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Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ recommendation system

→

600 800 1000 1200 1400 1600 1800 2000
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e 

RM
SE

 d
iff

er
en

ce

Graph Filter
GNN
Lipschitz GNN

I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ decentralized robot control
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I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Do Graph Neural Networks Scale?

Q1: We have empirically observed that GNNs transfer at scale. Why do they?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

I To answer these questions, turn to CNNs ⇒ known to scale well for images and time sequences
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Convolutional Neural Networks Have Limits

I Discrete time/image signals converge to continuous time/image signals ⇒ ↓ intrinsic dimension

143× 95 → 205× 136 → 294× 195 → 600× 399

⇒ From SP theory, CNNs have well-defined limits on the limits of images and time signals

I A1: Intrinsic dimensionality of the problem is less than the size of the image

I A2: Training with small images is sufficient ⇒ CIFAR 10 images are 32× 32
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Graphons

I Graphs also have limit objects that effectively limit their dimensionality ⇒ one is the graphon

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

I A graphon can be thought of as a graph with an uncountable number of nodes
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Large-Scale Graphs

I Graphs however do not have the Euclidean structure time and image signals have in the limit

n = 30 products n = 50 products n = 100 products

I So do graph convolutions and graph neural networks converge to limits on the graphon?
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Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

I A1: Because graph convolutions and GNNs have well-defined limits on graphons

L. Ruiz et al, Graphon Signal Processing, TSP 2021, https://arxiv.org/abs/2003.05030

L. Ruiz et al, Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

I A2: Yes, as GNNs are transferable ⇒ can be trained on moderate-size and executed on large-scale

J. Cerviño et al, Learning by Transference: Training Graph Neural Networks on Growing Graphs., https://arxiv.org/abs/2106.03693
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Graphons

I We introduce graphons to study graph filters and GNNs in the limit of large number of nodes
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Graphon Definition

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Can think of a graphon as a weighted symmetric graph with uncountable nodes

⇒ The labels are the graphon arguments ⇒ u ∈ [0, 1].

⇒ The weights are the graphon values ⇒ W (u, v) = W (v , u)
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Graphon Examples

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

Uniform (Erdős-Rényi)

W (u, v) = p

Balanced stochastic block model (SBM)

W (u, v) = p � W (u, v) = q

Unbalanced (SBM)

W (u, v) = p � W (u, v) = q
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The Purpose of a Graphon

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Practice ⇒ Graph sets where graphs in the set have large number of nodes and similar structure

I Theory ⇒ A generative model of graph families via deterministic or stochastic edge sampling

I Theory ⇒ A limit object for a sequence of graphs
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The Product Similarity “Graphon”

I Product similarity graphs, even with different number of nodes, “look like each other”

I Abstract similarities between graphs into a limit object ⇒ The product similarity “graphon”

n = 30 products n = 50 products n = 100 products
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The Product Similarity “Graphon”

I We never compute the product similarity “graphon”

⇒ Use abstract idea of graphon to work with all of these graphs as if they were the same object

n = 30 products n = 50 products n = 100 products
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Graphons as Generative Models

I Vertices: For an n-node graph, sample n points {u1, u2, . . . , un} from the unit interval [0, 1]

⇒ Points can be sampled on a grid, uniformly at random, etc.

⇒ Each sample ui corresponds to a node i ∈ {1, 2, 3, . . . , n} of the graph

I Edges: Evaluate W(ui , uj) for edge (i , j)

⇒ Stochastic: Connect i and j with an unweighted undirected edge with probability W(ui , uj)

⇒ Weighted: Connect i and j with weighted undirected edge with weight W(ui , uj)
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Uniform Graphons as Generative Models

I Use uniform Graphon
W (u, v) = p

To generate random graphs with the same

Or different number of nodes

n = 50 nodes n = 50 nodes n = 100 nodes
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Balanced SBM Graphons as Generative Models

I Use balanced SBM

Graphon

q p

p q

To generate balanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Unbalanced SBM Graphons as Generative Models

I Use Unbalanced SBM

Graphon

q p

p q

To generate unbalanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Uniform Graphons as a Limit Object

I As we consider random graphs with larger numbers of nodes the graphs approach a limit

⇒ It is unclear what that limit is. The graphon is the limit. As we will see

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Convergence of Graph Sequences

I A graphon is the limit of a sequence of graphs that converges in terms of homomorphism densities
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Convergent Graph Sequences

I Sequence of graphs with growing number of nodes n ⇒
{
Gn = (Vn,En, Sn)

}∞
n=1

.

I The graph sequence {Gn}∞n=1 converges to a graphon W ⇒ In what sense?

⇒ We need to introduce three concepts: Motifs, homomorphisms, and homomorphism densities

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 19



Motifs and Graph Homomorphisms

I A motif F is a graph. But think of it as a small graph that we embed in another larger graph
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I Homomorphisms are adjacency preserving maps from motif F = (V ′,E ′) into graph G = (V ,E)

β : V ′ → V such that
(
i , j
)
∈ E ′ implies

(
β(i), β(j)

)
∈ E
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Homomorphism Count

I Given motif F and graph G , there are multiple homomorphism functions β
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I We define hom(F ,G) to represent the number of homomorphisms between motif F and graph G
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Homomorphism Density

I If the graph G has n nodes and the motif F has n′ nodes, there are nn′ different maps from F to G

I Homomorphism density of motif F in graph G is the fraction of maps that are homomorphisms

t(F ,G) =
hom(F ,G)

nn′

I Density t(F ,G) is a relative measure of the number of ways in in which F can be mapped into G
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Homomorphism Density for Weighted Graphs

I Consider weighted graph G = (V ,E ,S) with adjacency matrix S

I Homomorphism density of motif F in weighted graph G with the adjacency matrix S is

t(F ,G) = =

∑
β

∏
(i,j)∈E′

[
S
]
β(i)β(j)

nn′

I Weight each motif embedding by the product of the edge weights in the homomorphism image.
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Homomorphism Density for Graphons

I The Homomorphism density of a motif F into a given graphon W is defined as

t(F ,W ) =

∫
[0,1]n

′

∏
(i,j)∈E′

W (ui , uj)
∏
i∈V′

dui

I The homomorphism density is the probability of drawing the motif F from the graphon W
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Convergence in Homomorphism Density Sense

Definition (Convergent graph sequence)

A sequence of undirected graphs Gn converges to the graphon W if and only if for all motifs F

lim
n→∞

t(F ,Gn) = t(F ,W )

I We say that the sequence Gn converges to W in the homomorphism density sense

I It can be proven that every graphon is the limit object of a sequence of convergent graphs

I It can be proven that every convergent graph sequence converges to a graphon
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Example of Convergent Graph Sequence

I Consider a sequence of random graphs {Gn} sampled from the graphon W. Graphs Gn have

⇒ Labels ui ∼ U[0, 1] drawn uniformly at random from the interval [0, 1]

⇒ Edge sets such that (ui , uj) ∈ E with probability W (ui , uj)

I We have lim
n→∞

t(F ,Gn) = t(F ,W ) in the homomorphism density sense almost surely

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Induced Graphons

I Every undirected graph admits a graphon representation which we call its induced graphon

I Consider a graph G = {V, E ,S} with |V| = n and normalized graph shift operator S

I Regular partition of the unit interval with n subintervals ⇒ Ii =
[

(i − 1)/n, i/n
)

I We define the induced graphon WG ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

1

2

3

4

5

6

→

Cycle graph G with n = 6 nodes Graphon WG induced by the graph G
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Graphon Signals

I Graph signals are signals supported on graphons. They are limit objects of graph signals
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Graphon Signals

I Graphon signals are pairs (W ,X ) where W is a graphon and X : [0, 1]→ R is a function

I Function X (u) ∈ L2
(
[0, 1]

)
has finite energy ⇒

∫ 1

0

|X (u)|2du <∞.

0 1 u

x(u)

I Generative models of graph signals. And limits of convergent sequences of graph signals
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Graphon Signals as Generative Models

I We generate graph signals (Sn, xn) by taking n samples of the graphon signal (W ,X )

I Sample the graphon at node labels ui . Sample the function X at node labels ui ⇒ xi = X (ui )

I Graph signal sampled from the unit interval in the same coordinates ui where graphon is sampled

0 1 u

x(u)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 30



Graphon Signals as Generative Models

I We generate graph signals (Sn, xn) by taking n samples of the graphon signal (W ,X )

I Sample the graphon at node labels ui . Sample the function X at node labels ui ⇒ xi = X (ui )

I Graph signal sampled from the unit interval in the same coordinates ui where graphon is sampled

0 1 u

x(u)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 30



Induced Graphon Signals

I Every graph signal x supported on graph G induces a graphon signal (WG ,XG )

I Regular partition of unit interval with n subintervals Ii =
[

(i − 1)/n, i/n
)

⇒ Induced signal XG (u) = xi I(u ∈ Ii )

⇒ WG is the graphon induced by the graph G ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

0 1 u

x(u)
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Convergent Sequences of Graph Signals

Definition (Convergent sequences of graph signals)

A sequence of graph signals (Gn, xn) is said to converge to the graphon signal (W ,X ), if there

exists a sequence of permutations πn such that for all motifs F we have

t(F ,Gn)→ t(F ,W ), and
∥∥∥Xπn(Gn) − X

∥∥∥
L2
→ 0

We say (W ,X ) is the limit of the graph signal sequence and write (Gn, xn)→ (W ,X )

I The permutation is used here to make the convergence definition independent of labels

I To enable comparison of the vector xn and the function X we use the induced signal in the L2 norm
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Graphon Shift Operator

I The Graphon W can be used to define an integral linear operator ⇒ TW : L2([0, 1]
)
→ L2([0, 1]

)
I When applied to the graphon signal X , the operator TW produces the signal TWX with values

(TWX )(v) =

∫ 1

0

W (u, v)X (u) du

I This is a Hilbert-Schmidt operator because W is bounded and compact. It’s a matrix multiplication

I We say that the linear operator TW is the graphon shift operator (WSO) of the graphon W

⇒ Applying the WSO TW to the graphon signal X diffuses X over the graphon W

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 33



Graphon Fourier Transform

I We define a graphon Fourier transform to enable spectral representation of graphon signals.
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The WSO is a self adjoint Hilbert-Schmidt operator ⇒ (TWX )(v) =

∫ 1

0

W(u, v)X (u) du

I The function ϕ : [0, 1]→ R is an eigenfunction of TW with associated eigenvalue λ if

(TWϕ)(v) =

∫ 1

0

W(u, v)ϕ(u) du = λϕ(v)

I TW has a countable number of eigenvalue-eigenfunction pairs ⇒
{

(λi , ϕi )
}∞

i=1

I We assume eigenfunctions are normalized to unit energy ⇒ ‖ϕi‖2 =

∫ 1

0

ϕ(u)du = 1
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The (countable number of) eigenfunctions of the operator Tw are an orthonormal basis of L2
(
[0, 1]

)

I We can thus decompose the graphon W in the basis
{
ϕi

}∞
i=1

of eigenfunctions of the operator TW

W(u, v) =
∞∑
i=0

λi ϕi (u)ϕi (v)

I More or less the same as the eigenvector decomposition ⇒ S = VΛVH =
∞∑
i=0

λi vi vT
i
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The Range of the Graphon Eigenvalues

I TW is self adjoint and 0 ≤W (x , y) ≤ 1 ⇒ Eigenvalues are real and lie in the interval [−1, 1]

I Order them as ⇒ −1 ≤ λ−1 ≤ λ−2 ≤ . . . ≤ 0 ≤ . . . ≤ λ2 ≤ λ1 ≤ 1

-1 0 1λ−2λ−1 λ2 λ1
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Eigenvalues Concentrate Around Zero

I Graphon eigenvalues accumulate at λ = 0 ⇒ lim
i→∞

λi = lim
i→∞

λ−i = 0. And only at λ = 0

I For any c > 0, the number of eigenvalues with
∣∣λi

∣∣ ≥ c is finite ⇒ #
{
λi :

∣∣λi

∣∣ ≥ c
}

= nc <∞

I All eigenvalues that are not λj = 0 have finite multiplicity

-1 0 1λ−2λ−1 λ2 λ1−c +c
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Eigenvalues of a Convergent Graph Sequence Converge to those of the Graphon

Theorem (Eigenvalue Convergence of a Graph Sequence)

If a graph sequence {Gn} converges to a graphon W in the homomorphism density sense , then

lim
n→∞

λj(Sn)

n
= λj(TW) = lim

n→∞
λj(TWn ) for all j

I For any convergent graph sequence, the eigenvalues of the graph converge to those of the graphon

Borgs-Chayes-Lovász-Sós-Vesztergombi, Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics,
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Eigenvalues of a Convergent Graph Sequence Converge to Those of the Graphon

I For a convergent graph sequence, eigenvalues of the graph converge to those of the limit graphon

-1 0 1

I Convergence holds in the sense that ⇒ ∃ n0 s.t. for all n > n0,

∣∣∣∣λj(Sn)

n
− λj(TW)

∣∣∣∣ < ε , ε > 0

I But n0 will be different for each j . Eigenvalue convergence is not uniform
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The Graphon Shift Operator Induces a Transform

I The graphon shift operator can be rewritten as

(TWφ)(v) =
∞∑
j=0

λjϕj(v)

∫ 1

0

ϕj(u)X (u)du

I Integral terms correspond to inner products 〈X , ϕj〉 between the signal and the eigenfunctions

I Moreover, the eigenfunctions form a complete orthonormal basis of L2([0, 1])

I Thus, the inner products can provide a complete representation of the signal on the graphon basis

I That change of basis is called the graphon Fourier Transform
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The Graphon Fourier Transform (WFT)

Definition (Graphon Fourier transform)

The graphon Fourier transform (WFT) of a graphon signal X is defined as a functional X̂ =

WFT(X ) with continuous input X and discrete output

X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u)du

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I The eigenvalues λj are countable ⇒ The graphon Fourier transform X̂ can always be defined

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 42



The Inverse Graphon Fourier Transform (iWFT)

Definition (Inverse graphon Fourier transform)

The inverse graphon Fourier transform (iWFT) of a graphon Fourier transform X̂ is defined as

iWFT(X̂ ) =
∑

j∈Z/{0}

X̂ (λj)ϕj = X

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I Eigenfunctions {ϕj}j∈Z/{0} are orthonormal. The iWFT is a proper inverse of the WFT
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The GFT converges to the WFT

I We discuss the convergence of the GFT to the WFT for graph sequences that converge to graphons.

I This need us to review convergence of eigenvectors and eigenvalues of graph sequences
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Graph signal sequence (Gn, xn) converges to graphon signal (W ,X ) ⇒ Conjecture GFT convergence

GFT(Gn, xn) → WFT(W ,X )

I Eigenvalue convergence holds ⇒ λnj → λj . Conjecture is reasonable GFT convergence should hold
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Alas, this conjecture is wrong ⇒ GFT convergence to the WFT does not hold in general

GFT(Gn, xn) 6→ WFT(W ,X )

I GFT and WFT are projections on eigenvectors and eigenfunctions. Not eigenvalues
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Convergence to Graphon Eigenvectors

I Convergence of two eigenvectors depends on how close the eigenvalues of other eigenvectors are

I Eigenvalues accumulate around λ = 0. They all converge. But different eigenvalues are close

I It makes the eigenvectors slow to converge ⇒ They all converge but convergence is not uniform

-1 0 1λ3 λ2 λ1
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Eigenvalue Margin for Linear Operators

I Consider eigenvalues λj of graphon W and λnj of graph Gn with the same index j

⇒ Compare graphon eigenvalue λj to the closest graph eigenvalue other than λnj

⇒ Compare graph eigenvalue λni to the closest graphon eigenvalue other than λj

d(λj , λnj) = min

(
d1 = min

i 6=j

∣∣∣λj − λni

∣∣∣, d2 = min
i 6=j

∣∣∣λnj − λi

∣∣∣ )
⇒ The minimum of these two is the eigenvalue margin d(λj , λnj) for the eigenvalue pair (λj , λnj)

λj λnjλj − d1 λj + d1 λj λnjλnj − d2 λnj + d2
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Convergence of Eigenfunctions

Theorem (Davis-Kahan)

Given graphon W and graphon WGn induced by graph Gn we consider graphon eigenvalue λj and

graph eigenvalue λnj . The distance between the associated eigenfunctions is bounded by

‖ϕj − ϕnj‖ ≤
π

2

‖W −WGn‖
d(λj , λnj)

where d(λj , λnj) is the eigenvalue margin for the eigenvalue pair (λj , λnj)

I Graph eigenvectors converge to graphon eigenfunctions if graph sequence converges to graphon

I When the distance to other eigenvalues decreases, the distance between eigenvectors increases
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The GFT Does Not Converge to the WFT

I For eigenvalues close to 0 the margin d(λj , λnj) vanishes ⇒ There are infinite eigenvalues in [−c, c]

I Thus for any n and ε > 0 we have some j for which ⇒ π

2

‖W − Gn‖
d(λj , λnj)

> ε

I Opposite of a convergence claim. ⇒ For any ε > 0, all n > n0, and j ⇒ π

2

‖W − Gn‖
d(λj , λnj)

≤ ε

-1 0 1−c +c
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Graphon Bandlimited Signals

Definition (Graphon bandlimited signals)

A graphon signal (W ,X ) is c-bandlimited, with bandwith c ∈ (0, 1], if X̂ (λj) = 0 for all |λj | < c.

-1 0 1−c +c
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Bandlimited and Not-Bandlimited Graphon Signals

I Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited

I To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (−c, c)

-1 0 1−c +c
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Bandlimited and Not-Bandlimited Graphon Signals

I Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited

I To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (−c, c)
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Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (GFT convergence for graphon bandlimited signals)

Let (Gn, xn) be a sequence of graph signals converging to the c-bandlimited graphon signal (W ,X ).

There exists a sequence of permutations πn such that

GFT
(
πn(Gn), πn(xn)

)
→ WFT

(
W ,X

)

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Inverse Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (iGFT convergence for graphon bandlimited signals)

Let (Gn, x̂n) be a sequence of GFTs converging to the WFT (W ,X ). The WFT is associated to a

c-bandlimited graphon signal. There exists a sequence of permutations {πn} such that

πn

(
iGFT(x̂n)

)
→ iWFT

(
X̂
)

.

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graph Fourier Transform Convergence for Bandlimited Signals

I Convergence of GFT depends on convergence of graph eigenvalues to graphon eigenvalues

I As the number of nodes n grows, the eigenvalues of Gn converge to the eigenvalues of W .

-1 0 1−c +c
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Graph Fourier Transform Convergence for Bandlimited Signals

I However, for large |j | the graph and graphon eigenvalues become difficult to tell apart

I Therefore, the GFT only converges to the WFT for graphon bandlimited signals

-1 0 1−c +c
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Graphon Filters

I We define graphon filters and prove their frequency response, which is independent of the graphon.
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Graphon Filters

I Apply the Graphon shift operator recursively to create the graphon diffusion sequence

(
T

(k)
W X

)
(v) =

∫ 1

0

W(u, v)
(
T

(k−1)
W X

)
(u) du T

(0)
W X = X

I A graphon filter of order K is defined by the filter coefficients hk and produces outputs as per

Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v) = (THX )(v)

I A linear combination of the elements of the diffusion sequence modulated by coefficients hk
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Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter ⇒ Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v)

I Only difference is a change of shift operator ⇒ TWX : (TW )X (v) =

∫ 1

0

W(u, v)X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y
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Graphon Filters in the Graphon Fourier Transform Domain

⇒ WFTs of input signal ⇒ X̂j =

∫ 1

0

X (u)ϕj(u)du ⇒ WFT of output ⇒ Ŷj =

∫ 1

0

Y (u)ϕj(u)du

Theorem (Graph frequency representation of graphon filters)

Given a graphon filter TH with coefficients hk , the components of the graphon Fourier transforms

of the input and output signals are related by

Ŷj =
K∑

k=0

hkλ
k
j X̂j

I The same polynomial that defines the filter but with the eigenvalue λi as a variable

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graphon Frequency Response

I Graphon filters are pointwise in the WFT domain ⇒ Ŷj =
K∑

k=0

hkλ
k
j X̂j = h(λj) X̂j

Definition (Frequency response of a graphon filter)

Given a graphon filter with coefficients h = {hk}∞k=1 the frequency response is the polynomial

h(λ) =
∞∑
k=0

hkλ
k

I This is also the exact same definition of the frequency response of a graph filter with coefficients hk
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Frequency Response of Graphs and Graphons

I The frequency response of a graphon filter and a graph filter with the same coefficients are the same

I Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues

I If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers

-1 0 1
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Frequency Response of Graphs and Graphons

I The frequency response of a graphon filter and a graph filter with the same coefficients are the same

I Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues

I If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers

-1 0 1
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Convergence of Graph Filters in the Spectral Domain

I Convergence of graph filter sequences towards graphon filters for convergent graph signal sequences
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Graphon Filters and Sequences of Graph Filters

I Given coefficients hk consider a graph filter sequence and a graphon filter with the same coefficients

H(Sn) =
K∑

k=1

hkSk
n

xn yn
TH =

K∑
k=1

hkT
(k)
W

X Y

I Does the graph filter sequence converge to the graphon filter? ⇒ Not the most pertinent question

⇒ Filter convergence is important inasmuch as it implies convergence of filter outputs
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Graphon Filters and Sequences of Graph Filters

I Given coefficients hk consider a graph filter sequence and a graphon filter with the same coefficients

yn =
K∑

k=1

hkSk
nxn

xn yn
yn =

K∑
k=1

hkT
(k)
W X

X Y

I Consider a convergent sequence of graph signals (Gn, xn)→ (W ,X )

⇒ Input graph signal xn to graph filter H(Sn) to produce output graph signal yn

⇒ Input graphon signal X to graphon filter TH to produce output graphon signal Y

I The graph signal sequence (Gn, yn) converges to the graphon signal (W ,Y ) under some conditions
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Graph Filters, Graphon Filters, and Their Frequency Representations

I Given filter coefficients hk we have five polynomials which are the same except for their variables

I Two polynomials are representations in the node domain

⇒ The graph filter sequence defined on variable Sn ⇒ H(Sn) =
K∑

k=1

hkSk
n

⇒ The graphon filter defined on variable TW ⇒ TH =
K∑

k=1

hkT
(k)
W
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Graph Filters, Graphon Filters, and Their Frequency Representations

I Given filter coefficients hk we have five polynomials which are the same except for their variables

I Three polynomials are representations in the spectral domain

⇒ The frequency response of the graph and graphon filters with variable λ ⇒ h̃(λ) =
K∑

k=1

hkλ
(k)

⇒ The frequency representation of the graph filters with variable λnj ⇒ h̃(λnj) =
K∑

k=1

hkλ
(k)
nj

⇒ The frequency representation of the graphon filter with variable λj ⇒ h̃(λj) =
K∑

k=1

hkλ
(k)
j
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Convergence of Graph Filters Sequences in the Frequency Domain

⇒ Frequency representation of graph filters ⇒ h̃(λnj) =
K∑

k=1

hkλ
k
nj

⇒ Frequency representation of graphon filter ⇒ h̃(λj) =
K∑

k=1

hkλ
k
j

Theorem (Convergence of graph filter sequences in the frequency domain)

Consider filter coefficients hk generating a sequence of graph filters H(Sn) supported on the graph

sequence Gn and a graphon filter TH supported on the graphon W . If Gn →W

lim
n→∞

h̃(λnj) = h̃(λj)
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Frequency Domain Convergence is Not Much

I Graph filter GFT representations converge to graphon filter WFT representation ⇒ lim
n→∞

h̃(λnj) = h̃(λj)

I This is true because eigenvalues converge and the frequency responses are the same

I This is not much to say ⇒ GFT and WFT are representations. ⇒ Filters operate in the node domain

-1 0 1
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Convergence of Graph Filters in the Node Domain

I We leverage spectral domain convergence to prove convergence of graph filters in the node domain

⇒ Provides a first approach to the study of transferability of graph filters
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From Frequency Representations to Node Representations

I To prove convergence in the node domain we can go to the frequency domain and back

GFTn h̃(λnj ) iGFTn.
xn x̃n ỹn yn

WFT h̃(λnj ) iWFT.
X X̂ Ŷ Y

I Frequency representation of graph filters converge to frequency representation of graphon filter

⇒ But the GFT and the iGFT do not converge ⇒ Unless the signals are graphon bandlimited
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Graph Filter Convergence for Bandlimited Inputs

I Input graph signal sequence (Gn, xn) ⇒ Generates output sequence (Gn, yn) with yn = H(Sn) xn

I Input graphon signal (W ,X ) ⇒ Generates output signal (W ,Y ) with Y = TH X

Theorem (Graph filter convergence for bandlimited inputs)

Given convergent graph signal sequence (Gn, xn) → (W ,X ) and filters H(Sn) and TH generated

by the same coefficients hk . If the input signals are c-bandlimited

(Gn, yn) → (W,Y )

The sequence of output graph signals converges to the output graphon signal
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Lipschitz Graphon Filters

I Convergence for bandlimited input is easy. Also weak. Therefore cheap. A stronger result is possible

I Lipschitz graphon filters are filters with frequency responses that are Lipschitz in [−1, 1]

∣∣∣ h(λ1)− h(λ2)
∣∣∣ ≤ L

∣∣∣λ1 − λ2

∣∣∣, for all λ1, λ2 ∈ [0, 1]

I Claim convergence of graph filter sequence, despite lack of convergence of the GFT and the iGFT
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Graph Filter Convergence for Lipschitz Graphon Filters

Theorem (Graph filter convergence for Lipschitz continuous filters)

Given convergent graph signal sequence (Gn, xn) → (W ,X ) and filters H(Sn) and TH generated

by the same coefficients hk . If the frequency response h̃(λ) is Lipschitz

(Gn, yn) → (W,Y )

The sequence of output graph signals converges to the output graphon signal

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Remarks on the Proof of Convergence for Lipschitz Graphon Filters

I The challenge of filter convergence comes from the accumulation of eigenvalues around λ = 0

I Which causes complications with eigenvector convergence.

I Lipschitz continuity renders the effect void. All components are multiplied by similar numbers

-0.4 0 0.4-0.1 0.1

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Remarks on the Convergence of Lipschitz Graphon Filters

I We identify a fundamental issue ⇒ Transferability is counter to discriminability

⇒ If the filter converges, it can’t separate eigenvectors associated to eigenvalues close to λ = 0

I Characterization is just a limit ⇒ Work on a finite-n transference bounding

-0.4 0 0.4-0.1 0.1
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Graphon Filters are Generative Models for Graph Filters

I Graph filters can approximate graphon filters under certain conditions. We discuss them now.
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Graphon Filters are Generative Models for Graph Filters

I For a converging graph sequence, graph filters converge asymptotically to graphon filters

I Thus, as n grows, the graph filters become more similar to the graphon filter

yn =
K∑

k=1

hkSk
nxn

xn yn
yn =

K∑
k=1

hkT
(k)
W X

X Y

I And we can then use a graph filter as a surrogate for the graphon filter

I We now want to quantify the quality of that approximation for different values of n

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 75



Small Eigenvalues are Hard to Discriminate

I Graphon eigenvalues accumulate at λ = 0

I Making it hard to match graph eigenvalues to the corresponding graphon eigenvalues if λ is small

-0.4 0 0.4-0.1 0.1
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Small Eigenvalues are Hard to Discriminate

I Which in turn makes it hard to discriminate consecutive eigenvalues in that range

I If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently

I To obtain good approximations, we must then assume filters do not change much around λ = 0

0 0.35
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Small Eigenvalues are Hard to Discriminate

I Which in turn makes it hard to discriminate consecutive eigenvalues in that range

I If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently

I To obtain good approximations, we must then assume filters do not change much around λ = 0
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Low-Pass Lipschitz Filters

I Graphon eigenvalues tend to zero as the index i grows ⇒ limi→∞ λi = limi→∞ λ−i = 0

I Low-pass graphon filters must thus be zero for λ < c. Constant c determines the filter’s band.

0 c 1

I The filter removes high frequency components. But low-frequency components are not affected.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 78



Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1

∣∣ +
∣∣ v2 − v1

∣∣ )

(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1

∣∣
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Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Graph-Graphon Filter Approximation Theorem for Low-Pass Lipschitz Filters

Theorem (Graphon filter approximation by graph filter for low-pass filters)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) is zero for |λ| < c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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High-Pass Filters

I High-pass filters have null frequency response for |λ| > c, removing low-frequency components

I Moreover, we consider filters that have low variability around λ = 0

0 c 1

I This makes it easier to match graph eigenvalues to graphon eigenvalues around λ = 0
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Graph-Graphon Filter Approximation Theorem for High-Pass Filters

Theorem (Graphon filter approximation by graph filter for high-pass filters)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) is zero for |λ| > c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤ L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Lipschitz Filters with Variable Band

I Filter response has low variability for |λ| < c. Where the eigenvalues of the graphon accumulate

I For |λ| > c, graphon eigenvalues are countable. And easier to match to those of the graph

0 c 1

I A Lipschitz filter with variable band is the composition of a low-pass filter and a high-pass one
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Graph-Graphon Filter Approximation Theorem for Lipschitz Filters with Variable Band

Theorem (Graphon filter approximation by graph filter)

Consider a graphon filter Y = Φ(X; h,W) and a graph filter yn = Φ(xn; h, Sn) instantiated from

Y . With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) h(λ) has low variability for |λ| < c

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖
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Proof

I Filter with variable band is the sum of an L2-Lipschitz filter h1(λ) with h1(λ) = 0 for |λ| < c

I And a high-pass filter h2(λ) with h2(λ) showing low variability for |λ| < c and 0 otherwise

I Thus, by the triangle inequality

‖Y − Yn‖L2 = ‖THX − THn‖L2 ≤ ‖TH1X − TH1n
Xn‖L2 + ‖TH2X − TH2n

Xn‖L2

I We know the first-term on the right-hand side. It’s the bound for low-pass filters

I And the second-term on the right-hand side is the bound for constant filters

I Summing up the two bounds, we then prove our result for Lipschitz filters with variable band
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Parse the Bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖

I Bound depends on the filter transferability constant and on the difference between X and Xn

I Transferability constant depends on the graphon via L1 which also affects the graphon variability

I As n grows, the transferability constant dominates the bound
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Filter Response Determines the Approximation Bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and Yn = Φ(Xn; h,Wn) (graph filter induced by yn) is bounded by

‖Y − Yn‖L2 ≤
√
L1

(
L2 +

πnc
δnc

)
n−

1
2 ‖X‖L2 +

L3√
3
n−

1
2 + L2c‖X‖

I Transferability constant depends on the filter parameters L2, nc and δnc

I Filter’s Lipschitz constant L2 and filter’s band [c, 1] determine variability of the spectral response

I Number of eigenvalues in the passing band has to be limited: nc <
√
n

I This ensures eigenvalues of Wn converge to those of W. And thus so does the filter approximation
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Discriminability - Approximation Trade-Off

I We identify a fundamental issue ⇒ Good approximations are counter to discriminability

⇒ Tight approximation bounds require filters with low variability around λ = 0

⇒ But then the filter can’t discriminate components associated to eigenvalues close to λ = 0

I That is less of an issue for larger graphs. Filter approximation requires nc <
√
n

⇒ As n grows, we can afford a larger number of eigenvalues nc in the passing band

⇒ Improving discriminability without penalizing the approximation bound
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Transferability of Graph Filters: Theorem

I We show that graph filters are transferable across graphs that are drawn from a common graphon
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Comparing Graph Filters through their Generating Graphon Filter

I Have not proven transferability ⇒ Have proven that graph filters are close to graphon filters

⇒ Graph Gn with n nodes sampled from graphon W

⇒ Have shown that graph filter H(Sn) running on Gn is close to the graphon filter TH

-1 0 1
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Comparing Graph Filters through their Generating Graphon Filter

I Transferability means that two different graphs with different number of nodes are close

⇒ Graph Gn and graph Gm with n 6= m nodes. Both sampled from graphon W

⇒ Want to show that graph filter H(Sn) and graph filter H(Sm) are close

-1 0 1
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Comparing Graph Filters through their Generating Graphon Filter

I But graph filters are close because they are both close to the graphon filter

⇒ Graph filter H(Sn) close to graphon filter TH . Graph filter H(Sm) close to graphon filter TH

⇒ Graph filter H(Sn) is close to graph filter H(Sm) ⇒ This is just the triangle inequality

-1 0 1
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Running the Same Filter on Different Graphs

I Consider graph signals (Sn, xn) and (Sm, xm) sampled from the graphon signal (W ,X )

I Given filter coefficients hk we process signals on their respective graphs

⇒ Run filter with coefficients hk on graph Sn to process xn ⇒ yn = H(Sn)xn =
K∑

k=1

hkSk
nxn

⇒ Run filter with coefficients hk on graph Sm to process xm ⇒ ym = H(Sm)xm =
K∑

k=1

hkSk
mxn

I Since they have different number of components we compare induced graphon signals Yn and Ym
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Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1

∣∣ +
∣∣ v2 − v1

∣∣ )

(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1

∣∣
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Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Transferability Theorem

Theorem (Graph filter transferability)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W ,X ) along with

filter outputs yn = H(Sn)xn and ym = H(Sm)xm. With Assumptions (A1)-(A3) and Definitions

(D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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Transferability of Graph Filters: Remarks

I We present remarks on the transferability theorem of graph filters sampled from a graphon filter
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Thing 1, Thing 2 and Thing 3

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

Thing 1: A term that comes from the discretization of the graphon signal ⇒ Not very important

Thing 2: A term coming from filter variability at eigenvalues |λ| > c ⇒ The easy components

Thing 3: A term coming from filter variability at eigenvalues |λ| ≤ c ⇒ The difficult components
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All Filters are Transferable in the Limit

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I As (n,m)→∞ most of the transferability error decreases with the square root of the graph sizes

I We can also afford smaller bandwidth limit c ⇒ Transfer filters closer to λ = 0

I Sharper filter responses (larger Lipschitz constant L2) ⇒ Transfer more discriminative filters
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Rates of Change of Graphons and Graphon Signals

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Graph signals and graphons with rapid variability make filter transference more difficult

I This is because of sampling approximation error ⇒ Not fundamental

I The constants can be sharpened with modulo-permutation Lipschitz constants
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Filter Discriminability

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Filters that are more discriminative are more difficult to transfer

⇒ True in the part of the bound related to easy components associated with eigenvalues |λ| > c

⇒ True in the part of the bound related to difficult components associated with eigenvalues |λ| ≤ c
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Spectral Properties of the Graphon

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

‖Yn − Ym‖ ≤
√
L1

(
L2 + π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+

2L3√
3

(
1√
n

+
1√
m

)
+ L2c‖X‖

I Bound is parametric on the bandwidth c ⇒ Different c result in different values for the bound

I Increase c-band cardinality or decrease c-eigenvalue margin ⇒ More challenging transferability

I A property of the graphon ⇒ Since eigenvalues converge Bnc and δnc converge
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Transferability vs Discriminability Non-Tradeoff

I If we fix n and m we observe emergence of a transferability vs discriminability non-tradeoff

I Discriminating around λ = 0 needs large Lipschitz constant L2 ⇒ Useless transferability bound

I To make transferability and discriminability compatible ⇒ Graph Neural Networks

0 0.35
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Transferability of GNNs

I We define graphon neural networks and discuss their interpretation as generative models for GNNs

I We show that graph neural networks inherit the transferability properties of graph filters
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Graphon Neural Networks

I Graph filters are transferable ⇒ we can expect GNNs to inherit transferability from graph filters

I To analyze GNN transferability, we we first define Graphon Neural Networks (WNNs)

I The lth layer of a WNN composes a graphon convolution with parameters h and a nonlinearity σ

X f
l = σ

Fl−1∑
g=1

hfg
klT

(k)
W X g

l−1


L layers, 1 ≤ f ≤ Fl output features per layer. WNN input is X0 = X . Output is Y = XL

I Can be represented as Y = Φ(H;W ;X ) with coefficients H = {hfg
kl }k,l,f ,g . Just like the GNN
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WNNs as Generative Models for GNNs

I As in the GNN map Φ(H; S ; x), in the WNN Φ(H;W ;X ), the set H doesn’t depend on the graphon

I Therefore, we can use WNNs to instantiate GNNs ⇒ the WNN is a generative model for GNNs

WNN GNNH

W

X

G8

x8

I We will consider GNNs Φ(H;Sn; xn) instantiated from Φ(H;W ;X ) on weighted graphs Gn

[Sn]ij = W (ui , uj) [xn]i = X (ui )
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Sampling a GNN from the WNN

I Consider a graph signal (Sn, xn) sampled from the graphon signal (W ,X )

I Given WNN coefficients H for L layers, width Fl = F for 1 ≤ l < L, and F0 = FL = 1

⇒ Run WNN with coefficients H on graphon W to process X ⇒ Y = Φ(H;W ,X )

⇒ Run GNN with coefficients H on graph Sn to process xn ⇒ yn = Φ(H; Sn, xn)

I Since one is a vector and the other a function we consider the induced graphon signal Yn
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Assumptions

(A1) The graphon W is L1-Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds

∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ L1

( ∣∣ u2 − u1

∣∣ +
∣∣ v2 − v1

∣∣ )
(A2) The filter’s response is L2-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ L2

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ)

∣∣ ≤ 1

(A3) The graphon signal X is L3-Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ L3

∣∣u2 − u1

∣∣
(A4) The nonlinearities σ are normalized Lipschitz and σ(0) = 0 ⇒ For all x and y

|σ(x)− σ(y) | ≤ |x − y |
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Definitions

I We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of of graph Gn is the

δnc = min
i,j 6=i

{
|λni − λj | : |λni | > c

}

I Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Approximation Theorem

Theorem (GNN-WNN approximation)

Consider the graph signal (Sn, xn) sampled from the graphon signal (W ,X ) along with the GNN

output yn = Φ(H; Sn, xn) and WNN output Y = Φ(H;W ,X ). With Assumptions (A1)-(A4) and

Definitions (D1)-(D2) the norm difference ‖Yn − Y ‖ is bounded by

‖Y − Yn‖ ≤ LF L−1
√
L1

(
L2 + π

Bnc

δnc

)(
1√
n

)
‖X‖+

L3√
3

(
1√
n

)
+ LF L−1L2c‖X‖

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/ �
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From WNNs to GNN Transferability

I The error incurred when using a GNN to approximate a WNN can be upper bounded

I Same comments as for graph and graphon filters apply. With additional dependence on L and F

I Distances between GNNs and WNN can be combined to calculate distance between GNNs

I GNNs Yn = Φ(H;Wn, xn) and Ym = Φ(H;Wm, xm) instantiated from WNN Y = Φ(H;W ,X )

‖Yn − Ym‖ = ‖Yn − Y + Y − Ym‖ ≤ ‖Yn − Y ‖+ ‖Y − Ym‖

I The inequality follows from the triangle inequality. By which we have proved GNN transferability
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Running the Same GNN on Different Graphs

I Consider graph signals (Sn, xn) and (Sm, xm) sampled from the graphon signal (W ,X )

I Given GNN coefficients H for L layers, width Fl = F for 1 ≤ l < L, and F0 = FL = 1

⇒ Run GNN with coefficients H on graph Sn to process xn ⇒ yn = Φ(H; Sn, xn)

⇒ Run filter with coefficients H on graph Sm to process xm ⇒ ym = Φ(H; Sm, xn)

I Since they have different number of components we compare induced graphon signals Yn and Ym
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Transferability Theorem

Theorem (GNN transferability)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W ,X ) along with GNN

outputs yn = Φ(H; Sn, xn) and ym = Φ(H; Sm, xm). With Assumptions (A1)-(A4) and Definitions

(D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

‖Yn−Ym‖ ≤ LF L−1
√
L1

(
L2+π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1√
n

+
1√
m

)
‖X‖+ L3√

3

(
1√
n

+
1√
m

)
+LF L−1L2c‖X‖

I Same comments as in the case of graph filter transferability. With additional dependence on L,F
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Transferability-Discriminability Trade-off for GNNs

I The transferability-discriminability trade-off looks the same. But it is helped by the nonlinearities

I At each layer of the GNN, the nonlinearities σ scatter eigenvalues from |λ| ≤ c to |λ| > c

-1 -c 0 c 1

I Nonlinearities allows ↓ c and ↑ L2 ⇒ increasing discriminability while retaining transferability

I For the same level of discriminability, GNNs are more transferable than graph filters
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Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ recommendation system
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I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ decentralized robot control
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I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Takeaways

GNNs are more transferable than graph convolutional filters

GNNs are more transferable because of their mixing properties

I Empirical and theoretical evidence support using GNNs for large-scale graph machine learning
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Limitations and Extensions
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Limitation 1: When Transferability is Not Enough

I Using the transferability property to train GNNs for large graphs GN might not be sufficient

I The difference between the outputs of the same GNN decreases with the training graph size

⇒ But no guarantee that the learned GNN will actually perform well on the large graph

I In safety-critical applications (e.g. multi-agent systems), the error allowance is small

⇒ The minimum training graph size n in this case is likely still too large ⇒ O(N)

Solution: leverage convergence/transferability in the training algorithm of the large-scale GNN
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Learning GNNs on a Sequence of Growing Graphs

I We train GNNs on sequences of growing graphs ⇒ trade-off between costs and performance

102 nodes

⇒

103 nodes

⇒

104 nodes

I Leverage transferability to increase the graph as we improve the GNN ⇒ Learning By Transference
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Learning on Graphons (WNNs) and Learning on Graphs (GNNs)

I Obtain the NN coefficients H that minimize a loss ` over an unknown distribution
⇒ Large Scale Graph Model: predict graphon label Y given graphon signal X
⇒ Graphs: predict graph signal label y given graph signal x

Learning Problem on graphon

minimize
H

E
[
`(Y ,Φ(X ;H,W))

] Learning Problem on graph

minimize
H

E
[
`(y,Φ(x;H, S))

]

I Given the regularity in the graphon W the two problem are close ⇒ the number of nodes in graph n
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Learning by Transference: Training GNNs on Growing Stochastic Graphs

I We want to obtain the filters H that obtain the best performance on the very large graph

Gradient step on graphon
∇H`(Y ,Φ(X ;H,W))

Gradient step on graph
∇H`(yn,Φ(xn;H, Sn))

n0

I We show that these two gradients are close and that the distance depends on the number of nodes

I By successively increasing the number of nodes, we can follow the learning direction on the graphon
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Learning By Transference Converges to an Optimal WNN in Finite Time

Learning by Transference Convergence Theorem

Under smoothness assumptions, if the norm of the WNN gradient is larger than the difference

between the gradients then,

E[‖∇H`(Y ,Φ(X ;Hk∗ ,W))‖] ≤ α + ε taking k∗ = O(1/ε2) steps of Learning by Transference

where α is a constant that depends on the parameter of the problem.

I The optimal WNN can be obtained by taking learning steps on growing GNNs ⇒ more efficient

Cerviño-Ruiz-Ribeiro, Learning by Transference: Training Neural Networks on Growing Graphs, TSP 2023, arxiv.org/abs/2106.03693
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Distributed Control Benchmark: Flocking Setup

I Control a multi agent decentralized setup that aims to coordinate velocities and avoid collisions

I We construct the communication graph Sn using the proximity between agents

I Each agents controls their own acceleration a = Φ(xn;H,Sn) ⇒ imitate a centralized controller yn
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Control Cost of Learning GNNs on a sequence of growing graphs

I Showcase learning by transference with different number of initial nodes and nodes added per epoch

I We compare the control cost to the one we would have obtained training in the large scale graph
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I We obtain a comparable control cost to the large scales graph by training on growing graphs
Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 4: Transferability of Graph Neural Networks 123



Computational Cost Comparison Measured In Running Time

I We look at the time required to compute an epoch as a function of the number of nodes
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I Start with 10 nodes and adding 2 per epoch
⇒ 523s ∼ 9 minutes

I Normal train 30 epochs with 100 nodes
⇒ 9690s ∼ 2.7 hours

I Normal train 9 epochs with 100 nodes
⇒ 2907s ∼ 49 minutes

I Learning by Transference reduces the training times by up to ≈ 20 times without compromising
accuracy
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Limitation 2: Sparsity (or Lack Thereof)

I Graphon is good model for limit of dense graphs, but not as suitable for real-world, sparser graphs

I Signals on geometric graphs appear in several application domains

⇒ Wireless communication networks, 3D point clouds, climate data

I We develop a limit theory of signal processing (SP) on geometric graphs

⇒ Geometric graphs converge (or are sampled from) Manifolds

⇒ Convergence. Stability. Wireless Networks. Vector Fields
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Manifold Convolutional Filters

I Manifold M⊂ RN is d-dimensional with Laplace-Beltrami (LB) operator L
I A Manifold filter with coefficients h̃ is defined by the input-output relationship

g(x) =

∫ ∞
0

h̃(t) e−tL f (x)dt = h(L) f (x) .

I Discretizing a manifold filter yields a graph filter with shift operator e−TsLn

g =

Kt−1∑
k=0

h̃(kTs) e
−kTsLn f ≈

Kt−1∑
k=0

h̃(kTs) (I− TsLn)k f

I Recover standard convolutions if we make the particular choice L = d/dx

g(x) =

∫ ∞
0

h̃(t) e−td/dx f (x) dt =

∫ ∞
0

h̃(t) f (x − t) dt

I Manifold convolutions generalize standard (time) and graph convolutions
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Spectral Representation of Manifold Convolutional Filters

I LB operator admits discrete spectral decomposition ⇒ Lf =
∑∞

i=1 λi 〈f ,φi 〉φi

I Manifold Fourier Transform of f is the set of projections ⇒ [f ]i = 〈f ,φi 〉

I Frequency response of filter h is ⇒ ĥ(λ) =
∫∞

0
h̃(t)e−tλdt

Theorem (Manifold Filters in the Manifold Spectral Domain)

Manifold filters are pointwise in the spectral domain ⇒ [g ]i = h(λi )[f ]i

I Manifold filters are easy to study in the manifold frequency (spectral) domain
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Manifold Neural Networks (MNNs)

I A MNN is a cascade of L layers

I Each of the layers is composed of

⇒ Manifold convolutions h(L)

⇒ Pointwise nonlinearities σ

I Group learnable coefficients in H

I Write MNN as map y = Φ(H,L, f )

Layer 1

Layer 2

Layer 3

f (x)

y1(x) = h1(L)f (x) f1(x) = σ (y1(x))
y1(x)

y2(x) = h2(L)f1(x) f2(x) = σ (y2(x))
y2(x)

y2(x) = h2(L)f2(x) f3(x) = σ (y3(x))
y3(x)

f1(x)

f1(x)

f2(x)

f2(x)

f3(x) = φ(H,L, f )
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Transferability of Geometric Graph Neural Networks

I Geometric graph filters and GNNs converge to their manifold counterparts

⇒ Enables transferability of geometric GNNs from small to large graphs

I Sample the manifold at {xi}ni=1. Construct graph Laplacian of Gn with edges

wij = Kξ

(
‖xi − xj‖2

ξ

)
I Geometric graph filter is defined by replacing with graph Laplacians Ln

g =

∫ ∞
0

h̃(t)e−tLndtf = h(Ln)f, [f]i = f (xi )

I Geometric graph neural networks on Gn ⇒ Φ(H, Ln, f)
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Lipschitz and Frequency Difference Threshold (FDT) Filters

I A filter is Ah-Lipschitz if its frequency response ĥ(λ) is Ah-Lipschitz

I Partition spectrum such that λi and λj are in different partitions if |λi − λj | ≥ α

I A filter is α-FDT if |ĥ(λi )− ĥ(λj)| ≤ δD for all λi , λj in the same partition

0 Λ1 Λ2 Λ3 Λ4 Λ5

h(λ)

I Does not discriminate frequency components associated to close eigenvalues
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Convergence of Geometric GNNs to MNNs

Theorem (Convergence of Geometric GNNs)

If an L-layer MNN Φ(H,L, ·) on M and GNN Φ(H, Ln, ·) on Gn have normalized Lipschitz nonlin-

earities, it holds in high probability that

∥∥∥Φ(H, Lεn,Pnf )− PnΦ(H,L, f )
∥∥∥
L2(Gn)

≤ O

[(
N

α
+ Ah

)√
ξ

]
+ O

(
log(n)

n

)

with filters that are α-FDT with δD ≤ O(
√
ξ/α) and Ah-Lipschitz continuous.

I The properties of large GNNs can be analyzed via MNN as their limit

I The error bounds show trade-off between discriminability and approximation
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Training through Transferability on Point Clouds
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n = 300 21.15%± 3.48% 9.35%± 2.46% 7.63%± 3.36%
n = 500 18.09%± 6.28% 7.80%± 3.50% 7.54%± 4.01%
n = 700 17.31%± 6.59% 8.16%± 2.95% 7.97%± 2.45%
n = 900 15.58%± 4.54% 7.20%± 3.77% 6.68%± 3.94%

Wang-Ruiz-Ribeiro, Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs. arxiv. org/ abs/ 2305. 18467 ,
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Manifold Deformations as Operator Perturbations

I Stability to deformations is a distinguishable property of CNNs ⇒ generalizable to GNNs and CNNs

I Consider manifold signal f and a deformation τ(x) over the manifold

p(x) = L′f (x) = Lg(x) = Lf (τ(x))

Theorem (Manifold deformations)

Let the deformation τ(x) :M→M satisfy dist(x , τ(x)) = ε and J(τ∗) = I + ∆ with ‖∆‖F = ε.

If the gradient field is smooth, it holds that

L − L′ = EL+A,

where E and A satisfy ‖E‖ = O(ε) and ‖A‖op = O(ε).

I Translate manifold signal perturbations as LB operator perturbations
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Integral Lipschitz and Frequency Ratio Threshold (FRT) Filters

I A filter is Bh-Integral Lipschitz if its frequency response satisfies

|ĥ(a)− ĥ(b)| ≤ Bh|a− b|
(a + b)/2

, for all a, b ∈ (0,∞)

I Partition spectrum such that λi and λj are in different partitions if
∣∣∣λi
λj
− 1
∣∣∣ ≥ γ

I A filter is γ-FRT if |ĥ(λi )− ĥ(λj)| ≤ δR for all λi , λj in the same partition

0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

h(λ)

I Discriminate frequency components that are relatively far from each other
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Stability of Manifold Neural Networks

Theorem (Stability of MNNs to deformations)

An L-layer MNN Φ(H,L, f ) have normalized Lipschitz continuous nonlinearities. Let L′ be the

deformed LB operator with max{α, 2, |γ/1− γ|} � ε, then

∥∥∥Φ(H,L, f )− Φ(H,L′, f )
∥∥∥
L2(M)

≤ O

[(
N

α
+ Ah +

M

γ
+ Bh

)
ε

]
‖f ‖L2(M)

if the manifold filters are α-FDT with δD ≤ O(ε/α), γ-FRT with δR ≤ O(ε/γ), Ah-Lipschitz

continuous and Bh-integral Lipschitz continuous.

I The difference bound shows a trade-off between stability and discriminability
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Verifications of Stability under Perturbations
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Large-scale Wireless Power Allocation

I We test the trained GNN in other networks of increasing size and fixed density

⇒ The GNN transfers to larger ad-hoc networks with no need of retraining
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