Graphs and Shift Operators

- A graph is a triplet $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{W})$, which includes vertices \mathcal{V}, edges \mathcal{E}, and weights \mathcal{W}
\Rightarrow Vertices or nodes are a set of n labels. Typical labels are $\mathcal{V}=\{1, \ldots, n\}$
\Rightarrow Edges are ordered pairs of labels (i, j). We interpret $(i, j) \in \mathcal{E}$ as " i can be influenced by j." \Rightarrow Weights $w_{i j} \in \mathbb{R}$ are numbers associated to edges (i, j). "Strength of the influence of j on i."

- A graph is symmetric or undirected if both, the edge set and the weight are symmetric
\Rightarrow Edges come in pairs \Rightarrow We have $(i, j) \in \mathcal{E}$ if and only if $(j, i) \in \mathcal{E}$
\Rightarrow Weights are symmetric \Rightarrow We must have $w_{i j}=w_{j i}$ for all $(i, j) \in \mathcal{E}$

- Most of the graphs we encounter in practical situations are symmetric and weighted
- The adjacency matrix of graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{W})$ is the sparse matrix \mathbf{A} with nonzero entries

$$
A_{i j}=w_{i j}, \text { for all }(i, j) \in \mathcal{E}
$$

- If the graph is symmetric, the adjacency matrix is symmetric $\Rightarrow \mathbf{A}=\mathbf{A}^{\top}$. As in the example

$$
\mathbf{A}=\left[\begin{array}{lllll}
0 & w_{12} & w_{13} & 0 & 0 \\
w_{21} & 0 & w_{23} & w_{24} & 0 \\
w_{31} & w_{32} & 0 & 0 & w_{35} \\
0 & w_{42} & 0 & 0 & w_{45} \\
0 & 0 & w_{53} & w_{54} & 0
\end{array}\right]
$$

- The neighborhood of node i is the set of nodes that influence $i \Rightarrow n(i):=\{j:(i, j) \in \mathcal{E}\}$
- Degree d_{i} of node i is the sum of the weights of its incident edges $\Rightarrow d_{i}=\sum_{j \in n(i)} w_{i j}=\sum_{j:(i, j) \in \mathcal{E}\}} w_{i j}$

- Node 1 neighborhood $\Rightarrow n(1)=\{2,3\}$
- Node 1 degree $\Rightarrow n(1)=w_{12}+w_{13}$
- The degree matrix is a diagonal matrix \mathbf{D} with degrees as diagonal entries $\Rightarrow D_{i i}=d_{i}$
- Write in terms of adjacency matrix as $\mathbf{D}=\operatorname{diag}(\mathbf{A} 1)$. Because $(\mathbf{A 1})_{i}=\sum_{j} w_{i j}=d_{i}$

$$
\mathbf{D}=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

- The Laplacian matrix of a graph with adjacency matrix \mathbf{A} is $\Rightarrow \mathbf{L}=\mathbf{D}-\mathbf{A}=\operatorname{diag}(\mathbf{A} \mathbf{1})-\mathbf{A}$
- Can also be written explicitly in terms of graph weights $A_{i j}=w_{i j}$

$$
\begin{aligned}
& \Rightarrow \text { Off diagonal entries } \Rightarrow L_{i j}=-A_{i j}=-w_{i j} \\
& \Rightarrow \text { Diagonal entries } \Rightarrow L_{i i}=d_{i}=\sum_{j \in n(i)} w_{i j}
\end{aligned}
$$

$$
\mathbf{L}=\left[\begin{array}{rrrrr}
2 & -1 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 & 0 \\
-1 & -1 & 3 & 0 & -1 \\
0 & -1 & 0 & 2 & -1 \\
0 & 0 & -1 & -1 & 2
\end{array}\right]
$$

- The Graph Shift Operator \mathbf{S} is a stand in for any of the matrix representations of the graph

$$
\begin{array}{cccc}
\text { Adjacency Matrix } & \text { Laplacian Matrix } & \text { Normalized Adjacency } & \text { Normalized Laplacian } \\
\mathbf{S}=\mathbf{A} & \mathbf{S}=\mathbf{L} & \mathbf{S}=\overline{\mathbf{A}} & \mathbf{S}=\overline{\mathrm{L}}
\end{array}
$$

- If the graph is symmetric, the shift operator \mathbf{S} is symmetric $\Rightarrow \mathbf{S}=\mathbf{S}^{T}$
- The specific choice matters in practice but most of results and analysis hold for any choice of \mathbf{S}

Graph Signals

- Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing
- Consider a given graph \mathcal{G} with n nodes and shift operator \mathbf{S}
- A graph signal is a vector $\mathbf{x} \in \mathbb{R}^{n}$ in which component x_{i} is associated with node i
- To emphasize that the graph is intrinsic to the signal we may write the signal as a pair $\Rightarrow(\mathbf{S}, \mathbf{x})$

- The graph is an expectation of proximity or similarity between components of the signal \mathbf{x}
- Multiplication by the graph shift operator implements diffusion of the signal over the graph
- Define diffused signal $\mathbf{y}=\mathbf{S} \mathbf{x} \Rightarrow$ Components are $y_{i}=\sum_{j \in n(i)} w_{i j} x_{j}=\sum_{j} w_{i j} x_{j}$
\Rightarrow Stronger weights contribute more to the diffusion output
\Rightarrow Codifies a local operation where components are mixed with components of neighboring nodes.

Graph Convolutional Filters

- Graph convolutional filters are the tool of choice for the linear processing of graph signals
- Given graph shift operator \mathbf{S} and coefficients h_{k}, a graph filter is a polynomial (series) on \mathbf{S}

$$
\mathbf{H}(\mathbf{S})=\sum_{k=0}^{\infty} h_{k} \mathbf{S}^{k}
$$

- The result of applying the filter $\mathbf{H}(\mathbf{S})$ to the signal \mathbf{x} is the signal

$$
\mathbf{y}=\mathbf{H}(\mathbf{S}) \mathbf{x}=\sum_{k=0}^{\infty} h_{k} \mathbf{S}^{k} \mathbf{x}
$$

- We say that $\mathbf{y}=\mathbf{h} \star \mathrm{s} \mathbf{x}$ is the graph convolution of the filter $\mathbf{h}=\left\{h_{k}\right\}_{k=0}^{\infty}$ with the signal \mathbf{x}
- The same filter $\mathbf{h}=\left\{h_{k}\right\}_{k=0}^{\infty}$ can be executed in multiple graphs \Rightarrow We can transfer the filter

Graph Filter on a Graph

Same Graph Filter on Another Graph

- Graph convolution output $\Rightarrow \mathbf{y}=\mathbf{h} \star \mathbf{s} \mathbf{x}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{\infty} h_{k} \mathbf{S}^{k} \mathbf{x}$
- Output depends on the filter coefficients \mathbf{h}, the graph shift operator \mathbf{S} and the signal x
- A graph convolution is a weighted linear combination of the elements of the diffusion sequence
- Can represent graph convolutions with a shift register \Rightarrow Convolution \equiv Shift. Scale. Sum

Time Convolutions as a Particular Case of Graph Convolutions

- Convolutional filters process signals in time by leveraging the time shift operator

- The time convolution is a linear combination of time shifted inputs $\Rightarrow y_{n}=\sum_{k=0}^{K-1} h_{k} x_{n-k}$
- Time signals are representable as graph signals supported on a line graph $\mathbf{S} \Rightarrow$ The pair (\mathbf{S}, \mathbf{x})

x

Sx

$S^{2} x$

$S^{3} x$

- Time shift is reinterpreted as multiplication by the adjacency matrix \mathbf{S} of the line graph

$$
\mathbf{S}^{3} \mathbf{x}=\mathbf{S}\left[\mathbf{S}^{2} \mathbf{x}\right]=\mathbf{S}[\mathbf{S}(\mathbf{S} \mathbf{x})]=\left[\begin{array}{ccccc}
. & 0 & 0 & \vdots \\
\cdots & 0 & 0 \\
\hdashline . & 0 & 0 & 0 \\
\hdashline . & 1 & 0 & 0 \\
\because 0 & 0 & 1 & . .
\end{array}\right]\left[\begin{array}{c}
\vdots \\
\vdots \\
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
: \\
x_{-3} \\
x_{-2} \\
x_{-1} \\
x_{0} \\
\vdots
\end{array}\right]
$$

- Components of the shift sequence are powers of the adjacency matrix applied to the original signal \Rightarrow We can rewrite convolutional filters as polynomials on S , the adjacency of the line graph
- The convolution operation is a linear combination of shifted versions of the input signal
- But we now know that time shifts are multiplications with the adjacency matrix S of line graph

- Time convolution is a polynomial on adjacency matrix of line graph
- The convolution operation is a linear combination of shifted versions of the input signal
- But we now know that time shifts are multiplications with the adjacency matrix \mathbf{S} of line graph

- Time convolution is a polynomial on adjacency matrix of line graph $\Rightarrow \mathbf{y}=\mathbf{h} \star \mathbf{x}=\sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$
- If we let \mathbf{S} be the shift operator of an arbitrary graph we recover the graph convolution

Graph Fourier Transform

- The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems
- We work with symmetric graph shift operators $\Rightarrow \mathrm{S}=\mathrm{S}^{H}$
- Introduce eigenvectors \mathbf{v}_{i} and eigenvalues λ_{i} of graph shift operator $\mathbf{S} \Rightarrow \mathbf{S} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$
\Rightarrow For symmetric \mathbf{S} eigenvalues are real. We have ordered them $\Rightarrow \lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n}$
- Define eigenvector matrix $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ and eigenvalue matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\left[\lambda_{1} ; \ldots ; \lambda_{n}\right]\right)$
\Rightarrow Eigenvector decomposition of Graph Shift Operator $\Rightarrow \mathbf{S}=\mathbf{V} \wedge \mathbf{V}^{H}$. With $\mathbf{V}^{H} \mathbf{V}=\mathbf{I}$

Graph Fourier Transform

Given a graph shift operator $\mathbf{S}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{H}$, the graph Fourier transform (GFT) of graph signal \mathbf{x} is

$$
\tilde{\mathbf{x}}=\mathbf{v}^{H} \mathbf{x}
$$

- The GFT is a projection on the eigenspace of the graph shift operator.
- We say \tilde{x} is a graph frequency representation of \mathbf{x}. A representation in the graph frequency domain

Inverse Graph Fourier Transform

Given a graph shift operator $\mathbf{S}=\mathbf{V} \mathbf{\Lambda V} \mathbf{V}^{H}$, the inverse graph Fourier transform (iGFT) of GFT $\tilde{\mathbf{x}}$ is

$$
\tilde{\tilde{x}}=V \tilde{x}
$$

- Given that $\mathbf{V}^{H} \mathbf{V}=\mathbf{I}$, the iGFT of the GFT of signal \mathbf{x} recovers the signal \mathbf{x}

$$
\tilde{\tilde{\mathbf{x}}}=\mathbf{V} \tilde{\mathbf{x}}=\mathbf{V}\left(\mathbf{V}^{H} \mathbf{x}\right)=\mathbf{l} \mathbf{x}=\mathbf{x}
$$

Graph Frequency Response of Graph Filters

- Graph filters admit a pointwise representation when projected into the shift operator's eigenspace

Theorem (Graph frequency representation of graph filters)
Consider graph filter \mathbf{h} with coefficients h_{k}, graph signal \mathbf{x} and the filtered signal $\mathbf{y}=\sum_{k=0}^{\infty} h_{k} \mathbf{S}^{k} \mathbf{x}$. The GFTs $\tilde{\mathbf{x}}=\mathbf{V}^{H} \mathbf{x}$ and $\tilde{\mathbf{y}}=\mathbf{V}^{H} \mathbf{y}$ are related by

$$
\tilde{\mathbf{y}}=\sum_{k=0}^{\infty} h_{k} \boldsymbol{\Lambda}^{k} \tilde{\mathbf{x}}
$$

- The same polynomial but on different variables. One on \mathbf{S}. The other on eigenvalue matrix $\boldsymbol{\Lambda}$
- In the graph frequency domain graph filters are a diagonal matrices $\Rightarrow \tilde{\mathbf{y}}=\sum_{k=0}^{\infty} h_{k} \Lambda^{k} \tilde{\mathbf{x}}$
- Thus, graph convolutions are pointwise in the GFT domain $\Rightarrow \tilde{y}_{i}=\sum_{k=0}^{\infty} h_{k} \lambda_{i}^{k} \tilde{X}_{i}=\tilde{h}\left(\lambda_{i}\right) \tilde{x}_{i}$

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients $\mathbf{h}=\left\{h_{k}\right\}_{k=1}^{\infty}$, the graph frequency response is the polynomial

$$
\tilde{h}(\lambda)=\sum_{k=0}^{\infty} h_{k} \lambda^{k}
$$

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients $\mathbf{h}=\left\{h_{k}\right\}_{k=1}^{\infty}$, the graph frequency response is the polynomial

$$
\tilde{h}(\lambda)=\sum_{k=0}^{\infty} h_{k} \lambda^{k}
$$

- Frequency response is the same polynomial that defines the graph filter \Rightarrow but on scalar variable λ
- Frequency response is independent of the graph \Rightarrow Depends only on filter coefficients
- The role of the graph is to determine the eigenvalues on which the response is instantiated
- Graph filter frequency response is a polynomial on a scalar variable $\lambda \Rightarrow \tilde{h}(\lambda)=\sum_{k=0}^{\infty} h_{k} \lambda^{k}$
- Completely determined by the filter coefficients $\mathbf{h}=\left\{h_{k}\right\}_{k=1}^{\infty}$. The Graph has nothing to do with it

- A given (another) graph instantiates the response on its given (different) specific eigenvalues λ_{i}
- Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

Learning with Graph Signals

- Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals
- In this course, machine learning (ML) on graphs \equiv empirical risk minimization (ERM) on graphs.
- In ERM we are given:
\Rightarrow A training set \mathcal{T} containing observation pairs $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}$. Assume equal length $\mathrm{x}, \mathrm{y}, \in \mathbb{R}^{n}$.
\Rightarrow A loss function $\ell(\mathbf{y}, \hat{\mathbf{y}})$ to evaluate the similarity between \mathbf{y} and an estimate $\hat{\mathbf{y}}$
\Rightarrow A function class \mathcal{C}
- Learning means finding function $\Phi^{*} \in \mathcal{C}$ that minimizes loss $\ell(\mathbf{y}, \Phi(\mathbf{x}))$ averaged over training set

$$
\Phi^{*}=\underset{\Phi \in \mathcal{C}}{\operatorname{argmin}} \sum_{(x, y) \in \mathcal{T}} \ell(\mathbf{y}, \Phi(\mathbf{x}),)
$$

- We use $\Phi^{*}(\mathbf{x})$ to estimate outputs $\hat{\mathbf{y}}=\Phi^{*}(\mathbf{x})$ when inputs \mathbf{x} are observed but outputs \mathbf{y} are unknown
- In ERM, the function class \mathcal{C} is the degree of freedom available to the system's designer

$$
\Phi^{*}=\underset{\Phi \in \mathcal{C}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\mathbf{y}, \Phi(\mathbf{x}))
$$

- Designing a Machine Learning \equiv finding the right function class \mathcal{C}
- Since we are interested in graph signals, graph convolutional filters are a good starting point

- Input / output signals \mathbf{x} / y are graph signals supported on a common graph with shift operator \mathbf{S}
- Function class \Rightarrow graph filters of order K supported on $\mathbf{S} \Rightarrow \Phi(x)=\sum_{k=0}^{K-1} h_{k} \mathbf{S}^{k} \mathbf{x}=\Phi(\mathrm{x} ; \mathbf{S}, \mathbf{h})$

- Learn ERM solution restricted to graph filter class $\Rightarrow \mathbf{h}^{*}=\underset{\mathbf{h}}{\operatorname{argmin}} \sum_{(x, y) \in \mathcal{T}} \ell(\mathbf{y}, \Phi(x ; \mathbf{S}, \mathbf{h}))$ \Rightarrow Optimization is over filter coefficients \mathbf{h} with the graph shift operator \mathbf{S} given
- Outputs $\mathbf{y} \in \mathbb{R}^{m}$ are not graph signals \Rightarrow Add readout layer at filter's output to match dimensions
- Readout matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ yields parametrization $\Rightarrow \mathbf{A} \times \Phi(\mathbf{x} ; \mathbf{S}, \mathbf{h})=\mathbf{A} \times \sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$

- Making \mathbf{A} trainable is inadvisable. Learn filter only. $\Rightarrow \mathbf{h}^{*}=\underset{\mathbf{h}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\mathbf{y}, \mathbf{A} \times \Phi(\mathbf{x} ; \mathbf{S}, \mathbf{h}))$
- Readouts are simple. Read out node $i \Rightarrow A=\mathbf{e}_{i}^{T}$. Read out signal average $\Rightarrow A=1^{T}$.

Graph Neural Networks (GNNs)

[1] F. Gama, et.al, "Convolutional Neural Network Architectures for Signals Supported on Graphs," IEEE-TSP. Arxiv: 1805.00165 [2] F. Gama, et.al, "Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks," IEEE-SPM. Arxiv: 2003.03777

- A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries
- The result of applying pointwise σ to a vector \mathbf{x} is $\Rightarrow \sigma[\mathbf{x}]=\sigma\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}\sigma\left(x_{1}\right) \\ \sigma\left(x_{2}\right) \\ \vdots \\ \sigma\left(x_{n}\right)\end{array}\right]$
- A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector
- ReLU: $\sigma(x)=\max (0, x)$. Hyperbolic tangent: $\sigma(x)=\left(e^{2 x}-1\right) /\left(e^{2 x}+1\right)$. Absolute value: $\sigma(x)=|x|$.
- Pointwise nonlinearities decrease variability. \Rightarrow They function as demodulators.
- Graph filters have limited expressive power because they can only learn linear maps
- A first approach to nonlinear maps is the graph perceptron $\Rightarrow \Phi(\mathbf{x})=\sigma\left[\sum_{k=0}^{K-1} h_{k} \mathbf{S}^{k} \mathbf{x}\right]=\Phi(\mathbf{x} ; \mathbf{S}, \mathbf{h})$

- Optimal regressor restricted to perceptron class $\Rightarrow \mathbf{h}^{*}=\underset{\mathbf{h}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\mathbf{y}, \Phi(\mathbf{x} ; \mathbf{S}, \mathbf{h}))$
\Rightarrow Perceptron allows learning of nonlinear maps \Rightarrow More expressive. Larger Representable Class
- To define a GNN we compose several graph perceptrons \Rightarrow We layer graph perceptrons
- Layer 1 processes input signal \mathbf{x} with the perceptron $\mathbf{h}_{1}=\left[h_{10}, \ldots, h_{1, K-1}\right]$ to produce output \mathbf{x}_{1}

$$
\mathbf{x}_{1}=\sigma\left[\mathbf{z}_{1}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{1 k} \mathbf{S}^{k} \mathbf{x}\right]
$$

- The Output of Layer $1 x_{1}$ becomes an input to Layer 2. Still x_{1} but with different interpretation
- Repeat analogous operations for L times (the GNNs depth) \Rightarrow Yields the GNN predicted output x_{L}
- To define a GNN we compose several graph perceptrons \Rightarrow We layer graph perceptrons
- Layer 2 processes its input signal \mathbf{x}_{1} with the perceptron $\mathbf{h}_{2}=\left[h_{20}, \ldots, h_{2, K-1}\right]$ to produce output \mathbf{x}_{2}

$$
\mathbf{x}_{2}=\sigma\left[\mathbf{z}_{2}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{2 k} \mathbf{S}^{k} \mathbf{x}_{1}\right]
$$

- The Output of Layer $2 \mathbf{x}_{2}$ becomes an input to Layer 3. Still x_{2} but with different interpretation
- Repeat analogous operations for L times (the GNNs depth) \Rightarrow Yields the GNN predicted output \mathbf{x}_{L}
- A generic layer of the GNN, Layer ℓ, takes as input the output $\mathbf{x}_{\ell-1}$ of the previous layer $(\ell-1)$
- Layer ℓ processes its input signal $\mathbf{x}_{\ell-1}$ with perceptron $\mathbf{h}_{\ell}=\left[h_{\ell 0}, \ldots, h_{\ell, K-1}\right]$ to produce output \mathbf{x}_{ℓ}

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{z}_{\ell}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}\right]
$$

- With the convention that the Layer 1 input is $\mathrm{x}_{0}=\mathrm{x}$, this provides a recursive definition of a GNN
- If it has L layers, the GNN output $\Rightarrow \mathbf{x}_{L}=\Phi\left(\mathbf{x} ; \mathbf{S}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{L}\right)=\Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$
- The filter tensor $\mathcal{H}=\left[\mathbf{h}_{1}, \ldots, \mathbf{h}_{L}\right]$ is the trainable parameter. The graph shift is prior information
- Illustrate definition with a GNN with 3 layers
- Feed input signal $x=x_{0}$ into Layer 1

$$
\mathbf{x}_{1}=\sigma\left[\mathbf{z}_{1}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{1 k} \mathbf{s}^{k} \mathbf{x}_{0}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by filter tensor $\mathcal{H}=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}\right]$

- Illustrate definition with a GNN with 3 layers
- Feed Layer 1 output as an input to Layer 2

$$
\mathbf{x}_{2}=\sigma\left[\mathbf{z}_{2}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{2 k} \mathbf{s}^{k} \mathbf{x}_{1}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by filter tensor $\mathcal{H}=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}\right]$

- Illustrate definition with a GNN with 3 layers
- Feed Layer 2 output as an input to Layer 3

$$
\mathbf{x}_{3}=\sigma\left[\mathbf{z}_{3}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{3 k} \mathbf{s}^{k} \mathbf{x}_{2}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by filter tensor $\mathcal{H}=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}\right]$

Some Observations about Graph Neural Networks

- A GNN with L layers follows L recursions of the form

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{z}_{\ell}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}\right]
$$

- A composition of L layers. Each of which itself a...
\Rightarrow Compositions of Filters \& Pointwise nonlinearities

- A GNN with L layers follows L recursions of the form

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{z}_{\ell}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}\right]
$$

- Filters are parametrized by...
\Rightarrow Coefficients $h_{\ell k}$ and graph shift operators \mathbf{S}

- A GNN with L layers follows L recursions of the form

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{z}_{\ell}\right]=\sigma\left[\sum_{k=0}^{K-1} h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}\right]
$$

- Output $\mathbf{x}_{L}=\Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$ parametrized by...
\Rightarrow Learnable Filter tensor $\mathcal{H}=\left[\mathbf{h}_{1}, \ldots, \mathbf{h}_{L}\right]$

- Learn Optimal GNN tensor $\mathcal{H}^{*}=\left(\mathbf{h}_{1}^{*}, \mathbf{h}_{2}^{*}, \mathbf{h}_{3}^{*}\right)$ as

$$
\mathcal{H}^{*}=\underset{\mathcal{H}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H}), \mathbf{y})
$$

- Optimization is over tensor only. Graph \mathbf{S} is given
\Rightarrow Prior information given to the GNN

- GNNs are minor variations of graph filters
- Add pointwise nonlinearities and layer compositions
\Rightarrow Nonlinearities process individual entries
\Rightarrow Component mixing is done by graph filters only
- GNNs do work (much) better than graph filters
\Rightarrow Which is unexpected and deserves explanation
\Rightarrow Which we will attempt with stability analyses

- GNN Output depends on the graph S.

- But we can reinterpret \mathbf{S} as an input of the GNN
\Rightarrow Enabling transference across graphs

$$
\boldsymbol{\Phi}(\mathrm{x} ; \mathrm{S}, \mathcal{H}) \Rightarrow \boldsymbol{\Phi}(\mathrm{x} ; \tilde{\mathbf{S}}, \mathcal{H})
$$

\Rightarrow Same as we enable transference across signals

$$
\boldsymbol{\Phi}(\mathrm{x} ; \mathbf{S}, \mathcal{H}) \Rightarrow \boldsymbol{\Phi}(\tilde{\mathrm{x}} ; \mathbf{S}, \mathcal{H})
$$

- A trained GNN is just a filter tensor \mathcal{H}^{*}

- There is no difference between CNNs and GNNs
- To recover a CNN just particularize the shift operator the adjacency matrix of the directed line graph

$$
\mathbf{S}=\left[\begin{array}{ccccc}
& : & : & : & \\
\cdots & 0 & 0 & 0 & \cdots \\
\cdots & 1 & 0 & 0 & \cdots \\
\cdots & 0 & 1 & 0 & \cdots \\
\cdots & 0 & 0 & 1 & \cdots \\
& : & : & : &
\end{array}\right]
$$

- GNNs are proper generalizations of CNNs

Fully Connected Neural Networks

- We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals
- We argued this is a good idea because they are generalizations of convolutional filters and CNNs
- We can explore this better if we go back to the road not taken \Rightarrow Fully connected neural networks

- Instead of graph filters, we choose arbitrary linear functions $\Rightarrow \boldsymbol{\Phi}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x} ; \mathrm{H})=\mathrm{Hx}$

- Optimal regressor is ERM solution restricted to linear class $\Rightarrow \mathbf{H}^{*}=\underset{\mathbf{H}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\boldsymbol{\Phi}(\mathbf{x} ; \mathbf{H}), \mathbf{y})$
- We increase expressive power with the introduction of a perceptrons $\Rightarrow \boldsymbol{\Phi}(\mathbf{x})=\boldsymbol{\Phi}(\mathbf{x} ; \mathbf{H})=\sigma[\mathbf{H x}]$

- Optimal regressor restricted to perceptron class $\Rightarrow \mathbf{H}^{*}=\underset{\mathbf{H}}{\operatorname{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\boldsymbol{\Phi}(\mathbf{x} ; \mathbf{H}), \mathbf{y})$
- A generic layer, Layer ℓ of a FCNN, takes as input the output $\mathbf{x}_{\ell-1}$ of the previous layer $(\ell-1)$
- Layer ℓ processes its input signal $\mathbf{x}_{\ell-1}$ with a linear perceptron \mathbf{H}_{ℓ} to produce output \mathbf{x}_{ℓ}

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{z}_{\ell}\right]=\sigma\left[\mathbf{H}_{\ell} \mathbf{x}_{\ell-1}\right]
$$

- With the convention that the Layer 1 input is $\mathrm{x}_{0}=\mathrm{x}$, this provides a recursive definition of a FCNN
- If it has L layers, the FCNN output $\Rightarrow \mathbf{x}_{L}=\Phi\left(\mathrm{x} ; \mathbf{H}_{1}, \ldots, \mathbf{H}_{L}\right)=\Phi(\mathrm{x} ; \mathcal{H})$
- The filter tensor $\mathcal{H}=\left[\mathbf{H}_{1}, \ldots, \mathbf{H}_{L}\right]$ is the trainable parameter.
- Illustrate definition with an FCNN with 3 layers
- Feed input signal $x=x_{0}$ into Layer 1

$$
\mathbf{x}_{1}=\sigma\left[\mathbf{z}_{1}\right]=\sigma\left[\mathbf{H}_{1} \mathbf{x}_{0}\right]
$$

- Output $\Phi(\mathbf{x} ; \mathcal{H})$ Parametrized by $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$

- Illustrate definition with an FCNN with 3 layers
- Feed Layer 1 output as an input to Layer 2

$$
\mathbf{x}_{2}=\sigma\left[\mathbf{z}_{2}\right]=\sigma\left[\mathbf{H}_{2} \mathbf{x}_{1}\right]
$$

- Output $\Phi(\mathbf{x} ; \mathcal{H})$ Parametrized by $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$

- Illustrate definition with an FCNN with 3 layers
- Feed Layer 2 output as an input to Layer 3

$$
\mathbf{x}_{3}=\sigma\left[\mathbf{z}_{3}\right]=\sigma\left[\mathbf{H}_{3} \mathbf{x}_{2}\right]
$$

- Output $\Phi(\mathbf{x} ; \mathcal{H})$ Parametrized by $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$

Neural Networks vs Graph Neural Networks

- Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

$$
\min _{\mathcal{H}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\boldsymbol{T}(\mathbf{x} ; \mathcal{H}), \mathbf{y}) \leq \min _{\mathcal{H}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell(\boldsymbol{\Phi}(\mathbf{x} ; \mathbf{S}, \mathcal{H}), \mathbf{y})
$$

- The fully connected NN does better. But this holds for the training set
- In practice, the GNN does better because it generalizes better to unseen signals
\Rightarrow Because it exploits internal symmetries of graph signals codified in the graph shift operator
- Suppose the graph represents a recommendation system where we want to fill empty ratings
- We observe ratings with the structure in the left. But we do not observe examples like the other two
- From examples like the one in the left, the NN learns how to fill the middle signal but not the right

- The GNN will succeed at predicting ratings for the signal on the right because it knows the graph
- The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal

- The GNN exploits symmetries of the signal to effectively multiply available data
- This will be formalized later as the permutation equivariance of graph neural networks

Graph Filter Banks

- Filters isolate features. When we are interested in multiple features, we use Banks of filters
- A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank
- Filter f in the bank uses coefficients $\mathbf{h}^{f}=\left[h_{1}^{f} ; \ldots ; h_{K-1}^{f}\right] \Rightarrow$ Output \mathbf{z}^{f} is a graph signal

- Filter bank output is a collection of F graph signals \Rightarrow Matrix graph signal $\mathbf{Z}=\left[\mathbf{z}^{1}, \ldots, \mathbf{z}^{F}\right]$
- The input of a filter bank is a single graph signal \mathbf{x}. Rows of \mathbf{x} are signals components x_{i}.
- Output matrix \mathbf{Z} is a collection of signals \mathbf{z}^{f}. Rows of which are components z_{i}^{f}.
- Vector \mathbf{z}_{i} supported at each node. Columns of \mathbb{Z} are graph signals z^{\prime}. Rows of \mathbb{Z} are node features z_{2}

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- The input of a filter bank is a single graph signal \mathbf{x}. Rows of \mathbf{x} are signals components x_{i}.
- Output matrix \mathbf{Z} is a collection of signals \mathbf{z}^{f}. Rows of which are components z_{i}^{f}.
- Vector \mathbf{z}_{i} supported at each node. Columns of \mathbf{Z} are graph signals \mathbf{z}^{f}. Rows of \mathbf{Z} are node features z_{i}

$$
\begin{aligned}
\mathbf{Z} & =\left[\begin{array}{ccccc}
z_{1}^{1} & \cdots & z_{1}^{f} & \cdots & z_{1}^{F} \\
\vdots & & \vdots & & \vdots \\
z_{i}^{1} & \cdots & z_{i}^{f} & \cdots & z_{i}^{F} \\
\vdots & & \vdots & & \vdots \\
z_{n}^{1} & \cdots & z_{n}^{f} & \cdots & z_{n}^{F}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{z}_{1} \\
\vdots \\
\mathbf{z}_{i} \\
\vdots \\
\mathbf{z}_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\mathbf{z}^{1} & \cdots & \mathbf{z}^{f} & \cdots & \mathbf{z}^{F}
\end{array}\right]
\end{aligned}
$$

- The input of a filter bank is a single graph signal \mathbf{x}. Rows of \mathbf{x} are signals components x_{i}.
- Output matrix \mathbf{Z} is a collection of signals \mathbf{z}^{f}. Rows of which are components z_{i}^{f}.
- Vector \mathbf{z}_{i} supported at each node. Columns of \mathbf{Z} are graph signals z^{\prime}. Rows of \mathbf{Z} are node features \mathbf{z}_{i}

Multiple Feature GNNs

- We leverage filter banks to create GNNs that process multiple features per layer
- Filter banks output a collection of multiple graph signals $\Rightarrow A$ matrix graph signal $\mathbf{Z}=\left[z^{1}, \ldots, \mathbf{z}^{F}\right]$
- The F graph signals \mathbf{z}^{f} represent F features per node. A vector \mathbf{z}_{i} supported at each node

- We would now like to process multiple feature graph signals. Process each feature with a filterbank.
- Filter banks output a collection of multiple graph signals $\Rightarrow A$ matrix graph signal $\mathbf{Z}=\left[z^{1}, \ldots, \mathbf{z}^{F}\right]$
- The F graph signals \mathbf{z}^{f} represent F features per node. A vector \mathbf{z}_{i} supported at each node

- We would now like to process multiple feature graph signals. Process each feature with a filterbank.
- Filter banks output a collection of multiple graph signals $\Rightarrow A$ matrix graph signal $\mathbf{Z}=\left[z^{1}, \ldots, \mathbf{z}^{F}\right]$
- The F graph signals \mathbf{z}^{f} represent F features per node. A vector \mathbf{z}_{i} supported at each node

- We would now like to process multiple feature graph signals. Process each feature with a filterbank.
- Each of the F features \mathbf{x}^{f} is processed with G filters with coefficients $h_{k}^{f g} \Rightarrow \mathbf{u}^{f g}=\sum_{k=0}^{K-1} h_{k}^{f g} \mathbf{S}^{k} \mathbf{x}^{f}$

- This Multiple-Input-Multiple-Output Graph Filter generates an output with $F \times G$ features

- Reduce to G outputs with sum over input features for given $g \Rightarrow \mathbf{z}^{g}=\sum_{f=1}^{F} \mathbf{u}^{f g}=\sum_{f=1}^{F} \sum_{k=0}^{K-1} h_{k}^{f g} \mathbf{S}^{k} x^{f}$

- MIMO graph filters are cumbersome, not difficult. Just $F \times G$ filters. Or F filter banks.
- Easier with matrices $\Rightarrow G \times F$ coefficient matrix \mathbf{H}_{k} with entries $\left(\mathbf{H}_{k}\right)_{f g}=h_{k}^{f g}$

$$
\mathbf{Z}=\sum_{k=0}^{k-1} \mathbf{S}^{k} \times \mathbf{X} \times \mathbf{H}_{k}
$$

- This is a more compact format of the MIMO filter. It is equivalent

$$
\left[\begin{array}{lllll}
\mathbf{z}^{1} & . . & \mathbf{z}^{g} & . . & \mathbf{z}^{G}
\end{array}\right]=\sum_{k=0}^{K-1} \mathbf{S}^{k} \times\left[\begin{array}{lllll}
\mathbf{x}^{1} & . . & \mathbf{x}^{f} & . . & \mathbf{x}^{F}
\end{array}\right] \times\left[\begin{array}{ccccc}
h_{k}^{11} & . . & h_{k}^{1 g} & . . & h_{k}^{1 G} \\
\vdots & & \vdots & & \vdots \\
h_{k}^{f 1} & \cdots & h_{k}^{f g} & \cdots & h_{k}^{f G} \\
\vdots & & \vdots & & \vdots \\
h_{k}^{F 1} & \cdots & h_{k}^{F g} & \cdots & h_{k}^{F G}
\end{array}\right]
$$

- MIMO GNN stacks MIMO perceptrons \Rightarrow Compose of MIMO filters with pointwise nonlinearities
- Layer ℓ processes input signal $\mathbf{X}_{\ell-1}$ with perceptron $\mathbf{H}_{\ell}=\left[\mathbf{H}_{\ell 0}, \ldots, \mathbf{H}_{\ell, K-1}\right]$ to produce output \mathbf{X}_{ℓ}

$$
\mathbf{X}_{\ell}=\sigma\left[\mathbf{Z}_{\ell}\right]=\sigma\left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{X}_{\ell-1} \mathbf{H}_{\ell k}\right]
$$

- Denoting the Layer 1 input as $\mathbf{X}_{0}=\mathbf{X}$, this provides a recursive definition of a MIMO GNN
- If it has L layers, the GNN output $\Rightarrow \mathbf{X}_{L}=\Phi\left(\mathbf{x} ; \mathbf{S}, \mathbf{H}_{1}, \ldots, \mathbf{H}_{L}\right)=\Phi(\mathbf{x} ; \mathbf{S}, \mathcal{H})$
- The filter tensor $\mathcal{H}=\left[\mathbf{H}_{1}, \ldots, \mathbf{H}_{L}\right]$ is the trainable parameter. The graph shift is prior information
- We illustrate with a MIMO GNN with 3 layers
- Feed input signal $\mathbf{X}=\mathbf{X}_{0}$ into Layer 1 (F_{0} features)

$$
\mathbf{X}_{1}=\sigma\left[\mathbf{Z}_{1}\right]=\sigma\left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{X}_{0} \mathbf{H}_{1 k}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{X} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by trainable tensor $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$

- We illustrate with a MIMO GNN with 3 layers
- Feed Layer 1 output as an input to Layer 2 (F_{1} features)

$$
\mathbf{X}_{2}=\sigma\left[\mathbf{Z}_{2}\right]=\sigma\left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{X}_{1} \mathbf{H}_{2 k}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{X} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by trainable tensor $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$
- We illustrate with a MIMO GNN with 3 layers
- Feed Layer 2 output (F_{2} features) as an input to Layer 3

$$
\mathbf{X}_{3}=\sigma\left[\mathbf{Z}_{3}\right]=\sigma\left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{X}_{2} \mathbf{H}_{3 k}\right]
$$

- Last layer output is the GNN output $\Rightarrow \Phi(\mathbf{X} ; \mathbf{S}, \mathcal{H})$
\Rightarrow Parametrized by trainable tensor $\mathcal{H}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}\right]$

Algebraic Convolutional Information Processing

- Algebraic filters are a generic abstraction of the common features of convolutional signal processing
- Graph, time, and image convolutions can be expressed as particular cases of algebraic filters
- Signals in $M=\mathbb{R}^{n} \Rightarrow$ Traditional matrix multiplications $\Rightarrow \mathbf{y}=\mathrm{Ex}$
- Signals in $M=L_{2}([0,1]) \Rightarrow$ Linear functionals $\Rightarrow \mathbf{y}=\int_{0}^{1} E(u, v) \mathbf{x}(v) d v$

- End (M) : the set of all linear maps that can be applied to a signal x in M
\Rightarrow Learning in $\operatorname{End}(M)$ is not scalable \Rightarrow Search over All Matrices. Or over all linear functionals
- For Scalable learning \Rightarrow We do restrict allowable linear maps
\Rightarrow To those that represent a more restrictive algebra
- Map elements a of the algebra A with a homomorphism

$$
\rho: A \rightarrow \operatorname{End}(M)
$$

- Map abstract filters $a \in A$ into concrete endomorphisms $\rho(a)$
\Rightarrow Convolutional filters yield outputs $\Rightarrow y=\rho(a) x$

An Algebraic SP model is a triplet (A, M, ρ)

- A is an Algebra with unity where filters $a \in A$ live
- It defines the rules of convolutional signal processing
- M is a vector space
- The space containing the signals x we want to process

- ρ is a homomorphism from A to the endomorphisms of M

Task

Process signals x that are supported on a graph with n nodes. A matrix representation of the graph is given in the matrix S .

- GSP in the graph \mathbf{S} is a particular case of ASP in which
$\Rightarrow M=\mathbb{R}^{n} \Rightarrow$ Vectors with n components
$\Rightarrow A=P(t) \Rightarrow$ The algebra of polynomials $h=\sum_{k} h_{k} t^{k}$
\Rightarrow Shift operator $\rho(t)=\mathbf{S} \Rightarrow$ Resulting in filters

$$
\rho(h)=\rho\left(\sum_{k} h_{k} t^{k}\right)=\sum_{k} h_{k} \mathbf{S}^{k}
$$

- Processing \mathbf{x} with filter $\rho(h)$ yields output $\Rightarrow \mathbf{y}=\rho(h) \mathbf{x}=\rho\left(\sum_{k} h_{k} t^{k}\right) \mathbf{x}=\sum_{k} h_{k} \mathbf{S}^{k} \mathbf{x}$

Task

Process sequences X with values $(X)_{n}=x_{n}$ for integer indexes $n \in \mathbb{Z}$. The sequences have finite energy. We say that $X \in L_{2}(\mathbb{Z})$

- DTSP is a particular case of ASP in which

$$
\Rightarrow M=L_{2}(\mathbb{Z}) \Rightarrow \text { Finite-energy sequences in } \mathbb{Z}
$$

$\Rightarrow A=P(t) \Rightarrow$ The algebra of polynomials $h=\sum_{k} h_{k} t^{k}$

- DTSP is a particular case of ASP in which
\Rightarrow Shift operator is a time shift $\rho(t)=S$ such that

$$
(S X)_{n}=(X)_{n-1}
$$

\Rightarrow This mapping of the generator t yields filters

$$
\rho(h)=\rho\left(\sum_{k} h_{k} t^{k}\right)=\sum_{k} h_{k} S^{k}
$$

where S^{k} represents k applications of S

- Processing X with $\rho(h)$ yields $\Rightarrow(Y)_{n}=(\rho(h) X)_{n}=\left(\sum_{k} h_{k} S^{k} X\right)_{n}=\sum_{k} h_{k}(X)_{n-k}$

Task

Process images, defined as sequences X with values $(X)_{m n}=x_{m n}$ that depend on two integer indexes $m, n \in \mathbb{Z}$. The sequences have finite energy. We say that $X \in L_{2}\left(\mathbb{Z}^{2}\right)$

- IP is a particular case of ASP in which

$$
\Rightarrow M=L_{2}\left(\mathbb{Z}^{2}\right) \Rightarrow \text { Finite-energy sequences in } \mathbb{Z}^{2}
$$

$$
\Rightarrow A=P(x, y) \Rightarrow \text { Two-letter polynomials } h=\sum_{k} h_{k \mid} x^{k} y^{\prime}
$$

- IP is a particular case of ASP in which
\Rightarrow Two shift operators $\rho(x)=S_{x}$ and $\rho(y)=S_{y}$

$$
\left(S_{x} X\right)_{m n}=(X)_{(m-1) n} \quad\left(S_{y} X\right)_{m n}=(X)_{m(n-1)}
$$

\Rightarrow This mapping of the generators x and y yields filters

$$
\rho(h)=\rho\left(\sum_{k} h_{k} t^{k}\right)=\sum_{k} h_{k l} S_{x}^{k} S_{y}^{\prime}
$$

S_{x}^{k} or S_{x}^{k} represent k or I applications of S_{x} or S_{I}

- Processing X yields $\Rightarrow(Y)_{m n}=(\rho(h) X)_{m n}=\left(\sum_{k l} h_{k l} S_{x}^{k} S_{y}^{\prime} X\right)_{m n}=\sum_{k} h_{k}(X)_{(m-k)(n-l)}$
- Algebraic SP encompasses Graph SP, graphon SP, Time SP, and Image SP as particular cases \Rightarrow Other particular cases exist. Notably, Group SP

Euclidean

Graph

Graphons

Manifolds

Lie Groups

- ASP provides a framework for fundamental analyses that hold for all forms of convolutional filters

Generators, Shift Operators, and Frequency Representations

- Algebraic Signal Processing is an abstraction of Convolutional Information Processing
- Three central components \Rightarrow generators, shift operators, and frequency representations

Definition (Generators)
The set $\mathcal{G} \subseteq A$ generates A if all $h \in A$ can be represented as polynomials of the elements of \mathcal{G},

$$
h=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} g_{1}^{k_{1}} \ldots g_{r}^{k_{r}}=p_{A}(\mathcal{G})
$$

- The elements $g \in \mathcal{G}$ are the generators of A. And $h=p_{A}(\mathcal{G})$ is the polynomial that generates h
\Rightarrow Filters can be built from the generating set using the operations of the algebra
- Given the algebra, the generators are given \Rightarrow Filter h is completely specified by its coefficients
- The algebra of polynomials of a single variable t is generated by the polynomial $g=t$
\Rightarrow Algebra elements are expressions $h=\sum_{k} h_{k} t^{k} \Rightarrow$ They can be generated as $h=\sum_{k} h_{k} t^{k}$
- Algebra of polynomials of two variables x and y is generated by the polynomials $g_{1}=x$ and $g_{2}=y$
\Rightarrow Algebra elements are expressions $h=\sum_{k} h_{k l} x^{k} y^{\prime} \Rightarrow$ Can be generated as $h=\sum_{k} h_{k l} x^{k} y^{\prime}$

Definition (Shift Operators)
Let (M, ρ) be a representation of A and $\mathcal{G} \subseteq A$ a generator set of A. We say S is a shift operator if

$$
\mathbf{S}=\rho(g), \quad \text { for some } g \in \mathcal{G}
$$

The set $\mathcal{S}=\{\rho(g), g \in \mathcal{G}\}$ is the shift operator set of the representation (M, ρ) of algebra A.

- Generators g of Algebra A mapped to shift operators \mathbf{S} in the space $\operatorname{End}(M)$ of endomorphisms of M

Theorem (Filters as Polynomials on Shift Operators)

Let (M, ρ) be a representation of A with generators $g_{i} \in \mathcal{G}$ and shift operators $\mathbf{S}_{i}=\rho\left(g_{i}\right) \in \mathcal{S}$.
The representation $\rho(h)$ of filter h is a polynomial on the shift operator set,

$$
h=p_{A}(\mathcal{G})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} g_{1}{ }^{k_{1}} \ldots g_{r}{ }^{k_{r}} \Rightarrow \rho(h)=p_{M}(\mathcal{S})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} \mathbf{S}_{1}{ }^{k_{1}} \ldots \mathbf{S}_{r}{ }^{k_{r}}
$$

- GSP \Rightarrow Signals in $\mathbb{R}^{n}+$ Algebra of Polynomials + Homomorphism ρ defined by the map

$$
h=\sum_{k=0}^{K} h_{k} t^{k} \quad \rightarrow \quad \rho(h)=\sum_{k=0}^{K} h_{k} S^{k}
$$

- Equivalent to the (much) simpler specification of the homomorphism $\Rightarrow \rho(t)=\mathbf{S}$
\Rightarrow This is possible because the algebra of polynomials is generated by $g=t$

Definition (Frequency Representation)

In an algebra A with generators $g_{i} \in \mathcal{G}$ we are given the filter h expressed as the polynomial

$$
h=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} g_{1}^{k_{1}} \ldots g_{r}^{k_{r}}=p_{A}(\mathcal{G})
$$

The frequency representation of h over the field F^{1} is the polynomial function with variables $\lambda_{i} \in \mathcal{L}$

$$
p_{F}(\mathcal{L})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} \lambda_{1}^{k_{1}} \ldots \lambda_{r}{ }^{k_{r}}
$$

- The two polynomials are different creatures \Rightarrow The frequency representation is a simpler object

[^0]- The central components of an ASP model are three different polynomials
\Rightarrow The filter. The filter's instantiation on the space of endomorphisms The frequency response
- These three polynomials have the same coefficients. They are related. But similar though they look
\Rightarrow They are different objects. They utilize different operations. They have different meanings.

P1: The Filter

- A polynomial on the elements g_{i} of the generator set \mathcal{G} of the algebra A

$$
p_{A}(\mathcal{G})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} g_{1}^{k_{1}} \ldots g_{r}^{k_{r}}
$$

- Sum, product, and scalar product are the operations of the algebra A
- The abstract definition of a filter. Untethered to a specific signal model

P2: The Instantiation of the Filter in the space of Endomorphisms End (M)

- A polynomial on the elements $\mathbf{S}_{i}=\rho\left(g_{i}\right)$ of the shift operator set \mathcal{S}

$$
p_{M}(\mathcal{S})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} \mathbf{S}_{1}^{k_{1}} \ldots \mathbf{S}_{r}^{k_{r}}
$$

- Sum, product, and scalar product are the operations of the algebra of Endomorphisms of M
- The concrete effect that a filter has on a signal \mathbf{x}. Tethered to a specific signal model
- "Or more" \Rightarrow The same abstract filter can be instantiated in multiple signal models

P3: The Frequency Response

- A polynomial function where the variables $\lambda_{i} \in \mathcal{L}$ take values on the field F

$$
p_{F}(\mathcal{L})=\sum_{k_{1}, \ldots k_{r}} h_{k_{1}, \ldots, k_{r}} \lambda_{1}^{k_{1}} \ldots \lambda_{r}^{k_{r}}
$$

- Sum and product are the operations of field $F . \Rightarrow$ E.g, a polynomial with real variables
- Simpler representation of a filter. Untethered to a specific signal model (except for the field)
- The tool we use for analysis. \Rightarrow To explain discriminability, stability and transferability
(P1) Abstract filter $\Rightarrow p_{A}(t)=\sum_{k=0}^{K} h_{k} t^{k}$. Abstract definition. Untethered to any specific graph
(P2) Filter instantiated on a graph $\Rightarrow p_{M}(\mathbf{S})=\sum_{k=0}^{K} h_{k} \mathbf{S}^{k}$. Concrete instantiation. Tethered to \mathbf{S}
\Rightarrow On another graph $\Rightarrow p_{M}(\hat{\mathbf{S}})=\sum_{k=0}^{K} h_{k} \hat{\mathbf{S}}^{k}$. Concrete instantiation. Tethered to $\hat{\mathbf{S}}$
\Rightarrow On a graphon $\Rightarrow p_{M}\left(T_{W}\right)=\sum_{k=0}^{K} h_{k} T_{W}^{(k)}$. Concrete instantiation. Tethered to graphon W
(P3) Frequency response $\Rightarrow p_{F}(\lambda)=\sum_{k=0}^{K} h_{k} \lambda^{k}$. Simple function of one variable. Same for all instances

Algebraic Neural Networks

- We introduce Algebraic Neural Networks (AlgNNs) to generalize neural convolutional networks

[^1]- AlgNN is a stacked layered structure.
- Each layer: algebraic signal model $\left(\mathcal{A}_{\ell}, \mathcal{M}_{\ell}, \rho_{\ell}\right)$
- Mapping from layer ℓ to $\ell+1$

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{y}_{\ell}\right]=\sigma\left[\rho_{\ell}\left(a_{\ell}\right) \mathbf{x}_{\ell-1}\right]
$$

- σ_{ℓ} is a pointwise nonlinearity.

Multigraph Neural Networks

Butler, L., Parada-Mayorga, A., and Ribeiro, A. "Convolutional learning on multigraphs.", arXiv:2209.11354 (2022) TSP - IEEE.

- Some networked systems emerge naturally modeled/defined by multiple types of connections

Multigraphs

Social Networks

Autonomous systems

- Multigraph $\left(\mathcal{V},\left\{\mathcal{E}_{1}, \mathcal{E}_{2}\right\}\right)$ is composed by the graphs $\left(\mathcal{V}, \mathcal{E}_{1}\right)$ and $\left(\mathcal{V}, \mathcal{E}_{2}\right)$ with the same node set \mathcal{V}
- Built signal models \Rightarrow convolutional filtering + convolutional NN \Rightarrow preserving structure

Multigraph $\left(\mathcal{V},\left\{\mathcal{E}_{1}, \mathcal{E}_{2}\right\}\right)$ is composed by the graphs $\left(\mathcal{V}, \mathcal{E}_{1}\right) \rightarrow \mathbf{S}_{1}$ and $\left(\mathcal{V}, \mathcal{E}_{2}\right) \rightarrow \mathbf{S}_{2}$ with the same node set \mathcal{V}

- Signals, \mathbf{x}, are elements of $\mathbb{R}^{N}, N=|\mathcal{V}|$. The i-th component of \mathbf{x} lives on node $i \in \mathcal{V}$
- The algebra $\mathcal{A} \Rightarrow$ The algebra of polynomials with independent variables t_{1}, t_{2} (non commutative)
- The homomorphism ρ translates the polynomials $h\left(t_{1}, t_{2}\right)$ into the matrix polynomials $\mathbf{H}\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right)$

$$
\mathbf{H}\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right)=\mathbf{S}_{1}^{2}+\mathbf{S}_{2} \mathbf{S}_{1}+2 \mathbf{S}_{2}^{2}+\mathbf{I}
$$

- Multigraph NN is a stacked layered structure
- Mapping from layer ℓ to $\ell+1$

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{y}_{\ell}\right]=\sigma\left[\mathbf{H}_{\ell}\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{m}\right) \mathbf{x}_{\ell-1}\right]
$$

- Learnable parameters: coefficients of \mathbf{H}

- Multigraph Neural Networks capture complex network dynamics that graphs and GNNs cannot

Power allocation problem in a wireless communication system

- Diffusions capture/exploit heterogeneous structure

Lie Algebra Group Neural Networks

Kumar, H., Parada-Mayorga, A., \& Ribeiro, A. (2023). Lie Group Algebra Convolutional Filters. arXiv: 2305.04431

- Lie group symmetries on arbitrary spaces: no lifting on the group, non homogeneous spaces
- Proteins and knot type data \Rightarrow locally complex, low dimensional in high dimensional spaces

Group action 1

Group action 2

Rotation symmetries $S O(3)$

- non homogeneous spaces: concrete real life data defined from arbitrary/irregular sampling schemes
- Built signal models \Rightarrow convolutional filtering + convolutional NN \Rightarrow preserving structure
- Signals, $\mathbf{x} \in \mathcal{M} \Rightarrow$ arbitrary (given) vector space. No need to lift information onto the group
- The algebra $\mathcal{A}=L^{1}(\widehat{G})$ is a polynomial algebra constructed from generators of $\left.L^{1}(G)\right)$
- The homomorphism instantiates convolutional filters as multivariate polynomials (for example with 2 generators)

$$
\mathbf{H}\left(\widehat{\mathbf{T}}_{g_{1}}, \widehat{\mathbf{T}}_{g_{2}}\right)=\widehat{\mathbf{T}}_{g_{1}}^{2}+\widehat{\mathbf{T}}_{g_{1}} \widehat{\mathbf{T}}_{g_{2}}+2 \widehat{\mathbf{T}}_{g_{2}}^{2}+\mathbf{I}
$$

- $\widehat{\mathbf{T}}_{g_{1}}, \widehat{\mathbf{T}}_{g_{2}}$ actions of the generators of $L^{1}(G)$ on the space of signals \mathcal{M}
- Lie group Algebra NN: stacked layered structure
- Mapping from layer ℓ to $\ell+1$

$$
\mathbf{x}_{\ell}=\sigma\left[\mathbf{y}_{\ell}\right]=\sigma_{\ell}\left[\mathbf{H}_{\ell}\left(\widehat{\mathbf{T}}_{g_{1}}, \ldots, \widehat{\mathbf{T}}_{g_{m}}\right) \mathbf{x}_{\ell-1}\right]
$$

- Learnable parameters: coefficients of \mathbf{H}

Sphere

Gaussian

Grid

Test accuracy on binary knot classification. Signals defined on Sphere, Gaussian and Uniform grids with many samples $(|\widehat{\mathcal{X}}|=1000)$. Simulations for LieConv-1,2 (intractability).

[^0]: ${ }^{1}$ The field is unspecified in the definition. But unless otherwise noted F refers to the field over which the vector space M is defined

[^1]: [1] A. Parada-Mayorga and A. Ribeiro, "Algebraic Neural Networks: Stability to Deformations," IEEE TSP. ArXiv: 2009.01433. [2] Parada-Mayorga, et al . Convolutional filtering and neural networks with non commutative algebras. ArXiv: 2108.09923.

