
Graphs and Shift Operators
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Graphs

I A graph is a triplet G = (V, E ,W), which includes vertices V, edges E , and weights W

⇒ Vertices or nodes are a set of n labels. Typical labels are V = {1, . . . , n}

⇒ Edges are ordered pairs of labels (i , j). We interpret (i , j) ∈ E as “i can be influenced by j .”

⇒ Weights wij ∈ R are numbers associated to edges (i , j). “Strength of the influence of j on i .”
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Symmetric Graphs

I A graph is symmetric or undirected if both, the edge set and the weight are symmetric

⇒ Edges come in pairs ⇒ We have (i , j) ∈ E if and only if (j , i) ∈ E

⇒ Weights are symmetric ⇒ We must have wij = wji for all (i , j) ∈ E
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Adjacency Matrices

I The adjacency matrix of graph G = (V, E ,W) is the sparse matrix A with nonzero entries

Aij = wij , for all (i , j) ∈ E

I If the graph is symmetric, the adjacency matrix is symmetric ⇒ A = AT . As in the example
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
0 w12 w13 0 0
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0 0 w53 w54 0

 .
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Neighborhoods and Degrees

I The neighborhood of node i is the set of nodes that influence i ⇒ n(i) := {j : (i , j) ∈ E}

I Degree di of node i is the sum of the weights of its incident edges ⇒ di =
∑
j∈n(i)

wi j =
∑

j :(i,j)∈E}

wi j
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I Node 1 neighborhood ⇒ n(1) = {2, 3}

I Node 1 degree ⇒ n(1) = w12 + w13
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Degree Matrix

I The degree matrix is a diagonal matrix D with degrees as diagonal entries ⇒ Dii = di

I Write in terms of adjacency matrix as D = diag(A1). Because (A1)i =
∑

j wij = di
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D =


2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2


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Laplacian Matrix

I The Laplacian matrix of a graph with adjacency matrix A is ⇒ L = D− A = diag(A1)− A

I Can also be written explicitly in terms of graph weights Aij = wij

⇒ Off diagonal entries ⇒ Lij = −Aij = −wij

⇒ Diagonal entries ⇒ Lii = di =
∑
j∈n(i)

wij

L =


2 −1 −1 0 0

−1 3 −1 −1 0
−1 −1 3 0 −1
0 −1 0 2 −1
0 0 −1 −1 2

 1
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Graph Shift Operator

I The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix

S = A

Laplacian Matrix

S = L

Normalized Adjacency

S = Ā

Normalized Laplacian

S = L̄

I If the graph is symmetric, the shift operator S is symmetric ⇒ S = ST

I The specific choice matters in practice but most of results and analysis hold for any choice of S
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Graph Signals

I Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing
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Graph Signal

I Consider a given graph G with n nodes and shift operator S

I A graph signal is a vector x ∈ Rn in which component xi is associated with node i

I To emphasize that the graph is intrinsic to the signal we may write the signal as a pair ⇒ (S, x)
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I The graph is an expectation of proximity or similarity between components of the signal x
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Graph Signal Diffusion

I Multiplication by the graph shift operator implements diffusion of the signal over the graph

I Define diffused signal y = Sx ⇒ Components are yi =
∑
j∈n(i)

wi j xj =
∑
j

wij xj

⇒ Stronger weights contribute more to the diffusion output

⇒ Codifies a local operation where components are mixed with components of neighboring nodes.
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Graph Convolutional Filters

I Graph convolutional filters are the tool of choice for the linear processing of graph signals
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Graph Filters

I Given graph shift operator S and coefficients hk , a graph filter is a polynomial (series) on S

H(S) =
∞∑
k=0

hkSk

I The result of applying the filter H(S) to the signal x is the signal

y = H(S) x =
∞∑
k=0

hkSkx

I We say that y = h ?S x is the graph convolution of the filter h = {hk}∞k=0 with the signal x
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Transferability of Filters Across Different Graphs

I The same filter h = {hk}∞k=0 can be executed in multiple graphs ⇒ We can transfer the filter

Graph Filter on a Graph
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I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
∞∑
k=0

hkSk x

I Output depends on the filter coefficients h, the graph shift operator S and the signal x
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Graph Convolutional Filters as Diffusion Operators

I A graph convolution is a weighted linear combination of the elements of the diffusion sequence

I Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

y = h ?S x
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Time Convolutions as a Particular Case of Graph Convolutions
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Convolutions in Time

I Convolutional filters process signals in time by leveraging the time shift operator

x0

x1

x2 x3

xn

x−1
x0

x1

x2

xn−1 = shift(xn)

x−2

x−1
x0

x1

xn−2 = shift2(xn)

x−3 x−2

x−1
x0

xn−3 = shift3(xn)

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

yn

h0xn h1xn−1 h2xn−2 h3xn−3

I The time convolution is a linear combination of time shifted inputs ⇒ yn =
K−1∑
k=0

hkxn−k
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Time Signals Represented as Graph Signals

I Time signals are representable as graph signals supported on a line graph S ⇒ The pair (S, x)
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I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S3 x = S
[

S2 x
]

= S
[

S
(

S x
) ]

=


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :




:
x0
x1
x2
x3
:

 =


:

x−3
x−2
x−1
x0
:


I Components of the shift sequence are powers of the adjacency matrix applied to the original signal

⇒ We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph
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x shift(x) shift2(x) shift3(x)
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y = h ? x

h0xn h1xn−1 h2xn−2 h3xn−3

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph
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S S S

+ + + +

S0x S1x S2x S3x
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y = h ?S x

h0S0x h1S1x h2S2x h3S3x

I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Time Convolution Generalized to Arbitrary Graphs

I If we let S be the shift operator of an arbitrary graph we recover the graph convolution
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Graph Fourier Transform

I The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems
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Eigenvectors and Eigenvalues of Shift Operator

I We work with symmetric graph shift operators ⇒ S = SH

I Introduce eigenvectors vi and eigenvalues λi of graph shift operator S ⇒ Svi = λivi

⇒ For symmetric S eigenvalues are real. We have ordered them ⇒ λ0 ≤ λ1 ≤ . . . ≤ λn

I Define eigenvector matrix V = [v1, . . . , vn] and eigenvalue matrix Λ = diag([λ1; . . . ;λn])

⇒ Eigenvector decomposition of Graph Shift Operator ⇒ S = VΛVH . With VHV = I
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The Graph Fourier Transform

Graph Fourier Transform

Given a graph shift operator S = VΛVH , the graph Fourier transform (GFT) of graph signal x is

x̃ = VH x

I The GFT is a projection on the eigenspace of the graph shift operator.

I We say x̃ is a graph frequency representation of x. A representation in the graph frequency domain
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The Inverse Graph Fourier Transform

Inverse Graph Fourier Transform

Given a graph shift operator S = VΛVH , the inverse graph Fourier transform (iGFT) of GFT x̃ is

˜̃x = V x̃

I Given that VHV = I, the iGFT of the GFT of signal x recovers the signal x

˜̃x = V x̃ = V
(

VH x
)

= Ix = x
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Graph Frequency Response of Graph Filters

I Graph filters admit a pointwise representation when projected into the shift operator’s eigenspace
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Graph Fiters in the Graph Frequency Domain

Theorem (Graph frequency representation of graph filters)

Consider graph filter h with coefficients hk , graph signal x and the filtered signal y =
∞∑
k=0

hkSkx.

The GFTs x̃ = VHx and ỹ = VHy are related by

ỹ =
∞∑
k=0

hkΛk x̃

I The same polynomial but on different variables. One on S. The other on eigenvalue matrix Λ
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Graph Frequency Response

I In the graph frequency domain graph filters are a diagonal matrices ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I Thus, graph convolutions are pointwise in the GFT domain ⇒ ỹi =
∞∑
k=0

hkλ
k
i x̃i = h̃(λi )x̃i

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k
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Observations on the Graph Frequency Response

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I Frequency response is the same polynomial that defines the graph filter ⇒ but on scalar variable λ

I Frequency response is independent of the graph ⇒ Depends only on filter coefficients

I The role of the graph is to determine the eigenvalues on which the response is instantiated

28



Graph Frequency Response is Independent of the Graph

I Graph filter frequency response is a polynomial on a scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I Completely determined by the filter coefficients h = {hk}∞k=1 . The Graph has nothing to do with it

λ

h̃(λ)
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The Graph Instantiates Specific Eigenvalues

I A given (another) graph instantiates the response on its given (different) specific eigenvalues λi

I Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)
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Learning with Graph Signals

I Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals
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Empirical Risk Minimization

I In this course, machine learning (ML) on graphs ≡ empirical risk minimization (ERM) on graphs.

I In ERM we are given:

⇒ A training set T containing observation pairs (x, y) ∈ T . Assume equal length x, y,∈ Rn.

⇒ A loss function `(y, ŷ) to evaluate the similarity between y and an estimate ŷ

⇒ A function class C

I Learning means finding function Φ∗ ∈ C that minimizes loss `
(

y,Φ(x)
)

averaged over training set

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x),
)

I We use Φ∗(x) to estimate outputs ŷ = Φ∗(x) when inputs x are observed but outputs y are unknown
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Empirical Risk Minimization with Graph Signals

I In ERM, the function class C is the degree of freedom available to the system’s designer

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x)
)

I Designing a Machine Learning ≡ finding the right function class C

I Since we are interested in graph signals, graph convolutional filters are a good starting point
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Learning with a Graph Convolutional Filter

I Input / output signals x / y are graph signals supported on a common graph with shift operator S

I Function class ⇒ graph filters of order K supported on S ⇒ Φ(x) =
K−1∑
k=0

hkSkx = Φ(x;S,h)

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

I Learn ERM solution restricted to graph filter class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; S, h )
)

⇒ Optimization is over filter coefficients h with the graph shift operator S given
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When the Output is Not a Graph Signal: Readout

I Outputs y ∈ Rm are not graph signals ⇒ Add readout layer at filter’s output to match dimensions

I Readout matrix A ∈ Rm×n yields parametrization ⇒ A× Φ(x;S,h) = A×
K−1∑
k=0

hkSkx

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

A
A × Φ(x; S,h)

I Making A trainable is inadvisable. Learn filter only. ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, A× Φ( x; S, h )
)

I Readouts are simple. Read out node i ⇒ A = eT
i . Read out signal average ⇒ A = 1T .
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Graph Neural Networks (GNNs)

[1] F. Gama, et.al, “Convolutional Neural Network Architectures for Signals Supported on Graphs,” IEEE-TSP. Arxiv: 1805.00165

[2] F. Gama, et.al, “Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks,” IEEE-SPM.

Arxiv: 2003.03777
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Pointwise Nonlinearities

I A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries

I The result of applying pointwise σ to a vector x is ⇒ σ
[

x
]

= σ


x1

x2

...
xn

 =


σ(x1)
σ(x2)

...
σ(xn)



I A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector

I ReLU: σ(x)=max(0, x). Hyperbolic tangent: σ(x)=(e2x − 1)/(e2x + 1). Absolute value: σ(x)= |x |.

I Pointwise nonlinearities decrease variability. ⇒ They function as demodulators.
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Learning with a Graph Perceptron

I Graph filters have limited expressive power because they can only learn linear maps

I A first approach to nonlinear maps is the graph perceptron ⇒ Φ(x) = σ

[
K−1∑
k=0

hkSkx

]
= Φ(x; S,h)

Perceptron

x
z =

K−1∑
k=0

hkSk x σ
[

z
]z Φ(x; S, h)

σ
[

x
]

= σ


x1

x2

...
xn

 =


σ(x1)
σ(x2)

...
σ(xn)



I Optimal regressor restricted to perceptron class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; S, h )
)

⇒ Perceptron allows learning of nonlinear maps ⇒ More expressive. Larger Representable Class

38



Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 1 processes input signal x with the perceptron h1 = [h10, . . . , h1,K−1] to produce output x1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x

]

I The Output of Layer 1 x1 becomes an input to Layer 2. Still x1 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL
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Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 2 processes its input signal x1 with the perceptron h2 = [h20, . . . , h2,K−1] to produce output x2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I The Output of Layer 2 x2 becomes an input to Layer 3. Still x2 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL
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The GNN Layer Recursion

I A generic layer of the GNN, Layer `, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with perceptron h` = [h`0, . . . , h`,K−1] to produce output x`

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a GNN

I If it has L layers, the GNN output ⇒ xL = Φ
(

x; S, h1, . . . , hL

)
= Φ

(
x; S, H

)

I The filter tensor H = [h1, . . . , hL] is the trainable parameter. The graph shift is prior information

40



GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x0

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
K−1∑
k=0

h3k Sk x2

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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Some Observations about Graph Neural Networks
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The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I A composition of L layers. Each of which itself a...

⇒ Compositions of Filters & Pointwise nonlinearities

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)
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The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Filters are parametrized by...

⇒ Coefficients h`k and graph shift operators S
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The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Output xL = Φ(x; S,H) parametrized by...

⇒ Learnable Filter tensor H = [h1, . . . , hL]
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Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =
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]z2

z3 =
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Learning with a Graph Neural Network

I Learn Optimal GNN tensor H∗ = (h∗1 , h
∗
2 , h
∗
3 ) as

H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I Optimization is over tensor only. Graph S is given

⇒ Prior information given to the GNN
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Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2
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K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Graph Neural Networks and Graph Filters

I GNNs are minor variations of graph filters

I Add pointwise nonlinearities and layer compositions

⇒ Nonlinearities process individual entries

⇒ Component mixing is done by graph filters only

I GNNs do work (much) better than graph filters

⇒ Which is unexpected and deserves explanation

⇒ Which we will attempt with stability analyses
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Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Transference of GNNs Across Graphs

I GNN Output depends on the graph S.

I Interpret S as a parameter

⇒ Encodes prior information. As we have done so far
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Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)

46



Transference of GNNs Across Graphs

I But we can reinterpret S as an input of the GNN

⇒ Enabling transference across graphs

Φ(x; S,H) ⇒ Φ(x; S̃,H)

⇒ Same as we enable transference across signals

Φ(x; S,H) ⇒ Φ(x̃; S,H)

I A trained GNN is just a filter tensor H∗
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x0 = x
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K−1∑
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h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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CNNs and GNNs

I There is no difference between CNNs and GNNs

I To recover a CNN just particularize the shift operator

the adjacency matrix of the directed line graph

S =


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :



1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

I GNNs are proper generalizations of CNNs
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x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3
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x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Fully Connected Neural Networks
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The Road Not Taken: Fully Connected Neural Networks

I We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals

I We argued this is a good idea because they are generalizations of convolutional filters and CNNs

I We can explore this better if we go back to the road not taken ⇒ Fully connected neural networks
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Learning with a Linear Classifier

I Instead of graph filters, we choose arbitrary linear functions ⇒ Φ(x) = Φ(x; H) = H x

x
z = H x

z = Φ(x; H)

I Optimal regressor is ERM solution restricted to linear class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)
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Learning with a Linear Perceptron

I We increase expressive power with the introduction of a perceptrons ⇒ Φ(x) = Φ(x; H) = σ
[

Hx
]

Perceptron

x
z = H x σ

[
z
]z

Φ(x; H)

I Optimal regressor restricted to perceptron class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)
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Fully Connected Neural Networks (FCNN)

I A generic layer, Layer ` of a FCNN, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with a linear perceptron H` to produce output x`

x` = σ
[

z`
]

= σ
[

H` x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a FCNN

I If it has L layers, the FCNN output ⇒ xL = Φ
(

x; H1, . . . ,HL

)
= Φ

(
x;H

)

I The filter tensor H = [H1, . . . ,HL] is the trainable parameter.
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
H1 x0

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
H2 x1

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
H3 x2

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Neural Networks vs Graph Neural Networks
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Which is Better: A Graph NN or a Fully Connected NN?

I Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

min
H

∑
(x,y)∈T

`
(

Φ(x;H), y
)
≤ min

H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I The fully connected NN does better. But this holds for the training set

I In practice, the GNN does better because it generalizes better to unseen signals

⇒ Because it exploits internal symmetries of graph signals codified in the graph shift operator
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Generalization with a Neural Network

I Suppose the graph represents a recommendation system where we want to fill empty ratings

I We observe ratings with the structure in the left. But we do not observe examples like the other two

I From examples like the one in the left, the NN learns how to fill the middle signal but not the right
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Generalization with a Graph Neural Network

I The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

I The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal
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Permutation Equivariance of Graph Neural Network

I The GNN exploits symmetries of the signal to effectively multiply available data

I This will be formalized later as the permutation equivariance of graph neural networks
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Graph Filter Banks

I Filters isolate features. When we are interested in multiple features, we use Banks of filters
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Graph Filter Banks

I A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank

I Filter f in the bank uses coefficients hf = [hf
1; . . . ; hf

K−1] ⇒ Output zf is a graph signal

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x • • • zF =

K−1∑
k=0

hFk Sk x

x
• • •

z1 z2
• • •

zF

I Filter bank output is a collection of F graph signals ⇒ Matrix graph signal Z = [z1, . . . , zF ]
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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z1
1 · · · z f1 · · · zF1
.
.
.

.

.

.
.
.
.

z1
i · · · z fi · · · zFi
.
.
.

.

.

.
.
.
.

z1
n · · · z fn · · · zFn


=



z1

.

.

.
zi
.
.
.

zn



=
[

z1 · · · zf · · · zF
]
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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Multiple Feature GNNs

I We leverage filter banks to create GNNs that process multiple features per layer
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x zF =

K−1∑
k=0

hFk Sk x

x

z1 z2 zF

I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node
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I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node
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I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Each of the F features xf is processed with G filters with coefficients hfg
k ⇒ ufg =

K−1∑
k=0

hfg
k Sk xf

uf 1 =

K−1∑
k=0

hf 1
k Sk x uf 2 =

K−1∑
k=0

hf 2
k Sk x ufG =

K−1∑
k=0

hfGk Sk x

xf

uf 1 uf 2 ufG

64



Multiple-Input-Multiple-Output (MIMO) Graph Filters

I This Multiple-Input-Multiple-Output Graph Filter generates an output with F × G features

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 zG = u1G + u2G + . . . + uFG

65



Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Reduce to G outputs with sum over input features for given g ⇒ zg =
F∑

f =1

ufg =
F∑

f =1

K−1∑
k=0

hfg
k Sk xf

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 zG = u1G + u2G + . . . + uFG
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MIMO Graph Filters with Matrix Graph Signals

I MIMO graph filters are cumbersome, not difficult. Just F × G filters. Or F filter banks.

I Easier with matrices ⇒ G × F coefficient matrix Hk with entries
(

Hk

)
fg

= hfg
k

Z =
K−1∑
k=0

Sk × X×Hk

I This is a more compact format of the MIMO filter. It is equivalent

[
z1 ·· zg ·· zG

]
=

K−1∑
k=0

Sk ×
[

x1 ·· xf ·· xF
]
×


h11
k ·· h1g

k ·· h1G
k

: : :

hf 1
k ·· hf gk ·· hf Gk
: : :

hF1
k ·· hFgk ·· hFGk


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MIMO GNN / Multiple Feature GNN

I MIMO GNN stacks MIMO perceptrons ⇒ Compose of MIMO filters with pointwise nonlinearities

I Layer ` processes input signal X`−1 with perceptron H` = [H`0, . . . ,H`,K−1] to produce output X`

X` = σ
[

Z`
]

= σ

[
K−1∑
k=0

Sk X`−1 H`k

]

I Denoting the Layer 1 input as X0 = X, this provides a recursive definition of a MIMO GNN

I If it has L layers, the GNN output ⇒ XL = Φ
(

x; S, H1, . . . ,HL

)
= Φ

(
x; S, H

)

I The filter tensor H = [H1, . . . ,HL] is the trainable parameter. The graph shift is prior information
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed input signal X = X0 into Layer 1 (F0 features)

X1 = σ
[

Z1

]
= σ

[
K−1∑
k=0

Sk X0 H1k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2 (F1 features)

X2 = σ
[

Z2

]
= σ

[
K−1∑
k=0

Sk X1 H2k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 2 output (F2 features) as an input to Layer 3

X3 = σ
[

Z3

]
= σ

[
K−1∑
k=0

Sk X2 H3k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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Algebraic Convolutional Information Processing

I Algebraic filters are a generic abstraction of the common features of convolutional signal processing

I Graph, time, and image convolutions can be expressed as particular cases of algebraic filters
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Vector Spaces and Endomorphisms

I Signals in M = Rn ⇒ Traditional matrix multiplications ⇒ y = Ex

I Signals in M = L2([0, 1]) ⇒ Linear functionals ⇒ y =

∫ 1

0

E(u, v)x(v) dv
M

x ex

End(M)

e

I End(M): the set of all linear maps that can be applied to a signal x in M

⇒ Learning in End(M) is not scalable ⇒ Search over All Matrices. Or over all linear functionals
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Scalable Signal Processing

I For Scalable learning ⇒ We do restrict allowable linear maps

⇒ To those that represent a more restrictive algebra

I Map elements a of the algebra A with a homomorphism

ρ : A→ End(M)

I Map abstract filters a ∈ A into concrete endomorphisms ρ(a)

⇒ Convolutional filters yield outputs ⇒ y = ρ(a)x M

x ex

End(M)

e = ρ(a)

A

a

ρ
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)

I A is an Algebra with unity where filters a ∈ A live

I It defines the rules of convolutional signal processing

I M is a vector space

I The space containing the signals x we want to process

I ρ is a homomorphism from A to the endomorphisms of M

I Instantiates the abstract filter h in the space End(M)

M

x y = ρ(a)x

End(M)

e = ρ(a)

A

a

ρ
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Graph Signal Processing (GSP)

Task

Process signals x that are supported on a graph with n nodes. A matrix representation of the

graph is given in the matrix S.

1

2

3

4

5

6

7

8

9

10

11
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11
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Graph Signal Processing (GSP)

I GSP in the graph S is a particular case of ASP in which

⇒ M = Rn ⇒ Vectors with n components

⇒ A = P(t) ⇒ The algebra of polynomials h =
∑
k

hkt
k

⇒ Shift operator ρ(t) = S ⇒ Resulting in filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hkSk
Rn

x

Rn×nP(t)

∑
hk t

k

∑
hkSk

ρ

∑
hkSkx

t
ρ(t) = S

ρ

I Processing x with filter ρ(h) yields output ⇒ y = ρ(h)x = ρ

(∑
k

hkt
k

)
x =

∑
k

hkSkx
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Discrete Time Signal Processing (DTSP)

Task

Process sequences X with values (X )n = xn for integer indexes n ∈ Z. The sequences have finite

energy. We say that X ∈ L2(Z)
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Discrete Time Signal Processing (DTSP)

I DTSP is a particular case of ASP in which

⇒ M = L2(Z) ⇒ Finite-energy sequences in Z

⇒ A = P(t) ⇒ The algebra of polynomials h =
∑
k

hkt
k

L2(Z)

X

End(L2(Z))P(t)

∑
hk t

k

∑
hkS

k

ρ

∑
hkS

kX

t
ρ(t) = S

ρ
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Discrete Time Signal Processing (DTSP)

I DTSP is a particular case of ASP in which

⇒ Shift operator is a time shift ρ(t) = S such that

(SX )n = (X )n−1

⇒ This mapping of the generator t yields filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hkS
k

where Sk represents k applications of S
L2(Z)

X

End(L2(Z))P(t)

∑
hk t

k

∑
hkS

k

ρ

∑
hkS

kX

t
ρ(t) = S

ρ

I Processing X with ρ(h) yields ⇒
(
Y
)
n

=
(
ρ(h)X

)
n

=

(∑
k

hkS
kX

)
n

=
∑
k

hk
(
X
)
n−k
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Image Processing (IP)

Task

Process images, defined as sequences X with values (X )mn = xmn that depend on two integer

indexes m, n ∈ Z. The sequences have finite energy. We say that X ∈ L2(Z2)
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Image Processing (IP)

I IP is a particular case of ASP in which

⇒ M = L2(Z2) ⇒ Finite-energy sequences in Z2

⇒ A=P(x , y) ⇒ Two-letter polynomials h=
∑
k

hklx
ky l

L2(Z2)

X

End(L2(Z2))P(x, y)

∑
hkl x

ky l
∑

hklS
k
x S

l
y

ρ

∑
hklS

k
x S

l
yX

x ρ(x) = Sx

ρ

y

ρ(y) = Sy

ρ
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Image Processing (IP)

I IP is a particular case of ASP in which

⇒ Two shift operators ρ(x) = Sx and ρ(y) = Sy

(SxX )mn = (X )(m−1)n (SyX )mn = (X )m(n−1)

⇒ This mapping of the generators x and y yields filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hklS
k
x S

l
y

Sk
x or Sk

x represent k or l applications of Sx orSl

L2(Z2)

X

End(L2(Z2))P(x, y)

∑
hkl x

ky l
∑

hklS
k
x S

l
y

ρ

∑
hklS

k
x S

l
yX

x ρ(x) = Sx

ρ

y

ρ(y) = Sy

ρ

I Processing X yields ⇒
(
Y
)
mn

=
(
ρ(h)X

)
mn

=

(∑
kl

hklS
k
x S

l
yX

)
mn

=
∑
k

hk
(
X
)

(m−k)(n−l)
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ASP is a Generic Analysis Tool

I Algebraic SP encompasses Graph SP, graphon SP, Time SP, and Image SP as particular cases

⇒ Other particular cases exist. Notably, Group SP

Euclidean Graph Graphons Manifolds Lie Groups

I ASP provides a framework for fundamental analyses that hold for all forms of convolutional filters
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Generators, Shift Operators, and Frequency Representations

I Algebraic Signal Processing is an abstraction of Convolutional Information Processing

I Three central components ⇒ generators, shift operators, and frequency representations
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Generators of an Algebra

Definition (Generators)

The set G ⊆ A generates A if all h ∈ A can be represented as polynomials of the elements of G,

h =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr = pA(G)

I The elements g ∈ G are the generators of A. And h = pA (G) is the polynomial that generates h

⇒ Filters can be built from the generating set using the operations of the algebra

I Given the algebra, the generators are given ⇒ Filter h is completely specified by its coefficients
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Generators of the Algebras of Polynomials

I The algebra of polynomials of a single variable t is generated by the polynomial g = t

⇒ Algebra elements are expressions h =
∑
k

hkt
k ⇒ They can be generated as h =

∑
k

hkt
k

I Algebra of polynomials of two variables x and y is generated by the polynomials g1 = x and g2 = y

⇒ Algebra elements are expressions h =
∑
k

hklx
ky l ⇒ Can be generated as h =

∑
k

hklx
ky l
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Shift Operators

Definition (Shift Operators)

Let (M, ρ) be a representation of A and G⊆ A a generator set of A. We say S is a shift operator

if

S = ρ(g), for some g ∈ G

The set S = {ρ(g), g ∈ G} is the shift operator set of the representation (M, ρ) of algebra A.

I Generators g of Algebra A mapped to shift operators S in the space End(M) of endomorphisms of M
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Polynomials on Shift Operators

Theorem (Filters as Polynomials on Shift Operators)

Let (M, ρ) be a representation of A with generators gi ∈ G and shift operators Si = ρ(gi ) ∈ S.

The representation ρ(h) of filter h is a polynomial on the shift operator set,

h = pA(G) =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr ⇒ ρ(h) = pM(S) =
∑

k1,...kr

hk1,...,kr S1
k1 . . .Sr

kr
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Graph Signal Processing

I GSP ⇒ Signals in Rn + Algebra of Polynomials + Homomorphism ρ defined by the map

h =
K∑

k=0

hkt
k → ρ(h) =

K∑
k=0

hkSk

I Equivalent to the (much) simpler specification of the homomorphism ⇒ ρ(t) = S

⇒ This is possible because the algebra of polynomials is generated by g = t
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Frequency Representation of an Algebraic Filter

Definition (Frequency Representation)

In an algebra A with generators gi ∈ G we are given the filter h expressed as the polynomial

h =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr = pA(G)

The frequency representation of h over the field F 1 is the polynomial function with variables λi ∈ L

pF (L) =
∑

k1,...kr

hk1,...,kr λ1
k1 . . . λr

kr

I The two polynomials are different creatures ⇒ The frequency representation is a simpler object

1 The field is unspecified in the definition. But unless otherwise noted F refers to the field over which the vector space M is defined
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Three Polynomials (or More)

I The central components of an ASP model are three different polynomials

⇒ The filter. The filter’s instantiation on the space of endomorphisms The frequency response

I These three polynomials have the same coefficients. They are related. But similar though they look

⇒ They are different objects. They utilize different operations. They have different meanings.
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Polynomial 1: The Filter

P1: The Filter

I A polynomial on the elements gi of the generator set G of the algebra A

pA(G) =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr

I Sum, product, and scalar product are the operations of the algebra A

I The abstract definition of a filter. Untethered to a specific signal model
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Polynomial 2 (or More): The Instantiation of the Filter

P2: The Instantiation of the Filter in the space of Endomorphisms End(M)

I A polynomial on the elements Si = ρ(gi ) of the shift operator set S

pM(S) =
∑

k1,...kr

hk1,...,kr S1
k1 . . .Sr

kr

I Sum, product, and scalar product are the operations of the algebra of Endomorphisms of M

I The concrete effect that a filter has on a signal x. Tethered to a specific signal model

I “Or more” ⇒ The same abstract filter can be instantiated in multiple signal models
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Polynomial 3: The Frequency Response

P3: The Frequency Response

I A polynomial function where the variables λi ∈ L take values on the field F

pF (L) =
∑

k1,...kr

hk1,...,kr λ1
k1 . . . λr

kr

I Sum and product are the operations of field F . ⇒ E.g, a polynomial with real variables

I Simpler representation of a filter. Untethered to a specific signal model (except for the field)

I The tool we use for analysis. ⇒ To explain discriminability, stability and transferability
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The Three (or More) Polynomials in GSP

(P1) Abstract filter ⇒ pA(t) =
K∑

k=0

hkt
k . Abstract definition. Untethered to any specific graph

(P2) Filter instantiated on a graph ⇒ pM(S) =
K∑

k=0

hkSk . Concrete instantiation. Tethered to S

⇒ On another graph ⇒ pM(Ŝ) =
K∑

k=0

hk Ŝk . Concrete instantiation. Tethered to Ŝ

⇒ On a graphon ⇒ pM(TW ) =
K∑

k=0

hkT
(k)
W . Concrete instantiation. Tethered to graphon W

(P3) Frequency response ⇒ pF (λ) =
K∑

k=0

hkλ
k . Simple function of one variable. Same for all instances
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Algebraic Neural Networks

I We introduce Algebraic Neural Networks (AlgNNs) to generalize neural convolutional networks

[1] A. Parada-Mayorga and A. Ribeiro, ”Algebraic Neural Networks: Stability to Deformations,” IEEE TSP. ArXiv: 2009.01433.

[2] Parada-Mayorga, et al . Convolutional filtering and neural networks with non commutative algebras. ArXiv: 2108.09923.
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Algebraic Neural Networks (AlgNN)

I AlgNN is a stacked layered structure.

I Each layer: algebraic signal model (A`,M`, ρ`)

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ

[
ρ` (a`) x`−1

]

I σ` is a pointwise nonlinearity.

(A1,M1, ρ1)

(A2,M2, ρ2)

(A3,M3, ρ3)

x

y1 = ρ1(a1) x x1 = σ1

[
y1

]y1

y2 = ρ2(a2) x1 x2 = σ2

[
y2

]y2

y3 = ρ3(a3) x2 x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3
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Multigraph Neural Networks

Butler, L., Parada-Mayorga, A., and Ribeiro, A. ”Convolutional learning on multigraphs.”, arXiv:2209.11354 (2022) TSP - IEEE.
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Convolutional Learning on Heterogeneous Networks

I Some networked systems emerge naturally modeled/defined by multiple types of connections

1

x(1)

2

x(2)

3

x(3)

4

x(4)

5

x(5)

6

x(6)

1

7

2

6

35

4

4

5

3

6

2

7

1
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Multigraphs

x(1) x(2)

x(3)x(4)

BP

x(5)

x(6)

x(7)

x(8)

x(9)x(10)

x(11)

x(12)

Social Networks

x(1) x(2)

x(3)x(4)

x(5)

x(6)

x(7)

x(8)

Autonomous systems

I Multigraph (V, {E1, E2}) is composed by the graphs (V, E1) and (V, E2) with the same node set V
I Built signal models ⇒ convolutional filtering + convolutional NN ⇒ preserving structure
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Convolutional Multigraph Signal Processing

Multigraph (V, {E1, E2}) is composed by the graphs (V, E1)→ S1 and (V, E2)→ S2 with the same node
set V

I Signals, x, are elements of RN , N = |V|. The i-th component of x lives on node i ∈ V

I The algebra A ⇒ The algebra of polynomials with independent variables t1, t2 (non commutative)

I The homomorphism ρ translates the polynomials h(t1, t2) into the matrix polynomials H(S1,S2)

H(S1,S2) = S2
1 + S2S1 + 2S2

2 + I
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Convolutional Learning on Multigraphs

I Multigraph NN is a stacked layered structure

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ

[
H`(S1, . . . ,Sm)x`−1

]

I Learnable parameters: coefficients of H

x

y1 = H1(S1, . . . , Sm), x x1 = σ1

[
y1

]y1

y2 = H2(S1, . . . , Sm), x1 x2 = σ2

[
y2

]y2

y3 = H3(S1, . . . , Sm), x2 x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3
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Convolutional Learning on Heterogeneous Networks

I Multigraph Neural Networks capture complex network dynamics that graphs and GNNs cannot
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x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)
10 50 100

Power Budget (Pmax)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
u

m
-R

a
te

Random Selection

Equal Power

Parallel Graph Neural Network

Merged Graph Neural Network

Multigraph Neural Network

0.5 1 2

Noise (ω2)

0.0

0.1

0.2

0.3

0.4

0.5

S
u

m
-R

at
e

Random Selection

Equal Power

Parallel Graph Neural Network

Merged Graph Neural Network

Multigraph Neural Network

Power allocation problem in a wireless communication system

I Diffusions capture/exploit heterogeneous structure

Butler, L., Parada-Mayorga, A., and Ribeiro, A. ”Convolutional learning on multigraphs.”, arXiv:2209.11354 (2022) TSP - IEEE.
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Lie Algebra Group Neural Networks

Kumar, H., Parada-Mayorga, A., & Ribeiro, A. (2023). Lie Group Algebra Convolutional Filters. arXiv: 2305.04431
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Leveraging Group Symmetries on Arbitrary Spaces

I Lie group symmetries on arbitrary spaces: no lifting on the group, non homogeneous spaces

I Proteins and knot type data ⇒ locally complex, low dimensional in high dimensional spaces

Rotation symmetries SO(3)

Group action 1 Group action 2

I non homogeneous spaces: concrete real life data defined from arbitrary/irregular sampling schemes

I Built signal models ⇒ convolutional filtering + convolutional NN ⇒ preserving structure
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Lie Group Convolutional Filters

I Signals, x ∈M ⇒ arbitrary (given) vector space. No need to lift information onto the group

I The algebra A = L1(Ĝ) is a polynomial algebra constructed from generators of L1(G))

I The homomorphism instantiates convolutional filters as multivariate polynomials (for example with
2 generators)

H
(

T̂g1 , T̂g2

)
= T̂2

g1
+ T̂g1 T̂g2 + 2T̂2

g2
+ I

I T̂g1 , T̂g2 actions of the generators of L1(G) on the space of signals M
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Lie Group Convolutional Neural Networks

I Lie group Algebra NN: stacked layered structure

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ`

[
H`

(
T̂g1 , . . . , T̂gm

)
x`−1

]

I Learnable parameters: coefficients of H

x

y1 =
∑

ĝ∈Ĝk
δ,N

a1(ĝ)T̂ĝ x
x1 = σ1

[
y1

]y1

y2 =
∑

ĝ∈Ĝk
δ,N

a2(ĝ)T̂ĝ x1
x2 = σ2

[
y2

]y2

y3 =
∑

ĝ∈Ĝk
δ,N

a3(ĝ)T̂ĝ x2
x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3
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Group Convolutional Information Processing on Arbitrary Spaces

GrpA-1 (Ours)GrpA-2 (Ours) FCNN-1 FCNN-2 LieConv-1 LieConv-2
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Test accuracy on binary knot classification. Signals defined on Sphere, Gaussian and Uniform grids with
many samples (|X̂ | = 1000). Simulations for LieConv-1,2 (intractability).

Kumar, H., Parada-Mayorga, A., & Ribeiro, A. (2023). Lie Group Algebra Convolutional Filters. arXiv: 2305.04431
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