7

z2
8

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

z1
1

z1
2

z1
3

z1
4

z1
5

z1
6

z1
7

z1
8

I We would now like to process multiple feature graph signals. Process each feature with a filterbank.

40

Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF]

I The F graph signals zf represent F features per node. A vector zi supported at each node

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

z1

z2

z3

z4

z5

z6

z7

z8

I We would now like to process multiple feature graph signals. Process each feature with a filterbank.

40

Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Each of the F features xf is processed with G filters with coefficients hfg
k ⇒ ufg =

K−1∑
k=0

hfg
k Sk xf

uf 1 =

K−1∑
k=0

hf 1
k Sk x uf 2 =

K−1∑
k=0

hf 2
k Sk x ufG =

K−1∑
k=0

hfGk Sk x

xf

uf 1 uf 2 ufG

41

Multiple-Input-Multiple-Output (MIMO) Graph Filters

I This Multiple-Input-Multiple-Output Graph Filter generates an output with F × G features

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 z2 = u1G + u2G + . . . + uFG

42

Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Reduce to G outputs with sum over input features for given g ⇒ zg =
F∑

f =1

ufg =
F∑

f =1

K−1∑
k=0

hfg
k Sk xf

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 z2 = u1G + u2G + . . . + uFG

43

MIMO Graph Filters with Matrix Graph Signals

I MIMO graph filters are cumbersome, not difficult. Just F × G filters. Or F filter banks.

I Easier with matrices ⇒ G × F coefficient matrix Hk with entries
(

Hk

)
fg

= hfg
k

Z =
K−1∑
k=0

Sk × X×Hk

I This is a more compact format of the MIMO filter. It is equivalent

[
z1 ·· zg ·· zG

]
=

K−1∑
k=0

Sk ×
[

x1 ·· xf ·· xF
]
×

h11
k ·· h1g

k ·· h1G
k

: : :

hf 1
k ·· hf gk ·· hf Gk
: : :

hF1
k ·· hFgk ·· hFGk

44

MIMO GNN / Multiple Feature GNN

I MIMO GNN stacks MIMO perceptrons ⇒ Compose of MIMO filters with pointwise nonlinearities

I Layer ` processes input signal X`−1 with perceptron H` = [H`0, . . . ,H`,K−1] to produce output X`

X` = σ
[

Z`
]

= σ

[
K−1∑
k=0

Sk X`−1 H`k

]

I Denoting the Layer 1 input as X0 = X, this provides a recursive definition of a MIMO GNN

I If it has L layers, the GNN output ⇒ XL = Φ
(

x; S, H1, . . . ,HL

)
= Φ

(
x; S, H

)
I The filter tensor H = [H1, . . . ,HL] is the trainable parameter. The graph shift is prior information

45

MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed input signal X = X0 into Layer 1 (F0 features)

X1 = σ
[

Z1

]
= σ

[
K−1∑
k=0

Sk X0 H1k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)X3

46

MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2 (F1 features)

X2 = σ
[

Z2

]
= σ

[
K−1∑
k=0

Sk X1 H2k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)X3

46

MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 2 output (F2 features) as an input to Layer 3

X3 = σ
[

Z3

]
= σ

[
K−1∑
k=0

Sk X2 H3k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)X3

46

	lecture_3_handout
	Graphs
	Graph Shift Operators
	Graph Signals
	Graph Convolutional Filters
	Time Convolutions as a Particular Case of Graph Convolutions
	Graph Frequency Response of Graph Filters

	lecture_4_handout
	Multiple Feature GNNs

