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Large-scale Geometric Graphs in Practice

▶ Use of graph neural networks in practice requires processing information over very large graphs

⇒ E.g., large wireless communication systems, dense point clouds for 3D models

Cellular network (M. Eisen et al 2020) Point clouds (Z. Wang et al 2023)

▶ We study continuous limits of graph NNs as the size of graph grows to infinity ⇒ manifold NNs
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Study on Continuous Limit Models

▶ Continuous limit model brings insights into sampled discrete models ⇒ graphs and images

←−

−→

←−

−→

100 nodes 800 nodes 143 × 95 600 × 399

▶ Continuous models easier for theoretical insights ⇔ Discrete models easier for practical application
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Graph Filters and Graph Neural Networks

▶ Graph convolutional filters are linear combinations of

polynomials on matrix representations of graphs
⇒ y =

K−1∑
k=0

hk S
k x

h0S0x + h1S1x + h2S2x + h3S3x

▶ Graph neural networks (GNNs) compose layers of graph filters and point-wise non-linearities
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Manifold Filters and Manifold Neural Networks

▶ Manifold convolutional filters are linear combinations

of Laplace-Beltrami operator exponentials
⇒ g(x) =

∫ ∞

0

h̃(t) e−tL f (x)dt

h̃(0Ts)e−0TsLf + h̃(1Ts)e−1TsLf + h̃(2Ts)e−2TsLf + h̃(3Ts)e−3TsLf

▶ Manifold neural networks (MNNs) compose layers of manifold filters and point-wise non-linearities
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Manifold Filters and Manifold Neural Networks

▶ Manifold convolutional filters are linear combinations

of Laplace-Beltrami operator exponentials
⇒ g(x) ≈

∞∑
k=0

h̃(kTs) e
−kTsL f (x)

h̃(0Ts)e−0TsLf + h̃(1Ts)e−1TsLf + h̃(2Ts)e−2TsLf + h̃(3Ts)e−3TsLf

▶ Manifold neural networks (MNNs) compose layers of manifold filters and point-wise non-linearities
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Fundamental Properties of GNNs

My research focuses on utilizing MNNs to understand fundamental properties of GNNs
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Fundamental Properties of Convolutional Neural Networks

▶ CNNs on discrete time/image signals converge to CNNs on continuous time/image signals

Sample from high res to low res Deform from high res

▶ CNNs have two fundamental properties derived from continuous limits that explain their performances

⇒ Resolution: Training CNNs with small images is sufficient for transferring to larger images

⇒ Deformations: CNNs are stable to deformations, which captures the invariance of nature

D. Owerko et al., Transferability of Convolutional Neural Networks in Stationary Learning Tasks, arXiv:2307.11588

S. Mallat, Group invariant scattering, Communications on Pure and Applied Mathematics
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Fundamental Properties of GNNs Derived from MNNs

▶ Graph convolutions are algebraically equivalent to standard convolutions on images

Sample from high res to low res Deform from high res

▶ GNNs have two fundamental properties derived from MNNs to understand their performances

⇒ Resolution: Convergence of GNNs to MNNs implies transferability of GNNs across scales

⇒ Deformations: Stability of MNNs to manifold deformations reveals stability of GNNs
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Resolution: Transferability of Graph Neural Networks

▶ GNNs on dense or relatively sparse graphs converge to MNNs ( ξ ∼ n− 1
d+4 or ξ ∼

(
log n
n

)2/d
)

∥∥∥Φ(H,Ln,Pnf )−PnΦ(H,L, f )
∥∥∥
L2(Gn)

= O

[(
N

α
+ Ah

)√
ξ+

log(n)

n

]
∥f ∥L2(M)

ĥ(λ)

λ
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Resolution: Transferability of Graph Neural Networks

▶ GNNs on dense or relatively sparse graphs converge to MNNs ( ξ ∼ n− 1
d+4 or ξ ∼

(
log n
n

)2/d
)

GA = O

(
CL

ϵ√
N

+

√
log(1/δ)

N
+

(
logN

N

) 1
d

) ĥ(λ)

λ

GNNs trained on small graphs with continuous filters are able to transfer to large graphs
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Deformations: Stability of GNNs Implied by MNNs

▶ GNNs are Lipschtiz to deformations of manifold that are ϵ-small and ϵ-smooth

∥∥∥Φ(H,L, f )−Φ(H,L′, f )
∥∥∥
L2(M)

= O

[(
N

α
+ Ah +

M

γ
+ Bh

)
ϵ

]
∥f ∥L2(M)

ĥ(λ)

λ
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Deformations: Stability of GNNs Implied by MNNs

▶ GNNs are Lipschtiz to deformations of manifold that are ϵ-small and ϵ-smooth

∥∥∥Φ(H,L, f )−Φ(H,L′, f )
∥∥∥
L2(M)

= O

[(
N

α
+ Ah +

M

γ
+ Bh

)
ϵ

]
∥f ∥L2(M)

ĥ(λ)

λ

GNNs with continuous filters are stable to deformations
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GNNs in Wireless Resource Allocation

▶ Train GNNs for optimal resource allocation policies under system constraints in ad-hoc networks

⇒ GNN is trained over a family of wireless networks ⇒ Possible because of stability

⇒ GNN transfers to larger networks without retraining ⇒ Possible because of transferability
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Extension: Tangent Bundle Neural Networks

▶ MNNs process scalar signals over manifolds ⇒ vector fields arise in some applications

▶ We define tangent bundle convolution and further construct tangent bundle neural networks

Visualization of Earth wind field
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Outline of this Presentation

▶ Review of graph filters and graph neural networks (GNNs)

▶ Define manifold filters and manifold neural networks (MNNs)

▶ Transferability of GNNs via convergence of GNNs to MNNs

▶ Stability of GNNs via stability of MNNs under deformations

▶ Applications in wireless communication networks and extensions to vector fields

▶ Generalization analysis of GNNs and the robustness of the generalization

▶ Applications in distributed systems and transferability over random geometric graphs
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Graph Filters and Neural Networks
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Graph Convolutional Filters

▶ Graph G with matrix representation S ∈ Rn×n – graph shift operator – and graph signal x ∈ Rn

▶ Graph convolutional filter is defined as a summation of iterative graph data diffusions

y = hG(S)x =
K−1∑
k=0

hkS
kx – filter with coefficients hk

S1 S1 S1

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y =
3∑

k=0

hkS
kx

h0S
0x h1S

1x h2S
2x h3S

3x
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Graph Convolutional Filters in Frequency Domain

▶ The matrix S (which is symmetric) admits the eigenvector decomposition S = VΛVH

Spectral Representation of Graph Filters

Graph filter with coefficients hk , graph signal x and the filtered signal y

y =
K−1∑
k=0

hkS
kx.

The Graph Fourier Transforms (GFTs) x̃ = VHx and ỹ = VHy are related by

ỹ =
K−1∑
k=0

hkΛ
k x̃ = ĥ(Λ)x̃ ⇒ ỹi =

K−1∑
k=0

hkλ
k
i,nx̃i = ĥ(λi,n)x̃i
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Graph Convolutional Filters in Frequency Domain

▶ The graph filter frequency response is point-wise on a scalar variable – ĥ(λ) =
K−1∑
k=0

hkλ
k

λ1,n λi,n λn,n
λ

ĥ(λ)

▶ A given graph instantiates the frequency response on its given specific eigenvalues λi,n

▶ Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies
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Graph Neural Networks (GNNs)

▶ Graph neural network is a cascade of L layers

▶ Each of the layers is composed of graph
convolutions hG(S) and pointwise nonlinearities σ

▶ Define the learnable parameter set in hG(S) as H

▶ GNN can be written as a map y = ΦG(H,S, x)

Layer 1

Layer 2

Layer 3

x

z1 = h1G(S) x x1 = σ
[
z1

]z1

z2 = h2G(S) x x2 = σ
[
z2

]z2

z3 = h3G(S) x x3 = σ
[
z3

]z3

x1
x1

x2
x2

x3 = ΦG(H, S, x)
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Manifold Filters and Neural Networks

⇒ Graph convolutions; Spectral representation of graph filters; GNN architecture
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Manifold Filters and Neural Networks

⇒ Graph convolutions; Spectral representation of graph filters; GNN architecture
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Manifold Convolutional Filters

▶ d-dimensional manifold M with Laplace-Beltrami (LB) operator L and manifold signal f

▶ A Manifold filter with coefficients h̃ is defined by the input-output relationship

g(x) =

∫ ∞

0

h̃(t) e−tL f (x)dt = h(L) f (x)

e−TsL e−TsL e−TsL

+ + + +

e−0TsLf e−1TsLf e−2TsLf e−3TsLf

h̃(0Ts ) h̃(1Ts ) h̃(2Ts ) h̃(3Ts )

g =
∫
h̃(t)e−tLf dt

h̃(0Ts )e
−0TsLf h̃(1Ts )e

−1TsLf h̃(2Ts )e
−2TsLf h̃(3Ts )e

−3TsLf
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Manifold Convolutional Filters

▶ d-dimensional manifold M with Laplace-Beltrami (LB) operator L and manifold signal f

▶ A Manifold filter with coefficients h̃ is defined by the input-output relationship

g(x) =

∫ ∞

0

h̃(t) e−tL f (x)dt = h(L) f (x)

▶ Manifold convolutions generalize graph convolutions and standard (time) convolutions

⇒ Discretizing a manifold filter yields a graph filter with shift operator e−TsLn

g =
K−1∑
k=0

h̃(kTs) e
−kTsLn f ≈

K−1∑
k=0

h̃(kTs) (I− TsLn)
k f
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Manifold Convolutional Filters

▶ d-dimensional manifold M with Laplace-Beltrami (LB) operator L and manifold signal f

▶ A Manifold filter with coefficients h̃ is defined by the input-output relationship

g(x) =

∫ ∞

0

h̃(t) e−tL f (x)dt = h(L) f (x)

▶ Manifold convolutions generalize graph convolutions and standard (time) convolutions

⇒ Recover standard convolutions if we make the particular choice L = d/dx

g(x) =

∫ ∞

0

h̃(t) e−td/dx f (x) dt =

∫ ∞

0

h̃(t) f (x − t) dt
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Manifold Convolutional Filters in Frequency Domain

▶ L is self-adjoint and positive semi-definite, which leads to a discrete spectrum {λi ,ϕi}i∈N+

Spectral Representation of Manifold Filters

Manifold filter with impulse response h̃(t), manifold signal f (x) and the filtered signal g(x)

g(x) =

∫ ∞

0

h̃(t)e−tLdtf (x).

The frequency components when projecting on the eigenfunctions [f̂ ]i = ⟨f ,ϕi ⟩L2(M) and [ĝ ]i =

⟨g ,ϕi ⟩L2(M) are related by

[ĝ ]i =

∫ ∞

0

h̃(t)e−tλi dt[f̂ ]i = ĥ(λi )[f̂ ]i ⇒ g =
∞∑
i=1

ĥ(λi )[f̂ ]iϕi
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Manifold Convolutional Filters in Frequency Domain

▶ The manifold filter frequency response is point-wise on a scalar variable – ĥ(λ) =
∫∞
0

h̃(t)e−tλdt

λ1 λi · · · · · ·

ĥ(λ)

▶ A given manifold instantiates the frequency response on its given specific eigenvalues λi

▶ Laplace-Beltrami operator possesses infinite spectrum with λi ∝ i2/d according to Weyl’s law
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Manifold Neural Networks (MNNs)

▶ Manifold neural network is a cascade of L layers

▶ Each of the layers is composed of manifold
convolutions h(L) and pointwise nonlinearities σ

▶ Define the learnable parameter set in h(L) as H

▶ MNN can be written as a map y = Φ(H,L, f )

Layer 1

Layer 2

Layer 3

f (x)

y1(x) = h1(L)f (x) f1(x) = σ (y1(x))
y1(x)

y2(x) = h2(L)f1(x) f2(x) = σ (y2(x))
y2(x)

y2(x) = h2(L)f2(x) f3(x) = σ (y3(x))
y3(x)

f1(x)
f1(x)

f2(x)
f2(x)

f3(x) = Φ(H,L, f )
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Resolution: Transferability of Graph Neural Networks

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures
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Resolution: Transferability of Graph Neural Networks

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures
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Sampled Manifolds as Graphs

▶ Geometric graph filters and GNNs converge to their underlying manifold filters and MNNs

⇒ Convergence enables transferability of geometric GNNs from small to large graphs

▶ Sample the manifold at {xi}ni=1. Construct graph Gn with edge weights wij = Kξ

(
∥xi−xj∥2

ξ

)

  

  

  

  
Gaussian kernel-based graphs ϵ-graphs
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Geometric Graph Filters and Neural Networks

▶ Geometric graph filter is defined by replacing Laplace-Beltrami operator with graph Laplacians Ln

g =

∫ ∞

0

h̃(t)e−tLndtf = h(Ln)f, [f]i = f (xi )

▶ Geometric graph neural networks on Gn ⇒ cascading graph filters and non-linearities Φ(H,Ln, f)

Input Output = Channel × Input + Noisef h(Ln) g Input Output = Channel × Input + Noisef h(L) g

▶ Analyze the properties of GNNs and MNNs with the spectral structures of graphs and manifolds
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Geometric Graph Filters and Neural Networks

▶ Geometric graph filter is defined by replacing Laplace-Beltrami operator with graph Laplacians Ln

g =

∫ ∞

0

h̃(t)e−tLndtf = h(Ln)f, [f]i = f (xi )

▶ Geometric graph neural networks on Gn ⇒ cascading graph filters and non-linearities Φ(H,Ln, f)

Input Output = Channel × Input + Noisef
n∑

i=0

ĥ(λi,n)[̂f]iϕi,n g Input Output = Channel × Input + Noisef
∞∑
i=0

ĥ(λi )[f̂ ]iϕi g

▶ Analyze the properties of GNNs and MNNs with the spectral structures of graphs and manifolds
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Lipschitz and Frequency Difference Threshold (FDT) Filters

▶ A filter is Ah-Lipschitz if its frequency response function ĥ(λ) is Ah-Lipschitz continuous

Definition (α-separated spectrum)

The α-separated spectrum of a LB operator L is defined as the partition Λ1(α)∪ . . .∪ΛN(α) such

that all λi ∈ Λk(α) and λj ∈ Λl(α), k ̸= l , satisfy

|λi − λj | > α.

0 Λ1 Λ2 Λ3 Λ4 Λ5
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Lipschitz and Frequency Difference Threshold (FDT) Filters

▶ A filter is Ah-Lipschitz if its frequency response function ĥ(λ) is Ah-Lipschitz continuous

Definition (α-FDT filter)

The frequency response of α-frequency Difference threshold (α-FDT) filter h(L) satisfies

|ĥ(λi )− ĥ(λj)| ≤ δD , for all λi , λj ∈ Λk(α)

0 Λ1 Λ2 Λ3 Λ4 Λ5

h(λ)
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Convergence of Geometric GNNs to MNNs

Theorem (Convergence of Geometric GNNs)

If an L-layer MNN Φ(H,L, ·) on M and GNN Φ(H,Ln, ·) on Gn have normalized Lipschitz

nonlinearities, it holds in high probability that∥∥∥Φ(H,Ln,Pnf )− PnΦ(H,L, f )
∥∥∥
L2(Gn)

= O

[(
N

α
+ Ah

)√
ξ+

log(n)

n

]
∥f ∥L2(M)

with filters that are α-FDT with δD ≤ O(
√
ξ/α) and Ah-Lipschitz continuous.

▶ The properties of large GNNs can be analyzed via MNN ⇒ Transferability across resolutions

▶ The error bound shows trade-off between approximation and discriminability ⇒ nonlinearities lift

Z. Wang et al, Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs, IEEE Trans on

Signal Processing
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Point cloud Model Classification Convergence Result

▶ We evaluate the implementations of GNNs with ModelNet10 classification

Z. Wu et al, 3D shapenets: A deep representation for volumetric shapes, IEEE CVPR 2015

▶ Compare the graph output differences between trained small graphs and large graphs (n = 1000)
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▶ GNNs can converge to MNNs as more points are sampled; Lipschitz GNNs have smaller differences
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Pointcloud Model Classification Transferability Result

▶ We verify the transferability by testing the trained GNNs on graphs with n = 1000

Baseline GNN GF GNN Lipschitz GNN
16.95± 5.42 n = 300 21.97± 4.17 10.10± 1.40 8.60± 2.95
13.11± 4.97 n = 500 19.83± 5.94 7.74± 4.05 7.68± 3.75
10.02± 3.87 n = 700 16.62± 2.38 7.92± 3.14 8.02± 2.77
6.83± 3.96 n = 900 13.85± 3.81 7.45± 4.03 7.44± 3.30

Table: Error rates tested on n = 1000

▶ Transferability allows the GNNs trained on a small graph directly applied to a large graph
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Deformations: Stability of GNNs Implied by MNNs

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures;

⇒ Transferability of GNNs across resolutions based on the convergence of GNNs to MNNs
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Deformations: Stability of GNNs Implied by MNNs

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures;

⇒ Transferability of GNNs across resolutions based on the convergence of GNNs to MNNs
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Manifold Deformations as Operator Perturbations

▶ Stability of MNNs to deformations can be generalized to stability of GNNs and CNNs

⇒ Consider manifold signal f and a deformation τ(x) ∈ M over the manifold (ϵ-small, ϵ-smooth)

p(x) = L′f (x) = Lg(x) = Lf (τ(x))

⇒ Translate manifold signal perturbations as LB operator perturbations (ϵ-small)

Theorem (Manifold deformations)

Let the deformation τ(x) : M → M satisfies dist(x , τ(x)) ≤ ϵ and J(τ∗) = I + ∆ with

∥∆∥F ≤ ϵ. If the gradient field is smooth, it holds that

L − L′ = EL+A,

where E and A satisfy ∥E∥ = O(ϵ) and ∥A∥op = O(ϵ).
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Integral Lipschitz and Frequency Ratio Threshold (FRT) Filters

▶ A filter is Bh-Integral Lipschitz if its frequency response satisfies

|ĥ(a)− ĥ(b)| ≤ Bh|a− b|
(a+ b)/2

, for all a, b ∈ (0,∞)

Definition (γ-separated spectrum)

The γ-separated spectrum of a LB operator L is defined as the partition Λ1(γ)∪ . . .∪ΛN(γ) such

that all λi ∈ Λk(γ) and λj ∈ Λl(γ), k ̸= l , satisfy∣∣∣∣λi

λj
− 1

∣∣∣∣ > γ.

0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6
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Integral Lipschitz and Frequency Ratio Threshold (FRT) Filters

▶ A filter is Bh-Integral Lipschitz if its frequency response satisfies

|ĥ(a)− ĥ(b)| ≤ Bh|a− b|
(a+ b)/2

, for all a, b ∈ (0,∞)

Definition (γ-FRT filter)

The frequency response of γ-Frequency Ratio Threshold (γ-FRT) filter h(L) satisfies

|ĥ(λi )− ĥ(λj)| ≤ δR , for all λi , λj ∈ Λk(γ)

0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

h(λ)
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Stability of Manifold Neural Networks

Theorem (Stability of MNNs to deformations)

An L-layer MNN Φ(H,L, f ) have normalized Lipschitz continuous nonlinearities. Let L′ be the

deformed LB operator with max{α, 2, |γ/1− γ|} ≫ ϵ, then

∥∥∥Φ(H,L, f )−Φ(H,L′, f )
∥∥∥
L2(M)

= O

[(
N

α
+ Ah +

M

γ
+ Bh

)
ϵ

]
∥f ∥L2(M)

if the manifold filters are α-FDT with δD ≤ O(ϵ/α), γ-FRT with δR ≤ O(ϵ/γ), Ah-Lipschitz

continuous and Bh-integral Lipschitz continuous.

▶ The difference bound shows a trade-off between stability and discriminability

▶ The nonlinearities can lift the trade-off by spreading information over the whole spectrum

Z. Wang et al., Stability to Deformations of Manifold Filters and Manifold Neural Networks, IEEE Trans on Signal Processing
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Verifications of Stability under Perturbations

▶ We verify the stability by comparing the performance on normal and deformed point clouds
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Architecture ϵ = 0.2 ϵ = 0.4
GNN2Ly 7.37%± 1.43% 7.71%± 3.96%
GF2Ly 13.76%± 6.82% 13.54%± 7.16%

Architecture ϵ = 0.6 ϵ = 0.8
GNN2Ly 8.04%± 2.83% 11.01%± 6.33%
GF2Ly 14.76%± 5.67% 16.04%± 6.34%
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Generalization of GNNs via a Manifold Persepctive

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures;

⇒ Transferability of GNNs across resolutions based on the convergence of GNNs to MNNs
⇒ Stability of large-scale GNNs implied by stability of MNNs
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Generalization Gap of Geometric Graph Neural Networks across Fixed-Size Graphs

■ Generalization gap of GNNs between the empirical risk and the statistical risk over fixed-size graphs

GA = sup
H∈H

∣∣∣ℓ(Φ(H,Ln, xn), yn)− EXn [ℓ (Φ(H,Ln, xn), yn)]
∣∣∣

Generalize to−−−−−−−→ · · · · · ·

▶ Assume the frequency response function satisfies∣∣∣ĥ(λ)∣∣∣ = O
(
λ−d

)
,
∣∣∣ĥ′(λ)

∣∣∣ ≤ CLλ
−d−1
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Generalization Gap of Geometric Graph Neural Networks across Fixed-Size Graphs

Theorem (Generalization of Geometric GNNs)

If GNN Φ(H,Ln, ·) on a graph sampled from a manifold, it holds in high probability that

GA = O

(
CLξ +

√
log(1/δ)

n
+ n− 1

2

)
with continuous filters and normalized Lipschitz nonlinearities.

▶ The bound shows a trade-off between generalization and discriminability

▶ The nonlinearity functions lift the trade-off by their frequency mixing properties
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Generalization Gap of Geometric GNNs via Manifold

■ The generalization gap between graph empirical risk and manifold statistical risk

GAM = sup
H∈H

∣∣∣∣∣1n
n∑

i=1

ℓ ([Φ(H,Ln, x)]i , [y]i )−
∫
M

ℓ (Φ(H,Lρ, f )(x), g(x)) dµ(x)

∣∣∣∣∣
Theorem (Generalization Gap of Geometric GNNs via Manifold)

If an MNN Φ(H,L, ·) on M and GNN Φ(H,Ln, ·) on Gn, it holds in high
probability that

GAM = O

(
CL

ξ√
n
+

√
log(1/δ)

n
+

(
log n

n

) 1
d

)
with continuous filters and normalized Lipschitz nonlinearities.

▶ The conclusion can be extended to both node-level and graph-level tasks

▶ The practical guidance – restrictions on the filter continuity help with the generalization abilities
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Generalization of Geometric GNNs is Robust to Model Mismatches

■ Generative model mismatch between testing and training graphs is inevitable - robust generalization

▶ See the manifold mismatches/deformations as perturbations on the generated graphs

⇒ Laplacian operator perturbations and node feature perturbations

x → τ(x) Lf (τ(x)) = Lτ f (x), x ∈ M Lf (τ(x)) = Lf ′(x), x ∈ M

 P1

 P2

 P3

 P4

 P5

 P6  P1
 P2

 P3

 P4

 P5

 P6

 P1

 P2

 P3

 P4

 P5

 P6

Graph on M Model−−−−−→
Mismatch

A perturbed graph
Perturbed node

features
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Generalization of Geometric GNNs is Robust to Model Mismatches

▶ Generalization gap between the graph empirical risk and the mismatched manifold statistical risk

GAτ = sup
H∈H

∣∣∣∣∣1n
n∑

i=1

ℓ ([Φ(H,Ln, x)]i , [y]i )−
∫
Mτ

ℓ (Φ(H,Lτ , f )(x), g(x)) dµτ (x)

∣∣∣∣∣
Theorem (Robust Generalization of GNNs to Model Mismatch)

For an Φ(H,L, ·) and GNN Φ(H,Ln, ·) , suppose the mismatch τ is ϵ-small and ϵ-smooth, then
it holds in high probability that

GAτ = O

(
CL

(
ξ√
n
+ ϵ

)
+

√
log(1/δ)

n
+

(
log n

n

) 1
d

)
with continuous filters and normalized nonlinearities.
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Synthetic Experiments on a Chair Manifold

▶ We compute the generalization gap with a synthetic chair manifold by fixing GNN weights
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Generalization Verifications on Real-world Datasets

▶ Generalization gap w.r.t. the number of nodes in the training set for accuracy and loss
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Spectral Properties Impacts

▶ Generalization gap and test accuracy w.r.t. the continuity restriction on the filters on the citation network
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Generalization Robustness Verifications on Real-world Datasets

▶ Generalization gap for edge and node perturbations for the Arxiv dataset for a 3 layered, 256 feature GNN
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Generalization Robustness Verifications on Real-world Datasets

▶ Generalization gap w.r.t. the number of nodes and perturbation levels on ModelNet point cloud dataset
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Application and Extension

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures;

⇒ Transferability of GNNs across resolutions based on the convergence of GNNs to MNNs
⇒ Stability of large-scale GNNs implied by stability of MNNs
⇒ Generalization of GNNs over unseen manifold data

Manifold Filters and Neural Networks: Geometric Graph Signal Processing in the Limit 60



Application and Extension

⇒ Graph and manifold convolutions; Spectral representation of graph and manifold filters;
GNN and MNN architectures;

⇒ Transferability of GNNs across resolutions based on the convergence of GNNs to MNNs
⇒ Stability of large-scale GNNs implied by stability of MNNs
⇒ Generalization of GNNs over unseen manifold data

Manifold Filters and Neural Networks: Geometric Graph Signal Processing in the Limit 61



Large-scale Wireless Power Allocation

▶ We test the trained GNN in other ad-hoc networks of fixed size and density

⇒ The GNN remains optimal across permutations of ad-hoc networks

Ad-hoc network with 25 pairs Ad-hoc network with 50 pairs
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Large-scale Wireless Power Allocation

▶ We test in other networks of increasing size and fixed density

⇒ The GNN transfers to larger ad-hoc networks with no need of retraining

Ad-hoc network with 25 pairs
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Z. Wang et al., Learning decentralized wireless resource allocations with graph neural networks, IEEE Trans on Signal

Processing
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Tangent Bundle Neural Networks

▶ Manifold filters and MNNs process scalar signals over the manifold without covering vector fields

▶ We define Tangent Bundle convolution with the Connection Laplacian ∆F = −
∞∑
i=1

λi ⟨F ,ϕi ⟩ϕi

▶ The tangent bundle filter with impulse response h̃ : R+ → R is given by

G(x) =
∫ ∞

0

h̃(t)et∆F(x)dt = h(∆)F(x).
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Tangent Bundle Neural Networks

▶ Manifold filters and MNNs process scalar signals over the manifold without covering vector fields

▶ We define Tangent Bundle convolution with the Connection Laplacian ∆F = −
∞∑
i=1

λi ⟨F ,ϕi ⟩ϕi

▶ The tangent bundle filter with impulse response h̃ : R+ → R is given by

G(x) =
∫ ∞

0

h̃(t)et∆F(x)dt = h(∆)F(x).

▶ Tangent bundle Fourier Transform is the projections ⇒
[
F
]
i
= ⟨F ,ϕi ⟩

▶ Frequency response of tangent bundle filter h is ⇒ ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt

Theorem (Tangent bundle Filters in the Spectral Domain)

Tangent bundle filters are pointwise in the spectral domain
[
G
]
i = ĥ(λi )

[
F
]
i
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Wind Field Reconstruction with Tangent Bundle NNs

E{ñ} = 0.5n E{ñ} = 0.3n E{ñ} = 0.1n

E{n} = 200 DD-TNN 1.99 · 10−2 ± 2.30 · 10−3 1.18 · 10−2 ± 1.62 · 10−3 3.67 · 10−3 ± 1.23 · 10−3

MNN 3.19 · 10−2 ± 1.31 · 10−2 2.74 · 10−2 ± 1.55 · 10−2 2.58 · 10−2 ± 1.82 · 10−2

MLP 2.03 · 10−2 ± 2.28 · 10−3 1.20 · 10−2 ± 1.68 · 10−3 3.69 · 10−3 ± 1.17 · 10−3

E{n} = 300 DD-TNN 1.88 · 10−2 ± 1.72 · 10−3 1.13 · 10−2 ± 1.54 · 10−3 3.96 · 10−3 ± 1.00 · 10−3

MNN 2.68 · 10−2 ± 7.64 · 10−3 2.41 · 10−2 ± 1.05 · 10−2 2.09 · 10−2 ± 1.76 · 10−2

MLP 1.95 · 10−2 ± 1.74 · 10−3 1.18 · 10−2 ± 1.56 · 10−3 4.00 · 10−3 ± 8.85 · 10−4

E{n} = 400 DD-TNN 1.95 · 10−2 ± 1.66 · 10−3 1.14 · 10−2 ± 1.38 · 10−3 3.70 · 10−3 ± 8.55 · 10−4

MNN 2.48 · 10−2 ± 6.55 · 10−3 2.52 · 10−2 ± 1.20 · 10−2 8.16 · 10−2 ± 1.87 · 10−1

MLP 2.01 · 10−2 ± 1.66 · 10−3 1.19 · 10−2 ± 1.24 · 10−3 3.81 · 10−3 ± 8.46 · 10−4

C. Battiloro, Z. Wang. et al., Tangent bundle convolutional learning: from manifolds to cellular sheaves and back, IEEE Trans

on Signal Processing
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Summary: Manifold Filters and Neural Networks as the Limit

▶ We introduce manifold neural networks (MNNs) as the limits of graph neural networks

▶ And study their fundamental properties:

⇒ Resolution: GNNs converge to MNNs ⇒ the transferability of GNNs across scales

⇒ Deformation: MNNs are stable to deformations ⇒ the stability of large-scale GNNs

⇒ Robust generalization: GNNs can generalize robustly to unseen data over the manifold

▶ Informs the practical design of graph neural networks for large-scale geometric graphs

⇒ Point-cloud analysis, Wireless communications, Wind field reconstructions etc.
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