
Graphs and Shift Operators
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Graphs

I A graph is a triplet G = (V, E ,W), which includes vertices V, edges E , and weights W

⇒ Vertices or nodes are a set of n labels. Typical labels are V = {1, . . . , n}

⇒ Edges are ordered pairs of labels (i , j). We interpret (i , j) ∈ E as “i can be influenced by j .”

⇒ Weights wij ∈ R are numbers associated to edges (i , j). “Strength of the influence of j on i .”
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Symmetric Graphs

I A graph is symmetric or undirected if both, the edge set and the weight are symmetric

⇒ Edges come in pairs ⇒ We have (i , j) ∈ E if and only if (j , i) ∈ E

⇒ Weights are symmetric ⇒ We must have wij = wji for all (i , j) ∈ E
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I Most of the graphs we encounter in practical situations are symmetric and weighted
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Adjacency Matrices

I The adjacency matrix of graph G = (V, E ,W) is the sparse matrix A with nonzero entries

Aij = wij , for all (i , j) ∈ E

I If the graph is symmetric, the adjacency matrix is symmetric ⇒ A = AT . As in the example
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Neighborhoods and Degrees

I The neighborhood of node i is the set of nodes that influence i ⇒ n(i) := {j : (i , j) ∈ E}

I Degree di of node i is the sum of the weights of its incident edges ⇒ di =
∑
j∈n(i)

wi j =
∑

j :(i,j)∈E}

wi j
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I Node 1 neighborhood ⇒ n(1) = {2, 3}

I Node 1 degree ⇒ n(1) = w12 + w13
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Degree Matrix

I The degree matrix is a diagonal matrix D with degrees as diagonal entries ⇒ Dii = di

I Write in terms of adjacency matrix as D = diag(A1). Because (A1)i =
∑

j wij = di
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Laplacian Matrix

I The Laplacian matrix of a graph with adjacency matrix A is ⇒ L = D− A = diag(A1)− A

I Can also be written explicitly in terms of graph weights Aij = wij

⇒ Off diagonal entries ⇒ Lij = −Aij = −wij

⇒ Diagonal entries ⇒ Lii = di =
∑
j∈n(i)

wij

L =
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Graph Shift Operator

I The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix

S = A

Laplacian Matrix

S = L

Normalized Adjacency

S = Ā

Normalized Laplacian

S = L̄

I If the graph is symmetric, the shift operator S is symmetric ⇒ S = ST

I The specific choice matters in practice but most of results and analysis hold for any choice of S
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Graph Signals

I Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing
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Graph Signal

I Consider a given graph G with n nodes and shift operator S

I A graph signal is a vector x ∈ Rn in which component xi is associated with node i

I To emphasize that the graph is intrinsic to the signal we may write the signal as a pair ⇒ (S, x)
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I The graph is an expectation of proximity or similarity between components of the signal x
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Graph Signal Diffusion

I Multiplication by the graph shift operator implements diffusion of the signal over the graph

I Define diffused signal y = Sx ⇒ Components are yi =
∑
j∈n(i)

wi j xj =
∑
j

wij xj

⇒ Stronger weights contribute more to the diffusion output

⇒ Codifies a local operation where components are mixed with components of neighboring nodes.
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Graph Convolutional Filters

I Graph convolutional filters are the tool of choice for the linear processing of graph signals
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Graph Filters

I Given graph shift operator S and coefficients hk , a graph filter is a polynomial (series) on S

H(S) =
∞∑
k=0

hkSk

I The result of applying the filter H(S) to the signal x is the signal

y = H(S) x =
∞∑
k=0

hkSkx

I We say that y = h ?S x is the graph convolution of the filter h = {hk}∞k=0 with the signal x
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Transferability of Filters Across Different Graphs

I The same filter h = {hk}∞k=0 can be executed in multiple graphs ⇒ We can transfer the filter

Graph Filter on a Graph
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I Graph convolution output ⇒ y = h ?S x = h0S0 x +h1S1 x +h2S2 x +h3S3 x + . . . =
∞∑
k=0

hkSk x

I Output depends on the filter coefficients h, the graph shift operator S and the signal x
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Graph Convolutional Filters as Diffusion Operators

I A graph convolution is a weighted linear combination of the elements of the diffusion sequence

I Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

y = h ?S x

15



Time Convolutions as a Particular Case of Graph Convolutions
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Convolutions in Time

I Convolutional filters process signals in time by leveraging the time shift operator

x0

x1

x2 x3

xn

x−1
x0

x1

x2

xn−1 = shift(xn)

x−2

x−1
x0

x1

xn−2 = shift2(xn)

x−3 x−2

x−1
x0

xn−3 = shift3(xn)

z−1 z−1 z−1

+ + + +

xn xn−1 xn−2 xn−3

h0 h1 h2 h3

yn

h0xn h1xn−1 h2xn−2 h3xn−3

I The time convolution is a linear combination of time shifted inputs ⇒ yn =
K−1∑
k=0

hkxn−k
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Time Signals Represented as Graph Signals

I Time signals are representable as graph signals supported on a line graph S ⇒ The pair (S, x)
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I Time shift is reinterpreted as multiplication by the adjacency matrix S of the line graph

S3 x = S
[

S2 x
]

= S
[

S
(

S x
) ]

=


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :




:
x0
x1
x2
x3
:

 =


:

x−3
x−2
x−1
x0
:


I Components of the shift sequence are powers of the adjacency matrix applied to the original signal

⇒ We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph
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y = h ? x
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I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Convolution as a Polynomial on the Line Adjacency

I The convolution operation is a linear combination of shifted versions of the input signal

I But we now know that time shifts are multiplications with the adjacency matrix S of line graph
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I Time convolution is a polynomial on adjacency matrix of line graph ⇒ y = h ? x =
K−1∑
k=0

hkSkx
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The Time Convolution Generalized to Arbitrary Graphs

I If we let S be the shift operator of an arbitrary graph we recover the graph convolution
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Graph Fourier Transform

I The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems
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Eigenvectors and Eigenvalues of Shift Operator

I We work with symmetric graph shift operators ⇒ S = SH

I Introduce eigenvectors vi and eigenvalues λi of graph shift operator S ⇒ Svi = λivi

⇒ For symmetric S eigenvalues are real. We have ordered them ⇒ λ0 ≤ λ1 ≤ . . . ≤ λn

I Define eigenvector matrix V = [v1, . . . , vn] and eigenvalue matrix Λ = diag([λ1; . . . ;λn])

⇒ Eigenvector decomposition of Graph Shift Operator ⇒ S = VΛVH . With VHV = I
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The Graph Fourier Transform

Graph Fourier Transform

Given a graph shift operator S = VΛVH , the graph Fourier transform (GFT) of graph signal x is

x̃ = VH x

I The GFT is a projection on the eigenspace of the graph shift operator.

I We say x̃ is a graph frequency representation of x. A representation in the graph frequency domain
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The Inverse Graph Fourier Transform

Inverse Graph Fourier Transform

Given a graph shift operator S = VΛVH , the inverse graph Fourier transform (iGFT) of GFT x̃ is

˜̃x = V x̃

I Given that VHV = I, the iGFT of the GFT of signal x recovers the signal x

˜̃x = V x̃ = V
(

VH x
)

= Ix = x
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Graph Frequency Response of Graph Filters

I Graph filters admit a pointwise representation when projected into the shift operator’s eigenspace
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Graph Fiters in the Graph Frequency Domain

Theorem (Graph frequency representation of graph filters)

Consider graph filter h with coefficients hk , graph signal x and the filtered signal y =
∞∑
k=0

hkSkx.

The GFTs x̃ = VHx and ỹ = VHy are related by

ỹ =
∞∑
k=0

hkΛk x̃

I The same polynomial but on different variables. One on S. The other on eigenvalue matrix Λ
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Graph Frequency Response

I In the graph frequency domain graph filters are a diagonal matrices ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I Thus, graph convolutions are pointwise in the GFT domain ⇒ ỹi =
∞∑
k=0

hkλ
k
i x̃i = h̃(λi )x̃i

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k
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Observations on the Graph Frequency Response

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients h = {hk}∞k=1, the graph frequency response is the polynomial

h̃(λ) =
∞∑
k=0

hkλ
k

I Frequency response is the same polynomial that defines the graph filter ⇒ but on scalar variable λ

I Frequency response is independent of the graph ⇒ Depends only on filter coefficients

I The role of the graph is to determine the eigenvalues on which the response is instantiated
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Graph Frequency Response is Independent of the Graph

I Graph filter frequency response is a polynomial on a scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

I Completely determined by the filter coefficients h = {hk}∞k=1 . The Graph has nothing to do with it

λ

h̃(λ)
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The Graph Instantiates Specific Eigenvalues

I A given (another) graph instantiates the response on its given (different) specific eigenvalues λi

I Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

λ1 λ̂1 λi λ̂i λn λ̂n
λ

h̃(λ)
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Learning with Graph Signals

I Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals
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Empirical Risk Minimization

I In this course, machine learning (ML) on graphs ≡ empirical risk minimization (ERM) on graphs.

I In ERM we are given:

⇒ A training set T containing observation pairs (x, y) ∈ T . Assume equal length x, y,∈ Rn.

⇒ A loss function `(y, ŷ) to evaluate the similarity between y and an estimate ŷ

⇒ A function class C

I Learning means finding function Φ∗ ∈ C that minimizes loss `
(

y,Φ(x)
)

averaged over training set

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x),
)

I We use Φ∗(x) to estimate outputs ŷ = Φ∗(x) when inputs x are observed but outputs y are unknown
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Empirical Risk Minimization with Graph Signals

I In ERM, the function class C is the degree of freedom available to the system’s designer

Φ∗ = argmin
Φ∈C

∑
(x,y)∈T

`
(

y,Φ(x)
)

I Designing a Machine Learning ≡ finding the right function class C

I Since we are interested in graph signals, graph convolutional filters are a good starting point
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Learning with a Graph Convolutional Filter

I Input / output signals x / y are graph signals supported on a common graph with shift operator S

I Function class ⇒ graph filters of order K supported on S ⇒ Φ(x) =
K−1∑
k=0

hkSkx = Φ(x;S,h)

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

I Learn ERM solution restricted to graph filter class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; S, h )
)

⇒ Optimization is over filter coefficients h with the graph shift operator S given
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When the Output is Not a Graph Signal: Readout

I Outputs y ∈ Rm are not graph signals ⇒ Add readout layer at filter’s output to match dimensions

I Readout matrix A ∈ Rm×n yields parametrization ⇒ A× Φ(x;S,h) = A×
K−1∑
k=0

hkSkx

x
z =

K−1∑
k=0

hk Sk x
z = Φ(x; S,h)

A
A × Φ(x; S,h)

I Making A trainable is inadvisable. Learn filter only. ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, A× Φ( x; S, h )
)

I Readouts are simple. Read out node i ⇒ A = eT
i . Read out signal average ⇒ A = 1T .
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Graph Neural Networks (GNNs)

[1] F. Gama, et.al, “Convolutional Neural Network Architectures for Signals Supported on Graphs,” IEEE-TSP. Arxiv: 1805.00165

[2] F. Gama, et.al, “Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks,” IEEE-SPM.

Arxiv: 2003.03777
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Pointwise Nonlinearities

I A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries

I The result of applying pointwise σ to a vector x is ⇒ σ
[

x
]

= σ


x1

x2

...
xn

 =


σ(x1)
σ(x2)

...
σ(xn)



I A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector

I ReLU: σ(x)=max(0, x). Hyperbolic tangent: σ(x)=(e2x − 1)/(e2x + 1). Absolute value: σ(x)= |x |.

I Pointwise nonlinearities decrease variability. ⇒ They function as demodulators.
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Learning with a Graph Perceptron

I Graph filters have limited expressive power because they can only learn linear maps

I A first approach to nonlinear maps is the graph perceptron ⇒ Φ(x) = σ

[
K−1∑
k=0

hkSkx

]
= Φ(x; S,h)

Perceptron

x
z =

K−1∑
k=0

hkSk x σ
[

z
]z Φ(x; S, h)

σ
[

x
]

= σ


x1

x2

...
xn

 =


σ(x1)
σ(x2)

...
σ(xn)



I Optimal regressor restricted to perceptron class ⇒ h∗ = argmin
h

∑
(x,y)∈T

`
(

y, Φ( x; S, h )
)

⇒ Perceptron allows learning of nonlinear maps ⇒ More expressive. Larger Representable Class
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Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 1 processes input signal x with the perceptron h1 = [h10, . . . , h1,K−1] to produce output x1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x

]

I The Output of Layer 1 x1 becomes an input to Layer 2. Still x1 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL
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Graph Neural Networks (GNNs)

I To define a GNN we compose several graph perceptrons ⇒ We layer graph perceptrons

I Layer 2 processes its input signal x1 with the perceptron h2 = [h20, . . . , h2,K−1] to produce output x2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I The Output of Layer 2 x2 becomes an input to Layer 3. Still x2 but with different interpretation

I Repeat analogous operations for L times (the GNNs depth) ⇒ Yields the GNN predicted output xL
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The GNN Layer Recursion

I A generic layer of the GNN, Layer `, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with perceptron h` = [h`0, . . . , h`,K−1] to produce output x`

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a GNN

I If it has L layers, the GNN output ⇒ xL = Φ
(

x; S, h1, . . . , hL

)
= Φ

(
x; S, H

)

I The filter tensor H = [h1, . . . , hL] is the trainable parameter. The graph shift is prior information
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GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
K−1∑
k=0

h1k Sk x0

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
K−1∑
k=0

h2k Sk x1

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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GNN Block Diagram

I Illustrate definition with a GNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
K−1∑
k=0

h3k Sk x2

]

I Last layer output is the GNN output ⇒ Φ(x; S,H)

⇒ Parametrized by filter tensor H = [h1, h2, h3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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Some Observations about Graph Neural Networks

42



The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I A composition of L layers. Each of which itself a...

⇒ Compositions of Filters & Pointwise nonlinearities

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x1

x1

x3 = Φ(x; S,H)
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The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Filters are parametrized by...

⇒ Coefficients h`k and graph shift operators S
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x0 = x
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h1k Sk x x1 = σ
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z1

]z1

z2 =
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]z2

z3 =
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k=0
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[

z3

]z3
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The Components ot a Graph Neural Network

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I Output xL = Φ(x; S,H) parametrized by...

⇒ Learnable Filter tensor H = [h1, . . . , hL]

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3
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x1

x1
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x2

x3 = Φ(x; S,H)
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Learning with a Graph Neural Network

I Learn Optimal GNN tensor H∗ = (h∗1 , h
∗
2 , h
∗
3 ) as

H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I Optimization is over tensor only. Graph S is given

⇒ Prior information given to the GNN
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x0 = x
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h1k Sk x x1 = σ
[

z1

]z1

z2 =
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k=0

h2k Sk x1 x2 = σ
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]z2

z3 =
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h3k Sk x2 x3 = σ
[

z3

]z3
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x2

x2

x2

x3 = Φ(x; S,H)
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Graph Neural Networks and Graph Filters

I GNNs are minor variations of graph filters

I Add pointwise nonlinearities and layer compositions

⇒ Nonlinearities process individual entries

⇒ Component mixing is done by graph filters only

I GNNs do work (much) better than graph filters

⇒ Which is unexpected and deserves explanation

⇒ Which we will attempt with stability analyses
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x0 = x
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h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Transference of GNNs Across Graphs

I GNN Output depends on the graph S.

I Interpret S as a parameter

⇒ Encodes prior information. As we have done so far
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h1k Sk x x1 = σ
[

z1

]z1

z2 =
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k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Transference of GNNs Across Graphs

I But we can reinterpret S as an input of the GNN

⇒ Enabling transference across graphs

Φ(x; S,H) ⇒ Φ(x; S̃,H)

⇒ Same as we enable transference across signals

Φ(x; S,H) ⇒ Φ(x̃; S,H)

I A trained GNN is just a filter tensor H∗
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Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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CNNs and GNNs

I There is no difference between CNNs and GNNs

I To recover a CNN just particularize the shift operator

the adjacency matrix of the directed line graph

S =


: : :

·· 0 0 0 ··
·· 1 0 0 ··
·· 0 1 0 ··
·· 0 0 1 ··

: : :



1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

I GNNs are proper generalizations of CNNs
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z1 =
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h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x; S,H)
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Fully Connected Neural Networks
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The Road Not Taken: Fully Connected Neural Networks

I We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals

I We argued this is a good idea because they are generalizations of convolutional filters and CNNs

I We can explore this better if we go back to the road not taken ⇒ Fully connected neural networks
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Learning with a Linear Classifier

I Instead of graph filters, we choose arbitrary linear functions ⇒ Φ(x) = Φ(x; H) = H x

x
z = H x

z = Φ(x; H)

I Optimal regressor is ERM solution restricted to linear class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)
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Learning with a Linear Perceptron

I We increase expressive power with the introduction of a perceptrons ⇒ Φ(x) = Φ(x; H) = σ
[

Hx
]

Perceptron

x
z = H x σ

[
z
]z

Φ(x; H)

I Optimal regressor restricted to perceptron class ⇒ H∗ = argmin
H

∑
(x,y)∈T

`
(

Φ(x; H), y
)
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Fully Connected Neural Networks (FCNN)

I A generic layer, Layer ` of a FCNN, takes as input the output x`−1 of the previous layer (`− 1)

I Layer ` processes its input signal x`−1 with a linear perceptron H` to produce output x`

x` = σ
[

z`
]

= σ
[

H` x`−1

]

I With the convention that the Layer 1 input is x0 = x, this provides a recursive definition of a FCNN

I If it has L layers, the FCNN output ⇒ xL = Φ
(

x; H1, . . . ,HL

)
= Φ

(
x;H

)

I The filter tensor H = [H1, . . . ,HL] is the trainable parameter.
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed input signal x = x0 into Layer 1

x1 = σ
[

z1

]
= σ

[
H1 x0

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 1 output as an input to Layer 2

x2 = σ
[

z2

]
= σ

[
H2 x1

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Fully Connected Neural Network Block Diagram

I Illustrate definition with an FCNN with 3 layers

I Feed Layer 2 output as an input to Layer 3

x3 = σ
[

z3

]
= σ

[
H3 x2

]

I Output Φ(x;H) Parametrized by H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

x0 = x

z1 = H1 x x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3 x2 x3 = σ
[

z3

]z3

x1

x1

x1

x2

x2

x2

x3 = Φ(x;H)
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Neural Networks vs Graph Neural Networks
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Which is Better: A Graph NN or a Fully Connected NN?

I Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

min
H

∑
(x,y)∈T

`
(

Φ(x;H), y
)
≤ min

H

∑
(x,y)∈T

`
(

Φ(x; S,H), y
)

I The fully connected NN does better. But this holds for the training set

I In practice, the GNN does better because it generalizes better to unseen signals

⇒ Because it exploits internal symmetries of graph signals codified in the graph shift operator
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Generalization with a Neural Network

I Suppose the graph represents a recommendation system where we want to fill empty ratings

I We observe ratings with the structure in the left. But we do not observe examples like the other two

I From examples like the one in the left, the NN learns how to fill the middle signal but not the right
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Generalization with a Graph Neural Network

I The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

I The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal

1

x1

2
x2

3
x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

57



Permutation Equivariance of Graph Neural Network

I The GNN exploits symmetries of the signal to effectively multiply available data

I This will be formalized later as the permutation equivariance of graph neural networks
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Graph Filter Banks

I Filters isolate features. When we are interested in multiple features, we use Banks of filters
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Graph Filter Banks

I A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank

I Filter f in the bank uses coefficients hf = [hf
1; . . . ; hf

K−1] ⇒ Output zf is a graph signal

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x • • • zF =

K−1∑
k=0

hFk Sk x

x
• • •

z1 z2
• • •

zF

I Filter bank output is a collection of F graph signals ⇒ Matrix graph signal Z = [z1, . . . , zF ]
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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z1
1 · · · z f1 · · · zF1
.
.
.

.

.

.
.
.
.

z1
i · · · z fi · · · zFi
.
.
.

.

.

.
.
.
.

z1
n · · · z fn · · · zFn


=



z1

.

.

.
zi
.
.
.

zn



=
[

z1 · · · zf · · · zF
]
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Filter Bank Outputs: Multiple Features

I The input of a filter bank is a single graph signal x. Rows of x are signals components xi .

I Output matrix Z is a collection of signals zf . Rows of which are components z fi .

I Vector zi supported at each node. Columns of Z are graph signals zf . Rows of Z are node features zi
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Multiple Feature GNNs

I We leverage filter banks to create GNNs that process multiple features per layer
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node

z1 =

K−1∑
k=0

h1
k Sk x z2 =

K−1∑
k=0

h2
k Sk x zF =

K−1∑
k=0

hFk Sk x

x

z1 z2 zF

I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node
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I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple Feature (Matrix) Graph Signals

I Filter banks output a collection of multiple graph signals ⇒ A matrix graph signal Z = [z1, . . . , zF ]

I The F graph signals zf represent F features per node. A vector zi supported at each node
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I We would now like to process multiple feature graph signals. Process each feature with a filterbank.
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Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Each of the F features xf is processed with G filters with coefficients hfg
k ⇒ ufg =

K−1∑
k=0

hfg
k Sk xf

uf 1 =

K−1∑
k=0

hf 1
k Sk x uf 2 =

K−1∑
k=0

hf 2
k Sk x ufG =

K−1∑
k=0

hfGk Sk x

xf

uf 1 uf 2 ufG
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Multiple-Input-Multiple-Output (MIMO) Graph Filters

I This Multiple-Input-Multiple-Output Graph Filter generates an output with F × G features

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 zG = u1G + u2G + . . . + uFG
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Multiple-Input-Multiple-Output (MIMO) Graph Filters

I Reduce to G outputs with sum over input features for given g ⇒ zg =
F∑

f =1

ufg =
F∑

f =1

K−1∑
k=0

hfg
k Sk xf

uF1 =

K−1∑
k=0

hF1
k Sk x uF2 =

K−1∑
k=0

hF2
k Sk x uFG =

K−1∑
k=0

hFGk Sk x

xF

uF1 uF2 uFG

u21 =

K−1∑
k=0

h21
k Sk x u22 =

K−1∑
k=0

h22
k Sk x u2G =

K−1∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =

K−1∑
k=0

h11
k Sk x u12 =

K−1∑
k=0

h12
k Sk x u1G =

K−1∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 zG = u1G + u2G + . . . + uFG
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MIMO Graph Filters with Matrix Graph Signals

I MIMO graph filters are cumbersome, not difficult. Just F × G filters. Or F filter banks.

I Easier with matrices ⇒ G × F coefficient matrix Hk with entries
(

Hk

)
fg

= hfg
k

Z =
K−1∑
k=0

Sk × X×Hk

I This is a more compact format of the MIMO filter. It is equivalent

[
z1 ·· zg ·· zG

]
=

K−1∑
k=0

Sk ×
[

x1 ·· xf ·· xF
]
×


h11
k ·· h1g

k ·· h1G
k

: : :

hf 1
k ·· hf gk ·· hf Gk
: : :

hF1
k ·· hFgk ·· hFGk
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MIMO GNN / Multiple Feature GNN

I MIMO GNN stacks MIMO perceptrons ⇒ Compose of MIMO filters with pointwise nonlinearities

I Layer ` processes input signal X`−1 with perceptron H` = [H`0, . . . ,H`,K−1] to produce output X`

X` = σ
[

Z`
]

= σ

[
K−1∑
k=0

Sk X`−1 H`k

]

I Denoting the Layer 1 input as X0 = X, this provides a recursive definition of a MIMO GNN

I If it has L layers, the GNN output ⇒ XL = Φ
(

x; S, H1, . . . ,HL

)
= Φ

(
x; S, H

)

I The filter tensor H = [H1, . . . ,HL] is the trainable parameter. The graph shift is prior information
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed input signal X = X0 into Layer 1 (F0 features)

X1 = σ
[

Z1

]
= σ

[
K−1∑
k=0

Sk X0 H1k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 1 output as an input to Layer 2 (F1 features)

X2 = σ
[

Z2

]
= σ

[
K−1∑
k=0

Sk X1 H2k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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MIMO GNN Block Diagram

I We illustrate with a MIMO GNN with 3 layers

I Feed Layer 2 output (F2 features) as an input to Layer 3

X3 = σ
[

Z3

]
= σ

[
K−1∑
k=0

Sk X2 H3k

]

I Last layer output is the GNN output ⇒ Φ(X; S,H)

⇒ Parametrized by trainable tensor H = [H1,H2,H3]

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)
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Algebraic Convolutional Information Processing

I Algebraic filters are a generic abstraction of the common features of convolutional signal processing

I Graph, time, and image convolutions can be expressed as particular cases of algebraic filters
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Vector Spaces and Endomorphisms

I Signals in M = Rn ⇒ Traditional matrix multiplications ⇒ y = Ex

I Signals in M = L2([0, 1]) ⇒ Linear functionals ⇒ y =

∫ 1

0

E(u, v)x(v) dv
M

x ex

End(M)

e

I End(M): the set of all linear maps that can be applied to a signal x in M

⇒ Learning in End(M) is not scalable ⇒ Search over All Matrices. Or over all linear functionals
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Scalable Signal Processing

I For Scalable learning ⇒ We do restrict allowable linear maps

⇒ To those that represent a more restrictive algebra

I Map elements a of the algebra A with a homomorphism

ρ : A→ End(M)

I Map abstract filters a ∈ A into concrete endomorphisms ρ(a)

⇒ Convolutional filters yield outputs ⇒ y = ρ(a)x M

x ex

End(M)

e = ρ(a)

A

a

ρ
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Algebraic Signal Processing (ASP)

An Algebraic SP model is a triplet (A,M, ρ)

I A is an Algebra with unity where filters a ∈ A live

I It defines the rules of convolutional signal processing

I M is a vector space

I The space containing the signals x we want to process

I ρ is a homomorphism from A to the endomorphisms of M

I Instantiates the abstract filter h in the space End(M)

M

x y = ρ(a)x

End(M)

e = ρ(a)

A

a

ρ

73



Graph Signal Processing (GSP)

Task

Process signals x that are supported on a graph with n nodes. A matrix representation of the

graph is given in the matrix S.

1

2

3

4

5

6

7

8

9

10

11
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11
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Graph Signal Processing (GSP)

I GSP in the graph S is a particular case of ASP in which

⇒ M = Rn ⇒ Vectors with n components

⇒ A = P(t) ⇒ The algebra of polynomials h =
∑
k

hkt
k

⇒ Shift operator ρ(t) = S ⇒ Resulting in filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hkSk
Rn

x

Rn×nP(t)

∑
hk t

k

∑
hkSk

ρ

∑
hkSkx

t
ρ(t) = S

ρ

I Processing x with filter ρ(h) yields output ⇒ y = ρ(h)x = ρ

(∑
k

hkt
k

)
x =

∑
k

hkSkx
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Discrete Time Signal Processing (DTSP)

Task

Process sequences X with values (X )n = xn for integer indexes n ∈ Z. The sequences have finite

energy. We say that X ∈ L2(Z)
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Discrete Time Signal Processing (DTSP)

I DTSP is a particular case of ASP in which

⇒ M = L2(Z) ⇒ Finite-energy sequences in Z

⇒ A = P(t) ⇒ The algebra of polynomials h =
∑
k

hkt
k

L2(Z)

X

End(L2(Z))P(t)

∑
hk t

k

∑
hkS

k

ρ

∑
hkS

kX

t
ρ(t) = S

ρ

77



Discrete Time Signal Processing (DTSP)

I DTSP is a particular case of ASP in which

⇒ Shift operator is a time shift ρ(t) = S such that

(SX )n = (X )n−1

⇒ This mapping of the generator t yields filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hkS
k

where Sk represents k applications of S
L2(Z)

X

End(L2(Z))P(t)

∑
hk t

k

∑
hkS

k

ρ

∑
hkS

kX

t
ρ(t) = S

ρ

I Processing X with ρ(h) yields ⇒
(
Y
)
n

=
(
ρ(h)X

)
n

=

(∑
k

hkS
kX

)
n

=
∑
k

hk
(
X
)
n−k
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Image Processing (IP)

Task

Process images, defined as sequences X with values (X )mn = xmn that depend on two integer

indexes m, n ∈ Z. The sequences have finite energy. We say that X ∈ L2(Z2)
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Image Processing (IP)

I IP is a particular case of ASP in which

⇒ M = L2(Z2) ⇒ Finite-energy sequences in Z2

⇒ A=P(x , y) ⇒ Two-letter polynomials h=
∑
k

hklx
ky l

L2(Z2)

X

End(L2(Z2))P(x, y)

∑
hkl x

ky l
∑

hklS
k
x S

l
y

ρ

∑
hklS

k
x S

l
yX

x ρ(x) = Sx

ρ

y

ρ(y) = Sy

ρ
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Image Processing (IP)

I IP is a particular case of ASP in which

⇒ Two shift operators ρ(x) = Sx and ρ(y) = Sy

(SxX )mn = (X )(m−1)n (SyX )mn = (X )m(n−1)

⇒ This mapping of the generators x and y yields filters

ρ(h) = ρ

(∑
k

hkt
k

)
=
∑
k

hklS
k
x S

l
y

Sk
x or Sk

x represent k or l applications of Sx orSl

L2(Z2)

X

End(L2(Z2))P(x, y)

∑
hkl x

ky l
∑

hklS
k
x S

l
y

ρ

∑
hklS

k
x S

l
yX

x ρ(x) = Sx

ρ

y

ρ(y) = Sy

ρ

I Processing X yields ⇒
(
Y
)
mn

=
(
ρ(h)X

)
mn

=

(∑
kl

hklS
k
x S

l
yX

)
mn

=
∑
k

hk
(
X
)

(m−k)(n−l)

79



ASP is a Generic Analysis Tool

I Algebraic SP encompasses Graph SP, graphon SP, Time SP, and Image SP as particular cases

⇒ Other particular cases exist. Notably, Group SP

Euclidean Graph Graphons Manifolds Lie Groups

I ASP provides a framework for fundamental analyses that hold for all forms of convolutional filters
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Generators, Shift Operators, and Frequency Representations

I Algebraic Signal Processing is an abstraction of Convolutional Information Processing

I Three central components ⇒ generators, shift operators, and frequency representations
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Generators of an Algebra

Definition (Generators)

The set G ⊆ A generates A if all h ∈ A can be represented as polynomials of the elements of G,

h =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr = pA(G)

I The elements g ∈ G are the generators of A. And h = pA (G) is the polynomial that generates h

⇒ Filters can be built from the generating set using the operations of the algebra

I Given the algebra, the generators are given ⇒ Filter h is completely specified by its coefficients
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Generators of the Algebras of Polynomials

I The algebra of polynomials of a single variable t is generated by the polynomial g = t

⇒ Algebra elements are expressions h =
∑
k

hkt
k ⇒ They can be generated as h =

∑
k

hkt
k

I Algebra of polynomials of two variables x and y is generated by the polynomials g1 = x and g2 = y

⇒ Algebra elements are expressions h =
∑
k

hklx
ky l ⇒ Can be generated as h =

∑
k

hklx
ky l
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Shift Operators

Definition (Shift Operators)

Let (M, ρ) be a representation of A and G⊆ A a generator set of A. We say S is a shift operator

if

S = ρ(g), for some g ∈ G

The set S = {ρ(g), g ∈ G} is the shift operator set of the representation (M, ρ) of algebra A.

I Generators g of Algebra A mapped to shift operators S in the space End(M) of endomorphisms of M
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Polynomials on Shift Operators

Theorem (Filters as Polynomials on Shift Operators)

Let (M, ρ) be a representation of A with generators gi ∈ G and shift operators Si = ρ(gi ) ∈ S.

The representation ρ(h) of filter h is a polynomial on the shift operator set,

h = pA(G) =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr ⇒ ρ(h) = pM(S) =
∑

k1,...kr

hk1,...,kr S1
k1 . . .Sr

kr
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Graph Signal Processing

I GSP ⇒ Signals in Rn + Algebra of Polynomials + Homomorphism ρ defined by the map

h =
K∑

k=0

hkt
k → ρ(h) =

K∑
k=0

hkSk

I Equivalent to the (much) simpler specification of the homomorphism ⇒ ρ(t) = S

⇒ This is possible because the algebra of polynomials is generated by g = t
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Frequency Representation of an Algebraic Filter

Definition (Frequency Representation)

In an algebra A with generators gi ∈ G we are given the filter h expressed as the polynomial

h =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr = pA(G)

The frequency representation of h over the field F 1 is the polynomial function with variables λi ∈ L

pF (L) =
∑

k1,...kr

hk1,...,kr λ1
k1 . . . λr

kr

I The two polynomials are different creatures ⇒ The frequency representation is a simpler object

1 The field is unspecified in the definition. But unless otherwise noted F refers to the field over which the vector space M is defined
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Three Polynomials (or More)

I The central components of an ASP model are three different polynomials

⇒ The filter. The filter’s instantiation on the space of endomorphisms The frequency response

I These three polynomials have the same coefficients. They are related. But similar though they look

⇒ They are different objects. They utilize different operations. They have different meanings.
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Polynomial 1: The Filter

P1: The Filter

I A polynomial on the elements gi of the generator set G of the algebra A

pA(G) =
∑

k1,...kr

hk1,...,kr g1
k1 . . . gr

kr

I Sum, product, and scalar product are the operations of the algebra A

I The abstract definition of a filter. Untethered to a specific signal model
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Polynomial 2 (or More): The Instantiation of the Filter

P2: The Instantiation of the Filter in the space of Endomorphisms End(M)

I A polynomial on the elements Si = ρ(gi ) of the shift operator set S

pM(S) =
∑

k1,...kr

hk1,...,kr S1
k1 . . .Sr

kr

I Sum, product, and scalar product are the operations of the algebra of Endomorphisms of M

I The concrete effect that a filter has on a signal x. Tethered to a specific signal model

I “Or more” ⇒ The same abstract filter can be instantiated in multiple signal models

90



Polynomial 3: The Frequency Response

P3: The Frequency Response

I A polynomial function where the variables λi ∈ L take values on the field F

pF (L) =
∑

k1,...kr

hk1,...,kr λ1
k1 . . . λr

kr

I Sum and product are the operations of field F . ⇒ E.g, a polynomial with real variables

I Simpler representation of a filter. Untethered to a specific signal model (except for the field)

I The tool we use for analysis. ⇒ To explain discriminability, stability and transferability
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The Three (or More) Polynomials in GSP

(P1) Abstract filter ⇒ pA(t) =
K∑

k=0

hkt
k . Abstract definition. Untethered to any specific graph

(P2) Filter instantiated on a graph ⇒ pM(S) =
K∑

k=0

hkSk . Concrete instantiation. Tethered to S

⇒ On another graph ⇒ pM(Ŝ) =
K∑

k=0

hk Ŝk . Concrete instantiation. Tethered to Ŝ

⇒ On a graphon ⇒ pM(TW ) =
K∑

k=0

hkT
(k)
W . Concrete instantiation. Tethered to graphon W

(P3) Frequency response ⇒ pF (λ) =
K∑

k=0

hkλ
k . Simple function of one variable. Same for all instances
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Algebraic Neural Networks

I We introduce Algebraic Neural Networks (AlgNNs) to generalize neural convolutional networks

[1] A. Parada-Mayorga and A. Ribeiro, ”Algebraic Neural Networks: Stability to Deformations,” IEEE TSP. ArXiv: 2009.01433.

[2] Parada-Mayorga, et al . Convolutional filtering and neural networks with non commutative algebras. ArXiv: 2108.09923.

93



Algebraic Neural Networks (AlgNN)

I AlgNN is a stacked layered structure.

I Each layer: algebraic signal model (A`,M`, ρ`)

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ

[
ρ` (a`) x`−1

]

I σ` is a pointwise nonlinearity.

(A1,M1, ρ1)

(A2,M2, ρ2)

(A3,M3, ρ3)

x

y1 = ρ1(a1) x x1 = σ1

[
y1

]y1

y2 = ρ2(a2) x1 x2 = σ2

[
y2

]y2

y3 = ρ3(a3) x2 x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3
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Multigraph Neural Networks

Butler, L., Parada-Mayorga, A., and Ribeiro, A. ”Convolutional learning on multigraphs.”, arXiv:2209.11354 (2022) TSP - IEEE.
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Convolutional Learning on Heterogeneous Networks

I Some networked systems emerge naturally modeled/defined by multiple types of connections

1

x(1)

2

x(2)

3

x(3)

4

x(4)

5

x(5)

6

x(6)

1

7

2

6

35

4

4

5

3

6

2

7

1
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Multigraphs

x(1) x(2)

x(3)x(4)

BP

x(5)

x(6)

x(7)

x(8)

x(9)x(10)

x(11)

x(12)

Social Networks

x(1) x(2)

x(3)x(4)

x(5)

x(6)

x(7)

x(8)

Autonomous systems

I Multigraph (V, {E1, E2}) is composed by the graphs (V, E1) and (V, E2) with the same node set V
I Built signal models ⇒ convolutional filtering + convolutional NN ⇒ preserving structure
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Convolutional Multigraph Signal Processing

Multigraph (V, {E1, E2}) is composed by the graphs (V, E1)→ S1 and (V, E2)→ S2 with the same node
set V

I Signals, x, are elements of RN , N = |V|. The i-th component of x lives on node i ∈ V

I The algebra A ⇒ The algebra of polynomials with independent variables t1, t2 (non commutative)

I The homomorphism ρ translates the polynomials h(t1, t2) into the matrix polynomials H(S1,S2)

H(S1,S2) = S2
1 + S2S1 + 2S2

2 + I
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Convolutional Learning on Multigraphs

I Multigraph NN is a stacked layered structure

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ

[
H`(S1, . . . ,Sm)x`−1

]

I Learnable parameters: coefficients of H

x

y1 = H1(S1, . . . , Sm), x x1 = σ1

[
y1

]y1

y2 = H2(S1, . . . , Sm), x1 x2 = σ2

[
y2

]y2

y3 = H3(S1, . . . , Sm), x2 x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3
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Convolutional Learning on Heterogeneous Networks

I Multigraph Neural Networks capture complex network dynamics that graphs and GNNs cannot
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Power allocation problem in a wireless communication system

I Diffusions capture/exploit heterogeneous structure

Butler, L., Parada-Mayorga, A., and Ribeiro, A. ”Convolutional learning on multigraphs.”, arXiv:2209.11354 (2022) TSP - IEEE.
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Lie Algebra Group Neural Networks

Kumar, H., Parada-Mayorga, A., & Ribeiro, A. (2023). Lie Group Algebra Convolutional Filters. arXiv: 2305.04431

100



Leveraging Group Symmetries on Arbitrary Spaces

I Lie group symmetries on arbitrary spaces: no lifting on the group, non homogeneous spaces

I Proteins and knot type data ⇒ locally complex, low dimensional in high dimensional spaces

Rotation symmetries SO(3)

Group action 1 Group action 2

I non homogeneous spaces: concrete real life data defined from arbitrary/irregular sampling schemes

I Built signal models ⇒ convolutional filtering + convolutional NN ⇒ preserving structure
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Lie Group Convolutional Filters

I Signals, x ∈M ⇒ arbitrary (given) vector space. No need to lift information onto the group

I The algebra A = L1(Ĝ) is a polynomial algebra constructed from generators of L1(G))

I The homomorphism instantiates convolutional filters as multivariate polynomials (for example with
2 generators)

H
(

T̂g1 , T̂g2

)
= T̂2

g1
+ T̂g1 T̂g2 + 2T̂2

g2
+ I

I T̂g1 , T̂g2 actions of the generators of L1(G) on the space of signals M

102



Lie Group Convolutional Neural Networks

I Lie group Algebra NN: stacked layered structure

I Mapping from layer ` to `+ 1

x` = σ
[

y`
]

= σ`

[
H`

(
T̂g1 , . . . , T̂gm

)
x`−1

]

I Learnable parameters: coefficients of H

x

y1 =
∑

ĝ∈Ĝk
δ,N

a1(ĝ)T̂ĝ x
x1 = σ1

[
y1

]y1

y2 =
∑

ĝ∈Ĝk
δ,N

a2(ĝ)T̂ĝ x1
x2 = σ2

[
y2

]y2

y3 =
∑

ĝ∈Ĝk
δ,N

a3(ĝ)T̂ĝ x2
x3 = σ3

[
y3

]y3

x1

x1

x2

x2

x3

103



Group Convolutional Information Processing on Arbitrary Spaces

GrpA-1 (Ours)GrpA-2 (Ours) FCNN-1 FCNN-2 LieConv-1 LieConv-2
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Test accuracy on binary knot classification. Signals defined on Sphere, Gaussian and Uniform grids with
many samples (|X̂ | = 1000). Simulations for LieConv-1,2 (intractability).

Kumar, H., Parada-Mayorga, A., & Ribeiro, A. (2023). Lie Group Algebra Convolutional Filters. arXiv: 2305.04431

104


	lecture_3_handout
	Graphs and Shift Operators
	Graph Signals
	Graph Convolutional Filters
	Time Convolutions as a Particular Case of Graph Convolutions
	Graph Fourier Transform
	Graph Frequency Response of Graph Filters

	lecture_4_handout
	Learning with Graph Signals
	Graph Neural Networks (GNNs)
	Some Observations about Graph Neural Networks
	Fully Connected Neural Networks
	Neural Networks vs Graph Neural Networks
	Graph Filter Banks
	Multiple Feature GNNs
	Algebraic Convolutional Information Processing
	Generators, Shift Operators, and Frequency Representations
	Algebraic Neural Networks
	Multigraph Neural Networks
	Lie Algebra Group Neural Networks


