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Permutation Equivariance, Stability, and Representation Power of
Graph Neural Networks

▶ We will start demystifying the success of Graph Neural Networks by studying their fundamental
properties.

▶ We will show that Graph Neural Networks are equivariant to permutations, stable, and highly
expressive.
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Permutation Equivariance

▶ If (S, x) is a graph signal, (PTSP,PTx) is a relabeling of (S, x). Same signal. Different names
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Graph signal x̂ = PT x supported on Ŝ = PTSP
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▶ Processing of isomorphic graphs and graph signals with Graph Neural Networks is label-independent.
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Stability

▶ Graphs are not isomorphic but close to isomorphic ⇒ perturbed versions of each other
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▶ We will show conditions for stability to deformations ⇒ Approximate (close to) equivariance
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Representation Power

▶ Graphs are not isomorphic
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▶ We will show that a Graph Neural Network will produce non-isomorphic representations for the
graphs.
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Permutation Equivariance of Graph Neural Networks

▶ We will show that graph neural networks are equivariant to permutations
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n and it

further satisfies P1 = 1 and PT1 = 1.

▶ The product PTx reorders the entries of the vector x.

▶ The product PTSP is a consistent reordering of the rows and columns of S
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrix if it has binary entries so that P ∈ {0, 1}n×n and it

further satisfies P1 = 1 and PT1 = 1.

▶ Since P1 = PT1 = 1 with binary entries ⇒ Exactly one nonzero entry per row and column of P

▶ Permutation matrices are unitary ⇒ PTP = I. Matrix PT undoes the reordering of matrix P
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Relabeling of Graph Signals

▶ If (S, x) is a graph signal, (PTSP,PTx) is a relabeling of (S, x). Same signal. Different names

Graph signal x Supported on S
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Graph signal x̂ = PT x supported on Ŝ = PTSP
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▶ Processing should be label-independent ⇒ Permutation equivariance of graph filters and GNNs
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Graph Filters and the Permutation of Graph Signals

▶ Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S)x =
K−1∑
k=0

hkS
kx

▶ We consider running the same filter on (S, x) and permuted (relabeled) (Ŝ, x̂) = (PTSP,PTx)

H(S)x =
K−1∑
k=0

hkS
kx H(Ŝ)x̂ =

K−1∑
k=0

hk Ŝ
k x̂

▶ Filter H(S)x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

▶ Filter H(Ŝ)x̂ ⇒ Same Coefficients hk . Permuted Input signal x̂. Instantiated on permuted shift Ŝ
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Graph Neural Networks and the Permutation of Graph Signals

▶ L layers recursively process outputs of previous layers. GNN Output parametrized by tensor H

xℓ = σ

[
K−1∑
k=0

hℓk S
k xℓ−1

]
= σ

[
Hℓ(S) xℓ−1

]
Φ
(
x; S, H

)
= xL

▶ We consider running the same GNN on (S, x) and permuted (relabeled) (Ŝ, x̂) = (PTSP,PTx)

Φ
(
x; S, H

)
Φ
(
x̂; Ŝ, H

)

▶ GNN Φ
(
x;S,H

)
⇒ Tensor H. Input signal x. Instantiated on shift S

▶ GNN Φ
(
x̂; Ŝ,H

)
⇒ Same Tensor H. Permuted Input signal x̂. Instantiated on permuted shift Ŝ
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Permutation Equivariance of Graph Neural Networks

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PTx. Then

Φ(x̂; Ŝ,H) = PTΦ(x;S,H)

▶ GNNs equivariant to permutations ⇒ Permute input and shift ≡ Permute output

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 11



Signal Processing with GNNs is Independent of Labeling

▶ We requested signal processing independent of labeling ⇒ GNNs fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S
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Graph signal x̂ = PT x supported on Ŝ = PTSP
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Signal Processing with GNNs is Independent of Labeling

▶ We requested signal processing independent of labeling ⇒ GNNs fulfill this request

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x;S,H) supported on S
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GNN Φ(x̂; Ŝ,H) = PTΦ(x;S,H) on Ŝ = PTSP
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Equivariance to Permutations and Signal Symmetries

▶ Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals

▶ By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

▶ Equivariance theorem implies ⇒ Φ
(
PTx; S,H

)
= Φ

(
PTx; PTSP,H

)
= PTΦ

(
x; S,H

)

From observing x supported on S
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Learn to process PT x supported on S = PTSP
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Symmetry is Rare but Quasi-Symmetry is Common

▶ Graph not symmetric but close to symmetric ⇒ perturbed version of a permutation of itself
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▶ We will show conditions for stability to deformations ⇒ Approximate (close to) equivariance
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Operator Distance Modulo Permutation

Definition (Operator Distance Modulo Permutation)

For operators Ψ and Ψ̂, the operator distance modulo permutation is defined as

∥∥Ψ− Ψ̂
∥∥
P = min

P∈P
max

x:∥x∥=1

∥∥PTΨ(x) − Ψ̂(PTx)
∥∥

where P is the set of n × n permutation matrices and where ∥ · ∥ stands for the ℓ2-norm.

▶ Equivariance to permutations of graph filters ⇒ If
∥∥Ŝ− S

∥∥
P = 0. Then

∥∥H(Ŝ)−H(S)
∥∥
P = 0

▶ Equivariance to permutations GNNs ⇒ If
∥∥Ŝ− S

∥∥
P = 0. Then

∥∥Φ(·; Ŝ,H)− Φ(·;S,H)
∥∥
P = 0

▶ When distance
∥∥Ŝ− S

∥∥
P is small? (not zero) ⇒ Stability properties of graph filters and GNNs
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Lipschitz and Integral Lipschitz Filters

▶ Classes of filters to study discriminablity of GNNs ⇒ Lipschitz and integral Lipschitz graph filters
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Graph Convolutional Filters

▶ Graph filters are polynomials on shift operators S with given coefficients hk ⇒ H(S) =
∞∑
k=0

hkS
k

▶ Filter’s frequency response is the same polynomial with scalar variable λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

▶ Frequency response determined by filter coefficients hk . Independent of particular given graph

λ

h̃(λ)
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Lipschitz Filters

Definition (Lipschitz Filter)

Given a graph filter with coefficients h = {hk}∞k=1, and graph frequency response

h̃(λ) =
∞∑
k=0

hkλ
k ,

we say that the filter is Lipschitz if there exists a constant C > 0 such that for λ1 and λ2

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ C

∣∣λ2 − λ1

∣∣.

▶ Change in values of frequency response is at most linear with rate C ⇒ Derivative h̃′(λ) ≤ C
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Discriminability of Lipschitz Filters

▶ Frequency response h̃(λ) of Lipschitz filter is Lipschitz continuous ⇒ Maximum slope is h̃′(λ) ≤ C

λ

h̃(λ)

▶ Lipschitz constant determines discriminability ⇒ Small / Large C ≡ Low / High discriminability
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Discriminability of Lipschitz Filters

▶ Frequency response h̃(λ) of Lipschitz filter is Lipschitz continuous ⇒ Maximum slope is h̃′(λ) ≤ C

λ

h̃(λ)

▶ Lipschitz constant determines discriminability ⇒ Small / Large C ≡ Low / High discriminability
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Lipschitz Frames

▶ A Lipschitz frame with constant C is made up of Lipschitz filters with constant C

▶ Larger C allows for sharper filters, that can discriminate more signals. Tighter packing

▶ The discriminability of the frame is (or can be) the same at all frequencies.

λ

h̃(λ)
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Integral Lipschitz Filters

Definition (Integral Lipschitz Filter)

Consider graph filter with coefficients hk and graph frequency response h̃(λ) =
∞∑
k=0

hkλ
k . The

filter is said integral Lipschitz if there exists constant C > 0 such that for all λ1 and λ2,

∣∣ h̃(λ2)− h̃(λ1)
∣∣ ≤ C

∣∣λ2 − λ1

∣∣∣∣λ1 + λ2

∣∣/2 .

▶ Lipschitz with a constant that is inversely proportional to the interval’s midpoint ⇒ 2C/|λ1 + λ2|.

▶ Letting λ2 → λ1 we get that λh̃′(λ) ≤ C ⇒ The filter can’t change for large λ.
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Discriminability of Integral Lipschitz Filters

▶ At medium frequencies, integral Lipschitz filters are akin to Lipschitz filters. Roughly speaking

▶ At low frequencies integral Lipschitz filters can be arbitrarily thin ⇒ arbitrary discriminability

▶ At high frequencies integral Lipschitz filters have to be flat ⇒ They lose discriminability

λ

h̃(λ)
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Integral Lipschitz Frames

▶ As Lipschitz frames, integral Lipschitz frames are more discriminative for larger C . Tighter packing

▶ Except that around λ = 0, filters can be thin no matter C ⇒ High discriminability

▶ But for large λ filters have to be wide no matter C ⇒ No discriminability

λ

h̃(λ)
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Additive Perturbations of Graph Filters

▶ We define additive perturbations of the graph support
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A Graph Filter can be Perturbed in Three Ways but Only One is Interesting

▶ Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S) x =
K−1∑
k=0

hkS
kx

▶ Perturbations of the input ⇒ The filter is linear in x. Scale error by filter’s norm.

▶ Perturbations of the coefficients ⇒ Filter is linear in hk . Plus, hk is a design parameter.

▶ Perturbations of the shift operator S ⇒ It is not easy (nonlinear). And it is necessary.

⇒ The graph is estimated (recommendation systems). The graph changes (distributed systems)

⇒ Quasi-symmetries in graphs that are quasi-invariant to permutations

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 25



Perturbations of Graph Filters

▶ Apply the same filter h to the same signal x on different graphs shift operators S and Ŝ

H(S) x =
K−1∑
k=0

hkS
kx H(Ŝ) x =

K−1∑
k=0

hk Ŝ
kx

▶ Filter H(S) x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

▶ Filter H(Ŝ) x̂ ⇒ Same Coefficients hk . Same Input signal x. Instantiated on perturbed shift Ŝ

▶ We will investigate two commonly encountered graph perturbation models.
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Additive Perturbation

▶ Additive perturbation model ⇒ Ŝ = S+ E ⇒ Allows us to study deformations that are
independent of the graph structure.

▶ Error matrix E = Ŝ− S exists for any pair S, Ŝ. ⇒ It’s norm ∥E∥ quantifies their difference

▶ A flaw ⇒ Graphs S and Ŝ = PTSP are the same (relabeling). Yet we may not have ∥E∥ = 0.

▶ We know better ⇒ Operator distances modulo permutation
∥∥ Ŝ− S

∥∥
P = min

P

∥∥ ŜPT − PTS
∥∥
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Additive Perturbation Modulo Permutation

▶ We need a concrete handle on the error matrix. Start from set of symmetric error matrices

E(S, Ŝ) =
{

Ẽ : PT Ŝ P = S + Ẽ , P ∈ P
}

▶ For each permutation P ∈ P we have a different error matrix Ẽ = PT ŜP− S in the set E(S, Ŝ)

▶ Error matrix modulo permutation is the one with smallest norm ⇒ E = argmin
Ẽ∈E(S,Ŝ)

∥Ẽ∥

▶ Rewrite the distance modulo permutation as ⇒ d(S, Ŝ) = ∥E∥ = min
Ẽ∈E(S,Ŝ)

∥Ẽ∥

▶ Error norm ∥E∥ = d(S, Ŝ) measures how far S and Ŝ are from being permutations of each other
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Eigenvector Misalignement Constant

▶ Consider eigenvector decompositions of the shift S = VΛVH and the error E = UMUH

▶ Define the eigenvector misalignment between the shift operator S and the error matrix E as

δ =
(∥∥U− V

∥∥+ 1
)2

− 1

▶ Since U and V are unitary matrices ∥U∥ = ∥V∥ = 1 ⇒ δ ≤ 8 = [(2 + 1)2 − 1]

⇒ The eigenvector misalignment δ is never large. It can be small. Depending on the error model.
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Stability of Lipschitz Filters to Additive Perturbations

▶ We show that Lipschitz filters are stable to additive perturbations of the graph support.
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Lipschitz Filters are Stable to Additive Perturbations

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) Shift operators S and Ŝ are related by PT ŜP = S+ E with P a permutation matrix

(H2) The error matrix E has norm ∥E∥ = ϵ and eigenvector misalignement δ relative to S

(H3) The filter h is Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).
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Parse the Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ If shifts S and Ŝ are ϵ-close the filters H(S) and H(Ŝ) are ϵ-close. Modulo permutation

▶ Proportional to the Lipschitz constant of the filter’s frequency response. Not integral Lipschitz

▶ Proportional to (1 + δ
√
n). Not great for large graphs. Unless misalignement decreases with n.

▶ Growth with n is at most (1 + 8
√
n) ≥ (1 + δ

√
n). Because δ ≤ 8. Not that bad
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Stability is Stronger than Continuity

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ Filter perturbations are first order Lipschitz continuous with respect to the perturbation’s size ϵ

⇒ With Lipschitz constant ⇒ C
(
1 + δ

√
n
)

▶ Stronger than plain continuity. Which would say “output changes are small if input changes are”
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Universality of the Stability Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ Bound is universal for all graphs with a given number of nodes n. Bound depends on:

⇒ A property of the filter’s frequency response. The filter’s Lipschitz constant C

⇒ And properties of the perturbation E. The eigenvector misalignement δ and the norm ∥E∥ = ϵ

▶ There is no constant in the bound that depends on the graph shift operator S. Save for n.
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The Filter’s Lipschitz Constant is a Controllable Design Parameter

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ The filter’s Lipschitz constant C is a parameter that we can affect with judicious filter choice

▶ Discriminability / stability tradeoff. Larger C improves discriminability at the cost of stability
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The Eigenvector Misalignment is an Uncontrollable Property of the Perturbation

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

⇒ Not very relevant in studying stability / discriminability tradeoffs of different filters.

▶ Meaningless asymptotically on n. Don’t know much about perturbations in the limit of large n
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Lipschitz Filters are Good News

▶ Stability to additive perturbations requires Lipschitz filters. Not integral Lipschitz as with scalings

▶ Genuine stability / discriminability tradeoff ⇒ Larger C tradeoffs stability for discriminability

▶ We can always discriminate, regardless of frequency, if we tolerate enough discriminability.

λ

h̃(λ)
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Relative Perturbations of Graph Filters

▶ Proved enticing stability properties with respect to additive perturbations. Alas, not ideal

▶ We switch focus to relative perturbations. Which tie perturbations to the graph structure
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Limitations of Additive Perturbations

▶ Additive perturbations are not ideal

PT ŜP = S+ E

▶ With w ≪ 1 ≪ W .

⇒ Is this perturbation small or large?

▶ Edges with small weights w can change a lot

because other edges have large weights W
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Relative Perturbations are Meaningful

▶ Relative perturbations are more meaningful

PT ŜP = S+ E = S+ ϵIS

▶ With w ≪ 1 ≪ W and ϵ ≪ 1

⇒ Is this perturbation small or large?

▶ It’s small. Edges with small weights change

little. Edges with large weights change more

1

23

4

5 6

WS = 7

89

10

11 12

w
1

+

1

23

4

5 6

ϵWE = 7

89

10

11 12

ϵw
ϵ

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 40



Relative Perturbations Modulo Permutations

▶ Relative perturbation model ⇒ Ŝ = S+ ES+ SE. We must account for permutations (relabeling)

▶ Set of relative error matrices modulo permutation. Matrices Ẽ are symmetric, Ẽ = ẼT

E(S, Ŝ) =
{
Ẽ : PT ŜP = S + ẼS + SẼ , P ∈ P

}
▶ Relative error matrix modulo permutation is the one with smallest norm ⇒ E = argmin

Ẽ∈E(S,Ŝ)

∥Ẽ∥

▶ Define relative distance modulo permutation as ⇒ d(S, Ŝ) = ∥E∥ = min
Ẽ∈E(S,Ŝ)

∥Ẽ∥

▶ Norm ∥E∥ = d(S, Ŝ) is a relative measure of how far Ŝ is from being a permutation of S
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Relative Perturbations are Tied to the Local Structure of the Graph

▶ Relative perturbations tie changes in the edge weights to the local structure of the graph

▶ Compare edge weights in the given matrix S and the permuted version of the perturbations Ŝ

(
PT ŜP

)
ij

= S ij +
(
ES
)
ij

+
(
SE
)
ij

= S ij +
∑
k∈n(j)

EikSkj +
∑
k∈n(i)

SikEkj

▶ Edge changes are proportional to the degree of the incident nodes. Scaled by entries of error matrix

▶ Parts of the graph with weaker connectivity see smaller changes than parts with stronger links

▶ In generic additive perturbations weights can change the same regardless of local connectivity
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Stability of Integral Lipschitz Filters to Relative Perturbations

▶ We show that integral Lipschitz filters are stable to relative perturbations of the graph support.
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Integral Lipschitz Filters are Stable to Relative Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) S and Ŝ are related by PT ŜP = S+ ES+ SE with P a permutation matrix

(H2) Error matrix has norm ∥E∥ = ϵ and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ϵ + O(ϵ2).
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Stability of Relative and Additive Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ Save for the 2 factor, it is the same bound we have for the case of additive perturbations.

▶ The difference is in hypotheses (H1) and (H3). Hypothesis (H2) does not change

(H1) The perturbation is relative. ⇒ PT ŜP = S+ ES+ SE. Not additive.

(H3) The filter is integral Lipschitz with constant C . Not regular Lipschitz.
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Filter’s are Required to be Integral Lipschitz

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ϵ + O(ϵ2).

▶ Bound depends on integral Lipschitz constant C . Very different from Lipschitz constant

▶ Can decrease C to increase stability. But effect on Discriminability depends on the frequency.

⇒ Discriminative at low frequencies regardless of C

⇒ Non-discriminative at high frequencies regardless of C

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 46



Integral Lipschitz Filters are Not Good News

▶ Integral Lipschitz filters are necessary for stability to deformations of the supporting graph

▶ This is not an artifact of the analysis. The result is tight. The term
∞∑
k=0

k hk λ
k
i = λi h

′(λi ) appears.

λ

h̃(λ)
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Integral Lipschitz Filters are Not Good News

▶ One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.

▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

▶ It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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Stability Properties of Graph Neural Networks

▶ The stability properties we studied for graph filters are inherited by GNNs
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GNNs Inherit Any Stability Properties that Filters May Have

▶ Lipschitz filters are stable to additive deformations of the shift operator

⇒ GNNs with Lipschitz layers are stable to additive deformations of the shift operator

▶ Integral Lipschitz filters are stable to relative deformations of the shift operator

⇒ GNNs with integral Lipschitz layers are stable to relative deformations of the shift operator
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Normalizations

▶ At each layer of the GNN, the filters have unit operator norm ⇒
∥∥Hℓ(S)

∥∥ = 1

⇒ Easy to achieve with scaling ⇒ Equivalent to max
λ

h̃ℓ(λ) = 1

▶ The nonlinearity σ is Lipschitz and normalized so that ⇒
∥∥σ(x2)− σ(x1)

∥∥ ≤
∥∥ x2 − x1

∥∥
⇒ Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value

▶ Joining both assumptions ⇒ If input energy is ∥x∥ ≤ 1, all layer outputs have energy ∥xℓ∥ ≤ 1
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Stability of GNNs to Additive Perturbations

Theorem (GNN Stability to Additive Perturbations)

Consider a GNN operator Φ(·;S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S+ E. With P a permutation matrix

(H2) The error matrix E has norm ∥E∥ = ϵ and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·;S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·;S,H)
∥∥
P ≤ C

(
1 + δ

√
n
)
Lϵ + O(ϵ2).
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The GNN Inherits the Stability of Lipschitz Filters

Theorem (GNN Stability to Additive Perturbations)

The operator distance modulo permutation between Φ(·;S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·;S, h)
∥∥
P ≤ C

(
1 + δ

√
n
)
L ϵ + O(ϵ2).

▶ It is essentially the same bound we have for the case of Lipschitz filters. Propagated over L layers

▶ A GNN with Lipschitz layers inherits the stability of the Lipschitz filter class

▶ The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·;S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S+ ES+ SE with P a permutation matrix

(H2) The error matrix E has norm ∥E∥ = ϵ and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·;S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·;S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lϵ + O(ϵ2).
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The GNN Inherits the Stability of Integral Lipschitz Filters

Theorem (Single Feature GNN Stability to Relative Perturbations)

The operator distance modulo permutation between Φ(·;S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·;S, h)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
L ϵ + O(ϵ2).

▶ It is essentially the same bound we have for integral Lipschitz filters. Propagated over L layers

▶ A GNN with integral Lipschitz layers inherits the stability of integral Lipschitz filters

▶ The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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GNNs Inherit the Stability Properties of Graph Filters

▶ Provide a generic inheritance proof ⇒ the steps apply to any stability claim on any filter class.

▶ Let’s do the proof for relative perturbations and integral Lipschitz filters.
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·;S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S+ ES+ SE with P a permutation matrix

(H2) The error matrix E has norm ∥E∥ = ϵ and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·;S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·;S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lϵ + O(ϵ2).
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Relative Perturbations Proof, Step 1: Eliminating the Pointwise Nonlinearity

Proof: Let xℓ be the Layer ℓ output of GNN Φ(x;S,H). Input signal x with ∥x∥ = 1

Let x̂ℓ be the Layer ℓ output of GNN Φ(x; Ŝ,H). Input signal x with ∥x∥ = 1

▶ Layer ℓ is a perceptron with filter Hℓ ⇒
∥∥ x̂ℓ − xℓ

∥∥ =

∥∥∥∥σ[Hℓ(Ŝ)x̂ℓ−1

]
− σ

[
Hℓ(S)xℓ−1

] ∥∥∥∥
▶ Nonlinearity is normalized Lipschitz ⇒

∥∥ x̂ℓ − xℓ
∥∥ ≤

∥∥∥Hℓ(Ŝ)x̂ℓ−1 −Hℓ(S)xℓ−1

∥∥∥
▶ This is the critical step of the proof. The rest of the proof is just algebra.
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Relative Perturbations Proof, Step 2: Implementing Norm Manipulations

▶ In last bound, add and subtract Hℓ(Ŝ)xℓ−1. Triangle inequality. Submultiplicative property of norms∥∥∥ x̂ℓ − xℓ
∥∥∥ ≤

∥∥∥Hℓ(Ŝ)x̂ℓ−1 − Hℓ(S)xℓ−1 + Hℓ(Ŝ)xℓ−1 − Hℓ(Ŝ)xℓ−1

∥∥∥
≤
∥∥∥Hℓ(Ŝ)−Hℓ(S)

∥∥∥× ∥∥∥ xℓ−1

∥∥∥+ ∥∥∥Hℓ(Ŝ)
∥∥∥× ∥∥∥ x̂ℓ−1 − xℓ−1

∥∥∥
▶ Since filters are normalized ⇒ Filter norm

∥∥Hℓ(Ŝ)
∥∥= 1. Signal norm ⇒

∥∥ xℓ−1

∥∥≤ 1

▶ Relative perturbations and integral Lipschitz ⇒
∥∥Hℓ(Ŝ)−Hℓ(S)

∥∥ ≤ 2C
(
1 + δ

√
n
)
ϵ + O(ϵ2)

▶ Put all bounds together ⇒
∥∥ x̂ℓ − xℓ

∥∥ ≤ 2C
(
1 + δ

√
n
)
ϵ × 1 + 1 ×

∥∥ x̂ℓ−1 − xℓ−1

∥∥ + O(ϵ2)

▶ Apply recursively from Layer L back to Layer 1. The L factor appears ■
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GNNs Inherit the Stability of Graph Filters

GNNs Inherit the Stability of Graph Filters

Since Stability is inherited from graph filters, mutatis mutandis, the same observations hold here.

▶ The stability bounds are universal for all graphs with a given number of nodes

▶ Bounds depend on filter’s Lipschitz constant C and the number of layers L. Which we control.

▶ And the eigenvector misalignment constant. Which we don’t control. Depends on the perturbation.
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GNNs and Additive Perturbations

▶ GNNs whose layers are made up of Lipschitz graph filters are stable to additive deformations

▶ This is good news ⇒ We have a genuine stability vs discriminability tradeoff

▶ Alas, a bit of a mirage ⇒ Graph perturbations are more naturally measured in relative tems

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

▶ Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

▶ It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

▶ Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

▶ On the flip side, integral Lipschitz filter can be very sharp at low frequencies

▶ We can be very discriminative at low frequencies. And at the same very stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

▶ GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies

▶ Where they can be discriminated sharply with a stable filter at the next layer

▶ Thus, they can be stable and discriminative. Something that linear graph filters can’t be

λ

h̃(λ)
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Stability vs Discriminability: An illustrative Example

▶ The stability vs discriminability tradeoff depends on the frequency components of the signal
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Relative Perturbations of a Shift Operator

▶ Meaningful perturbations of a shift operator operator are relative ⇒ PT ŜP = S+ ES+ SE

▶ Conceptually, we learn all there is to be learnt from dilations ⇒ Ŝ = S+ ϵS

▶ Eigenvalues are dilated λi → λ̂i = (1 + ϵ)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Higher Frequencies are More Difficult to Process

▶ Higher eigenvalues move more. Signals with high frequency components are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ϵ)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Stability Requires Integral Lipschitz Filters

▶ To attain stable graph signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

▶ Either the eigenvalue does not change because we are considering low frequencies

▶ Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h
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Discriminative Filter at Low Frequencies

▶ At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ϵ)λl

)

λlλl λ

h̃(λ)

λl λ̂l
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Discriminative Filter at Medium Frequencies

▶ At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ϵ)λm

)

λmλm λ

h̃(λ)

λm λ̂m
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Discriminative Filter at High Frequencies

▶ At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ϵ)λh

)

λhλh λ

h̃(λ)

λh λ̂h
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Isolate High Frequency Signals – No Deformation

▶ Separates them from the rest. But it doesn’t discriminate between them

λi λjλi λj
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Isolate High Frequency Signals – After Deformation

▶ It is, however, stable to deformations.

λ̂i λ̂j
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Stability vs Discriminability Non-Tradeoff of Graph Filters

Fact: It is impossible to discriminate high frequency components with a stable filter

We can have a filter that is discriminative. Or a filter that is stable. But not one that is both.
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The effect of Pointwise Nonlinear Activation in Graph Neural Networks

Graph G

Table: Eigenvalues of G and Graph Fourier Transform of the graph signal.

λn 3.47 0.91 0 -2.00 -1.58 -0.80
x̃ (λn) 10 0 10 0 0 0
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The effect of Pointwise Nonlinear Activation in Graph Neural Networks

Graph G
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The effect of Nonlinearity in the Frequency Domain
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z =

K−1∑
k=0

hk S
kx
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The effect of Nonlinearity in the Frequency Domain
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The effect of Nonlinearity in Graph Neural Networks

λn0 3.47

x̃(λ)
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0
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GNN
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ỹ(λ)

1.5

0

−1.5

▶ GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies

▶ They can add information to zero frequency components

▶ Thus, they can be stable and discriminative/expressive.
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Representation Power of Graph Neural Networks
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Representation Learning with Graph Neural Networks (GNNs)

GNN YE

YC

YA

YB

YD

YF

YH

YJ

YI

YG

: 7.5 : 5.4 : 3.3

GNN : G → RN
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Representation Learning with Graph Neural Networks (GNNs)
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Representation Power of Graph Neural Networks

Problem Definition

Given a pair of different (non-isomorphic) graphs G, Ĝ with adjacency matrices S, Ŝ and anony-

mous inputs x, x̂ , is there a GNN Φ(x;S,H) such that Φ(x;S,H) ̸=Π Φ(x̂; Ŝ,H)?

⇒ Φ (x;S,H) ⇒
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ŶC

ŶA
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Representation Power of Graph Neural Networks

Problem Definition

Given a pair of different (non-isomorphic) graphs G, Ĝ with adjacency matrices S, Ŝ and anony-

mous inputs x, x̂ , is there a GNN Φ(x;S,H) such that Φ(x;S,H) ̸=Π Φ(x̂; Ŝ,H)?

▶ The inputs are anonymous ⇒ structure and identity agnostic, i.e., they carry no information about
the graph and the nodes.

▶ Study the ability of a GNN to generate information about the graph.

▶ GNNs have high representation power, if they can produce discriminative representations from
anonymous inputs, for a large class of graphs
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Representation Power of Graph Neural Networks

Problem Definition

Given a pair of different (non-isomorphic) graphs G, Ĝ with adjacency matrices S, Ŝ and anony-

mous inputs x, x̂ , is there a GNN Φ(x;S,H) such that Φ(x;S,H) ̸=Π Φ(x̂; Ŝ,H)?

▶ The expressive power of a GNN is related to the function approximation properties of GNNs.

▶ The above definition is related to the Graph Isomorphism problem ⇒ It belongs to the class of NP
problems. It is not known whether it is P or NP-complete.

▶ A number of algorithms exist that can separate a large set of nonisomorphic graphs e.g., the
Weisfeiler-Lehman (WL) test.
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How Powerful Are GNNs? [Xu et al ’19]

Vertex Domain Analysis
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: 7.5 : 5.4 : 3.3

Results of Vertex Domain Analysis:

▶ GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test [Weisfeiler, & Leman, 1968].

▶ GNNs cannot produce informative representations for a large class of real-world graphs.
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Limitations of the WL test

▶ WL indistinguishable non-isomorphic graphs.
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▶ Heterocyclic antibiotics.
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Graph Neural Networks Are More Powerful Than we Think! [Kanatsoulis et al ’22]
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Graph Neural Networks Are More Powerful Than we Think! [Kanatsoulis et al ’22]

Frequency Domain Analysis

λ̂1 λ̂i λ̂n
λ

x̃(λ)

λ̂1 λ̂i λ̂n
λ

h̃(λ)

▶ GNNs are more powerful than the WL test!

▶ Can produce informative representations for almost all practical graphs.

▶ Stay tuned to see how this analysis can be used in practice to efficiently train GNNs.
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The WL test is not the real limit

▶ [Xu et al ’19] study the representation power of Φ(1;S,H) and not of Φ(x;S,H).

▶ Studying a function Φ(x;S,H) by only observing a subset of the domain of Φ(1;S,H), cannot yield
concrete conclusions about the representation power.

▶ The all-one vector is associated with limitations involving the spectral decomposition of the graph.
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Spectral limitations of GNNs with all-one inputs

Frequency Domain Analysis

▶ Spectral Decomposition: S = VΛVT

▶ Recall the definition of a Graph Convolution: z =
K−1∑
k=0

hkS
kx =

K−1∑
k=0

hkVΛ
kVTx.

▶ When x = 1:

z =
K−1∑
k=0

hkS
k1 =

K−1∑
k=0

hkVΛ
kVT1 =

N∑
n=1

K−1∑
k=0

hkλ
k
n

(
vTn 1

)
vn

▶ The information associated with the spectral components that are orthogonal to one has been lost!
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Spectral limitations of GNNs with all-one inputs
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Spectral limitations of GNNs with all-one inputs
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Spectral limitations of GNNs with all-one inputs

Graph G
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Graph Ĝ
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Representation Power of Graph Neural Networks

Problem Definition

Given a pair of different (non-isomorphic) graphs G, Ĝ with adjacency matrices S, Ŝ and anony-

mous inputs x, x̂ , is there a GNN Φ(x;S,H) such that Φ(x;S,H) ̸= Φ(x̂; Ŝ,H)?

▶ Revisit the above problem by studying GNNs with linear algebraic tools and white inputs.

▶ GNNs produce different representations for all graphs with different eigenvalues.

▶ The novel constructive analysis enables the design of simple and expressive GNNs.
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White input properties

▶ x is a white random vector: E
[
x
]
= 0, E

[
xxT

]
= σ2I

▶ White vectors are anonymous:

⇒ structure and identity agnostic.

▶ White inputs allow us to study the domain of Φ(x;S,H) ⇒ x ∈ RN .

▶ White inputs do not admit the spectral limitations of x = 1.
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Feeding Graph Filters with white noise

▶ x is a random vector with E
[
x
]
= 0 ⇒ z is a random vector with E

[
z
]
= 0.

▶ x is a random vector with E
[
x2
]
= diag

(
E
[
xxT

])
= σ21 ⇒ z is a random vector with:
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Feeding Graph Filters with white noise

▶ x is a random vector with E
[
x
]
= 0 ⇒ z is a random vector with E

[
z
]
= 0.

▶ x is a random vector with E
[
x2
]
= diag

(
E
[
xxT

])
= σ21 ⇒ z is a random vector with:

var
[
z
]
= E

[
z2
]
= diag

(
E
[
zzT
])

= diag

(
2K−2∑
k=0

h′
kS

k

)
=

2K−2∑
k=0

h′
kdiag

(
Sk
)
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Powerful Equivariant GNNs

1-Layer GNN

x z =

K−1∑
k=0

hk S
kx y = E

[
z2

]

▶ A white input is passed through a convolutional Graph Filter.

▶ The filter output is being processed by the square nonlinearity and the expectation operator to
measure the variance.

▶ The output is a linear combination of the adjacency powers diagonals: E
[
z2
]
=

2K−2∑
k=0

h′
kdiag

(
Sk
)

⇒ permutation equivariant.
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Powerful Equivariant GNNs

Theorem [Kanatsoulis et al ’22]

Given non-isomorphic graphs G, Ĝ and a GNN with anonymous input Φ(x;S,H) : G → RN . If

G and Ĝ have different eigenvalues, Φ(x;S,H) maps G and Ĝ to different representations.

▶ GNNs produce different representations for all graphs with different eigenvalues.

▶ GNNs are more powerful than the WL test!
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Powerful Equivariant GNNs

Theorem [Kanatsoulis et al ’22]

Given non-isomorphic graphs G, Ĝ and a GNN with anonymous input Φ(x;S,H) : G → RN . If

G and Ĝ have different eigenvalues, Φ(x;S,H) maps G and Ĝ to different representations.

▶ The majority of real graphs have different eigenvalues.

▶ Cospectral graphs involve certain tree structures.
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WL indistinguishable graphs

▶ GNNs can differentiate between WL indistinguishable non-isomorphic graphs.
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▶ y = E
[
z2
]
=

5∑
k=0

hkdiag
(
Sk
)
, for (h0, h1, h2, h3, h4, h5) = (10, 1,− 1

2
, 1
3
,− 1

4
, 1
5
).

Graph \ Node A B C D E F G H I J

G 7.5 7.5 7.25 7.25 5.25 5.25 7.25 7.25 7.5 7.5

Ĝ 7.9 7.9 7.65 7.65 5.65 5.65 7.65 7.65 7.9 7.9
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GNNs and closed paths in a graph

Proposition [Kanatsoulis et al ’22]

A GNN with anonymous input can compute c(k) = diag
(
Sk
)
∈ NN

0 that count the number of

closed paths of length k from each node to itself.

▶ For k = 0 ⇒ c(k) = 1

▶ For k = 1 ⇒ c(k) = 0

▶ For k = 2 ⇒ c(k) = S1 , counts the 1-hop neighbors of each node.
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GNNs and graph cycles

▶ For k = 3 ⇒ c(k) counts the number of triangles each node is involved in.

12
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4 5

12
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4 5

▶ For k = 4 ⇒ c(k) counts the 1-hop neighbors, the 2-hop neighbors and the number of tetragons
each node is involved in.
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Ongoing Work

▶ Investigate the function approximation properties of GNNs and relate them to graph theory.
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Powerful GNN architectures

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 93



Powerful GNN architectures

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 93



Powerful GNN architectures

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 3: Equivariance and Stability to Deformations 93



Graph classification

Given a collection of graphs that belong to different classes, we aim to predict the class of each graph.

=⇒ Positive in Lung Cancer Prevention

=⇒ Negative in Lung Cancer Prevention
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Graph Classification Experiments

▶ The Circular Skip Link (CSL) dataset is the golden standard when it comes to benchmarking
GNNs for isomorphism and classification.

▶ CSL contains 150 4-regular graphs, that belong to one of 10 classes, each consisting of 41 nodes
and 164 edges.

▶ The all-one vector is always an eigenvector in regular graphs, therefore GNNs with x = 1 cannot
classify these graphs.
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The CSL Dataset

▶ The variance of a graph filter with filter parameters:

(h0, h1, h2, h3, h4, h5, h6, h7, h8, h9) =

(
0, 1,−1

2
,
1

3
,−1

4
,
1

5
,−1

6
,
1

7
,−1

8
,
1

9

)
can perfectly classify these graphs.

Table: GNN output y for every class of the CSL graphs.

Class
0 1 2 3 4 5 6 7 8 9

73616 -45968 1059 -30593 -25345 -26001 -17555 -28543 16065 -21163
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Other Datasets

Dataset # Graphs Average # Vertices Average # Edges # Classes Network Type

CSL 150 41 164 10 Circulant
IMDBBINARY 1,000 20 193 2 Social
IMDBMULTI 1,500 13 132 3 Social

REDDITBINNARY 2000 430 498 2 Social
REDDITMULTI 5000 509 595 5 Social
PROTEINS 1,113 39 146 2 Bioinformatic
MUTAG 188 18 20 2 Chemical

CSL RedditB RedditM IMDBB IMDBM PROTEINS MUTAG

0
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ro
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[Xu et al ’19]

[Kanatsoulis et al ’22]
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Representation Learning on Graphs Recap

▶ Graph Neural Networks are more powerful than we think:

⇒ Differentiate between almost all real graphs.

⇒ Count substructures of the graph.

▶ Our framework yields improved performance of GNNs in graph classification.
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