

Day 3: Equivariance and Stability to Deformations

Charilaos I. Kanatsoulis, Navid NaderiAlizadeh,

Alejandro Parada-Mayorga, Alejandro Ribeiro, and Luana Ruiz

gnn.seas.upenn.edu

2023 International Conference on Acoustics, Speech, and Signal Processing

Rhodes, Greece – June 6, 2023

Permutation Equivariance, Stability, and Representation Power of Graph Neural Networks

- We will start demystifying the success of Graph Neural Networks by studying their fundamental properties.
- We will show that Graph Neural Networks are equivariant to permutations, stable, and highly expressive.

▶ If (S, x) is a graph signal, (P^TSP, P^Tx) is a relabeling of (S, x). Same signal. Different names

Graph signal x Supported on S x_{10} x_{4} x_{4} x_{5} x_{6} x_{6} x_{10} $x_$ Graph signal $\hat{x} = \mathbf{P}^{\mathcal{T}} x$ supported on $\hat{\mathbf{S}} = \mathbf{P}^{\mathcal{T}} \mathbf{S} \mathbf{P}$

Processing of isomorphic graphs and graph signals with Graph Neural Networks is label-independent.

► Graphs are not isomorphic but close to isomorphic ⇒ perturbed versions of each other

 \blacktriangleright We will show conditions for stability to deformations \Rightarrow Approximate (close to) equivariance

Graphs are not isomorphic

We will show that a Graph Neural Network will produce non-isomorphic representations for the graphs.

Permutation Equivariance of Graph Neural Networks

▶ We will show that graph neural networks are equivariant to permutations

6

Definition (Permutation matrix)

A square matrix **P** is a permutation matrix if it has binary entries so that $\mathbf{P} \in \{0,1\}^{n \times n}$ and it

further satisfies P1 = 1 and $P^T 1 = 1$.

• The product $\mathbf{P}^T \mathbf{x}$ reorders the entries of the vector \mathbf{x} .

• The product P^TSP is a consistent reordering of the rows and columns of S

Definition (Permutation matrix)

A square matrix **P** is a permutation matrix if it has binary entries so that $\mathbf{P} \in \{0,1\}^{n \times n}$ and it further satisfies $\mathbf{P1} = 1$ and $\mathbf{P}^T \mathbf{1} = \mathbf{1}$.

Since $P1 = P^T 1 = 1$ with binary entries \Rightarrow Exactly one nonzero entry per row and column of P

• Permutation matrices are unitary $\Rightarrow \mathbf{P}^T \mathbf{P} = \mathbf{I}$. Matrix \mathbf{P}^T undoes the reordering of matrix \mathbf{P}

▶ If (S, x) is a graph signal, (P^TSP, P^Tx) is a relabeling of (S, x). Same signal. Different names

Graph signal $\hat{x} = \mathbf{P}^{\mathcal{T}} x$ supported on $\hat{\mathbf{S}} = \mathbf{P}^{\mathcal{T}} \mathbf{S} \mathbf{P}$

▶ Processing should be label-independent ⇒ Permutation equivariance of graph filters and GNNs

• Graph filter H(S) is a polynomial on shift operator S with coefficients h_k . Outputs given by

$$\mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

• We consider running the same filter on (S, x) and permuted (relabeled) $(\hat{S}, \hat{x}) = (P^T S P, P^T x)$

$$\mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K-1} \frac{h_k \mathbf{S}^k \mathbf{x}}{\mathbf{H}(\hat{\mathbf{S}})\hat{\mathbf{x}}} = \sum_{k=0}^{K-1} \frac{h_k \hat{\mathbf{S}}^k \hat{\mathbf{x}}}{\mathbf{X}}$$

▶ Filter H(S)x ⇒ Coefficients h_k. Input signal x. Instantiated on shift S
▶ Filter H(Ŝ)x̂ ⇒ Same Coefficients h_k. Permuted Input signal x̂. Instantiated on permuted shift Ŝ

 \blacktriangleright L layers recursively process outputs of previous layers. GNN Output parametrized by tensor $\mathcal H$

$$\mathbf{x}_{\ell} = \sigma \left[\sum_{k=0}^{K-1} \frac{h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}}{h_{\ell k} \mathbf{S}^{k} \mathbf{x}_{\ell-1}} \right] = \sigma \left[\mathbf{H}_{\ell}(\mathbf{S}) \mathbf{x}_{\ell-1} \right] \qquad \Phi \left(\mathbf{x}; \ \mathbf{S}, \mathcal{H} \right) = \mathbf{x}_{L}$$

• We consider running the same GNN on (S, x) and permuted (relabeled) $(\hat{S}, \hat{x}) = (P^T S P, P^T x)$

 $\Phi \Big(\mathbf{x}; \ \mathbf{S}, \mathcal{H} \Big) \qquad \Phi \Big(\hat{\mathbf{x}}; \ \hat{\mathbf{S}}, \mathcal{H} \Big)$

► GNN Φ(x; S, H) ⇒ Tensor H. Input signal x. Instantiated on shift S
► GNN Φ(x̂; Ŝ, H) ⇒ Same Tensor H. Permuted Input signal x̂. Instantiated on permuted shift Ŝ

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator $\hat{S} = \mathbf{P}^T \mathbf{S} \mathbf{P}$ and input signal $\hat{x} = \mathbf{P}^T \mathbf{x}$. Then

 $\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H}) = \mathbf{P}^{\mathsf{T}} \Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$

• GNNs equivariant to permutations \Rightarrow Permute input and shift \equiv Permute output

- \blacktriangleright We requested signal processing independent of labeling \Rightarrow GNNs fulfill this request
 - \Rightarrow Permute input and shift \equiv Relabel input \Rightarrow Permute output \equiv Relabel output

Graph signal $\hat{\mathbf{x}} = \mathbf{P}^T \mathbf{x}$ supported on $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

- We requested signal processing independent of labeling \Rightarrow GNNs fulfill this request
 - \Rightarrow Permute input and shift \equiv Relabel input \Rightarrow Permute output \equiv Relabel output

GNN output $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ supported on **S**

GNN $\Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H}) = \mathbf{P}^{T} \Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ on $\hat{\mathbf{S}} = \mathbf{P}^{T} \mathbf{S} \mathbf{P}$

- Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals
- By symmetry we mean that the graph can be permuted onto itself $\Rightarrow \mathbf{S} = \mathbf{P}^T \mathbf{S} \mathbf{P}$

► Equivariance theorem implies
$$\Rightarrow \Phi(\mathsf{P}^T \mathsf{x}; \mathsf{S}, \mathcal{H}) = \Phi(\mathsf{P}^T \mathsf{x}; \mathsf{P}^T \mathsf{S}\mathsf{P}, \mathcal{H}) = \mathsf{P}^T \Phi(\mathsf{x}; \mathsf{S}, \mathcal{H})$$

Learn to process $P^T x$ supported on $S = P^T S P$

▶ Graph not symmetric but close to symmetric ⇒ perturbed version of a permutation of itself

 \blacktriangleright We will show conditions for stability to deformations \Rightarrow Approximate (close to) equivariance

Definition (Operator Distance Modulo Permutation)

For operators Ψ and $\hat{\Psi}$, the operator distance modulo permutation is defined as

$$\left\|\Psi - \hat{\Psi}\right\|_{\mathcal{P}} = \min_{\mathbf{P} \in \mathcal{P}} \max_{\mathbf{x}: \|\mathbf{x}\| = 1} \left\|\mathbf{P}^{\mathsf{T}} \Psi(\mathbf{x}) - \hat{\Psi}(\mathbf{P}^{\mathsf{T}} \mathbf{x})\right\|$$

where \mathcal{P} is the set of $n \times n$ permutation matrices and where $\|\cdot\|$ stands for the ℓ_2 -norm.

• Equivariance to permutations of graph filters \Rightarrow If $\|\hat{S} - S\|_{p} = 0$. Then $\|H(\hat{S}) - H(S)\|_{p} = 0$

- Equivariance to permutations GNNs \Rightarrow If $\|\hat{\mathbf{S}} \mathbf{S}\|_{\mathcal{P}} = \mathbf{0}$. Then $\|\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) \Phi(\cdot; \mathbf{S}, \mathcal{H})\|_{\mathcal{P}} = \mathbf{0}$
- When distance $\|\hat{\mathbf{S}} \mathbf{S}\|_{\mathcal{P}}$ is small? (not zero) \Rightarrow Stability properties of graph filters and GNNs

Lipschitz and Integral Lipschitz Filters

► Classes of filters to study discriminability of GNNs ⇒ Lipschitz and integral Lipschitz graph filters

• Graph filters are polynomials on shift operators **S** with given coefficients $h_k \Rightarrow H(S) = \sum_{k=0}^{\infty} h_k S^k$

Filter's frequency response is the same polynomial with scalar variable $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$

Frequency response determined by filter coefficients h_k . Independent of particular given graph

Definition (Lipschitz Filter)

Given a graph filter with coefficients $\mathbf{h} = \{h_k\}_{k=1}^{\infty}$, and graph frequency response

$$\widetilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k,$$

we say that the filter is Lipschitz if there exists a constant C > 0 such that for λ_1 and λ_2

 $|\tilde{h}(\lambda_2) - \tilde{h}(\lambda_1)| \leq C |\lambda_2 - \lambda_1|.$

• Change in values of frequency response is at most linear with rate $C \Rightarrow \text{Derivative } \tilde{h}'(\lambda) \leq C$

Frequency response $\tilde{h}(\lambda)$ of Lipschitz filter is Lipschitz continuous \Rightarrow Maximum slope is $\tilde{h}'(\lambda) \leq C$

▶ Lipschitz constant determines discriminability \Rightarrow Small / Large C \equiv Low / High discriminability

Frequency response $\tilde{h}(\lambda)$ of Lipschitz filter is Lipschitz continuous \Rightarrow Maximum slope is $\tilde{h}'(\lambda) \leq C$

▶ Lipschitz constant determines discriminability \Rightarrow Small / Large C \equiv Low / High discriminability

- ► A Lipschitz frame with constant *C* is made up of Lipschitz filters with constant *C*
- Larger *C* allows for sharper filters, that can discriminate more signals. Tighter packing
- ▶ The discriminability of the frame is (or can be) the same at all frequencies.

Definition (Integral Lipschitz Filter)

Consider graph filter with coefficients h_k and graph frequency response $\tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$. The

filter is said integral Lipschitz if there exists constant C > 0 such that for all λ_1 and λ_2 ,

$$|\tilde{h}(\lambda_2) - \tilde{h}(\lambda_1)| \leq C \frac{|\lambda_2 - \lambda_1|}{|\lambda_1 + \lambda_2|/2}.$$

• Lipschitz with a constant that is inversely proportional to the interval's midpoint $\Rightarrow 2C/|\lambda_1 + \lambda_2|$.

• Letting $\lambda_2 \to \lambda_1$ we get that $\lambda \tilde{h}'(\lambda) \leq C \Rightarrow$ The filter can't change for large λ .

- At medium frequencies, integral Lipschitz filters are akin to Lipschitz filters. Roughly speaking
- At low frequencies integral Lipschitz filters can be arbitrarily thin \Rightarrow arbitrary discriminability
- At high frequencies integral Lipschitz filters have to be flat \Rightarrow They lose discriminability

Penn

- As Lipschitz frames, integral Lipschitz frames are more discriminative for larger C. Tighter packing
- Except that around $\lambda = 0$, filters can be thin no matter $C \Rightarrow$ High discriminability
- But for large λ filters have to be wide no matter $C \Rightarrow$ No discriminability

Additive Perturbations of Graph Filters

We define additive perturbations of the graph support

24

• Graph filter H(S) is a polynomial on shift operator S with coefficients h_k . Outputs given by

$$\mathsf{H}(\mathsf{S})\,\mathsf{x} = \sum_{k=0}^{K-1} h_k \mathsf{S}^k \mathsf{x}$$

- Perturbations of the input \Rightarrow The filter is linear in x. Scale error by filter's norm.
- ▶ Perturbations of the coefficients \Rightarrow Filter is linear in h_k . Plus, h_k is a design parameter.
- ▶ Perturbations of the shift operator $S \Rightarrow$ It is not easy (nonlinear). And it is necessary.

 \Rightarrow The graph is estimated (recommendation systems). The graph changes (distributed systems)

 \Rightarrow Quasi-symmetries in graphs that are quasi-invariant to permutations

• Apply the same filter **h** to the same signal **x** on different graphs shift operators **S** and \hat{S}

$$\mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x} \qquad \mathbf{H}(\hat{\mathbf{S}})\mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_k \hat{\mathbf{S}}^k \mathbf{x}$$

- ► Filter $H(S)x \Rightarrow$ Coefficients h_k . Input signal x. Instantiated on shift S
- Filter $H(\hat{S})\hat{x} \Rightarrow$ Same Coefficients h_k . Same Input signal x. Instantiated on perturbed shift \hat{S}

We will investigate two commonly encountered graph perturbation models.

- Additive perturbation model $\Rightarrow \hat{S} = S + E \Rightarrow$ Allows us to study deformations that are independent of the graph structure.
- Error matrix $\mathbf{E} = \hat{\mathbf{S}} \mathbf{S}$ exists for any pair \mathbf{S} , $\hat{\mathbf{S}}$. \Rightarrow It's norm $\|\mathbf{E}\|$ quantifies their difference

► A flaw \Rightarrow Graphs **S** and $\hat{\mathbf{S}} = \mathbf{P}^T \mathbf{S} \mathbf{P}$ are the same (relabeling). Yet we may not have $\|\mathbf{E}\| = 0$.

► We know better \Rightarrow Operator distances modulo permutation $\|\hat{\mathbf{S}} - \mathbf{S}\|_{\mathcal{P}} = \min \|\hat{\mathbf{S}}\mathbf{P}^{T} - \mathbf{P}^{T}\mathbf{S}\|$

We need a concrete handle on the error matrix. Start from set of symmetric error matrices

$$\mathcal{E}(\mathbf{S}, \hat{\mathbf{S}}) \;=\; \left\{ \begin{array}{ll} \tilde{\mathbf{E}} \;:\; \mathbf{P}^{\mathsf{T}} \, \hat{\mathbf{S}} \, \mathbf{P} \;=\; \mathbf{S} \;+\; \tilde{\mathbf{E}} \;, \quad \mathbf{P} \in \mathcal{P} \end{array} \right\}$$

For each permutation $\mathbf{P} \in \mathcal{P}$ we have a different error matrix $\tilde{\mathbf{E}} = \mathbf{P}^T \hat{\mathbf{S}} \mathbf{P} - \mathbf{S}$ in the set $\mathcal{E}(\mathbf{S}, \hat{\mathbf{S}})$

 $\blacktriangleright \text{ Error matrix modulo permutation is the one with smallest norm } \Rightarrow \textbf{E} = \underset{\tilde{\textbf{E}} \in \mathcal{E}(\textbf{S}, \hat{\textbf{S}})}{\text{argmin } \|\tilde{\textbf{E}}\|}$

► Rewrite the distance modulo permutation as $\Rightarrow d(S, \hat{S}) = ||E|| = \min_{\tilde{E} \in \mathcal{E}(S, \hat{S})} ||\tilde{E}||$

Error norm $\|\mathbf{E}\| = d(\mathbf{S}, \hat{\mathbf{S}})$ measures how far **S** and $\hat{\mathbf{S}}$ are from being permutations of each other

• Consider eigenvector decompositions of the shift $S = V \Lambda V^H$ and the error $E = U M U^H$

Define the eigenvector misalignment between the shift operator S and the error matrix E as

$$\delta = \left(\left\| \mathbf{U} - \mathbf{V} \right\| + 1 \right)^2 - 1$$

Since **U** and **V** are unitary matrices $\|\mathbf{U}\| = \|\mathbf{V}\| = 1 \Rightarrow \delta \leq 8 = [(2+1)^2 - 1]$

 \Rightarrow The eigenvector misalignment δ is never large. It can be small. Depending on the error model.

Stability of Lipschitz Filters to Additive Perturbations

▶ We show that Lipschitz filters are stable to additive perturbations of the graph support.

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

Consider graph filter **h** along with shift operators **S** and \hat{S} having *n* nodes. If it holds that:

(H1) Shift operators S and Ŝ are related by $P^T \hat{S} P = S + E$ with P a permutation matrix

(H2) The error matrix **E** has norm $\|\mathbf{E}\| = \epsilon$ and eigenvector misalignement δ relative to **S**

(H3) The filter h is Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and $H(\hat{S})$ is bounded by

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \|_{\mathcal{P}} \leq C (1 + \delta \sqrt{n}) \epsilon + \mathcal{O}(\epsilon^2).$$

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ satisfies

$$\| \mathsf{H}(\hat{\mathsf{S}}) - \mathsf{H}(\mathsf{S}) \|_{\mathcal{P}} \leq C (1 + \delta \sqrt{n}) \epsilon + \mathcal{O}(\epsilon^2).$$

- ► If shifts **S** and \hat{S} are ϵ -close the filters H(S) and $H(\hat{S})$ are ϵ -close. Modulo permutation
- Proportional to the Lipschitz constant of the filter's frequency response. Not integral Lipschitz
- **Proportional to** $(1 + \delta \sqrt{n})$. Not great for large graphs. Unless misalignement decreases with *n*.
- Growth with n is at most $(1 + 8\sqrt{n}) \ge (1 + \delta\sqrt{n})$. Because $\delta \le 8$. Not that bad

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ satisfies

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \|_{\mathcal{P}} \leq C (1 + \delta \sqrt{n}) \epsilon + \mathcal{O}(\epsilon^2).$$

Filter perturbations are first order Lipschitz continuous with respect to the perturbation's size ϵ

 \Rightarrow With Lipschitz constant $\Rightarrow C(1 + \delta \sqrt{n})$

Stronger than plain continuity. Which would say "output changes are small if input changes are"

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ is bounded by

$$\| \mathsf{H}(\hat{\mathsf{S}}) - \mathsf{H}(\mathsf{S}) \|_{\mathcal{P}} \leq C \left(1 + \delta \sqrt{n} \right) \epsilon + \mathcal{O}(\epsilon^2).$$

Bound is universal for all graphs with a given number of nodes *n*. Bound depends on:

 \Rightarrow A property of the filter's frequency response. The filter's Lipschitz constant C

 \Rightarrow And properties of the perturbation **E**. The eigenvector misalignement δ and the norm $\|\mathbf{E}\| = \epsilon$

▶ There is no constant in the bound that depends on the graph shift operator **S**. Save for *n*.

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ satisfies

 $\left\| \mathsf{H}(\hat{\mathsf{S}}) - \mathsf{H}(\mathsf{S}) \right\|_{\mathcal{P}} \leq C \left(1 + \delta \sqrt{n} \right) \epsilon + \mathcal{O}(\epsilon^2).$

▶ The filter's Lipschitz constant C is a parameter that we can affect with judicious filter choice

Discriminability / stability tradeoff. Larger C improves discriminability at the cost of stability

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters $H(\boldsymbol{S})$ and $H(\hat{\boldsymbol{S}})$ is bounded by

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \|_{\mathcal{P}} \leq C \left(1 + \delta \sqrt{n} \right) \epsilon + \mathcal{O}(\epsilon^2).$$

Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

 \Rightarrow Not very relevant in studying stability / discriminability tradeoffs of different filters.

• Meaningless asymptotically on n. Don't know much about perturbations in the limit of large n

- Stability to additive perturbations requires Lipschitz filters. Not integral Lipschitz as with scalings
- Genuine stability / discriminability tradeoff \Rightarrow Larger C tradeoffs stability for discriminability
- ▶ We can always discriminate, regardless of frequency, if we tolerate enough discriminability.

Penn

Relative Perturbations of Graph Filters

Proved enticing stability properties with respect to additive perturbations. Alas, not ideal

▶ We switch focus to relative perturbations. Which tie perturbations to the graph structure

Additive perturbations are not ideal

$$\mathbf{P}^{\mathsf{T}}\mathbf{\hat{S}}\mathbf{P} = \mathbf{S} + \mathbf{E}$$

- With $w \ll 1 \ll W$.
 - \Rightarrow Is this perturbation small or large?
- Edges with small weights w can change a lot

because other edges have large weights W

Relative perturbations are more meaningful

$$\mathsf{P}^{\mathsf{T}}\hat{\mathsf{S}}\mathsf{P} = \mathsf{S} + \mathsf{E} = \mathsf{S} + \epsilon \mathsf{I}\mathsf{S}$$

- \blacktriangleright With $w \ll 1 \ll W$ and $\epsilon \ll 1$
 - \Rightarrow Is this perturbation small or large?
- It's small. Edges with small weights change

little. Edges with large weights change more

- **•** Relative perturbation model $\Rightarrow \hat{S} = S + ES + SE$. We must account for permutations (relabeling)
- > Set of relative error matrices modulo permutation. Matrices $\tilde{\mathbf{E}}$ are symmetric, $\tilde{\mathbf{E}} = \tilde{\mathbf{E}}^{T}$

$$\mathcal{E}(\mathbf{S}, \hat{\mathbf{S}}) = \left\{ \begin{array}{ll} \mathbf{\tilde{E}} & : & \mathbf{P}^{\mathsf{T}} \hat{\mathbf{S}} \mathbf{P} & = & \mathbf{S} & + & \mathbf{\tilde{E}} \mathbf{S} & + & \mathbf{S} \mathbf{\tilde{E}} \\ \end{array} \right., \quad \mathbf{P} \in \mathcal{P} \left. \right\}$$

 $\blacktriangleright \mbox{ Relative error matrix modulo permutation is the one with smallest norm } \Rightarrow E = \mbox{ argmin } \|\tilde{E}\| \\ \underset{\tilde{E} \in \mathcal{E}(S, \hat{S})}{\overset{\bullet}{\underset{\Sigma}}}$

► Define relative distance modulo permutation as $\Rightarrow d(S, \hat{S}) = ||E|| = \min_{\tilde{E} \in \mathcal{E}(S, \hat{S})} ||\tilde{E}||$

Norm $\|\mathbf{E}\| = d(\mathbf{S}, \hat{\mathbf{S}})$ is a relative measure of how far $\hat{\mathbf{S}}$ is from being a permutation of \mathbf{S}

- Relative perturbations tie changes in the edge weights to the local structure of the graph
- **\blacktriangleright** Compare edge weights in the given matrix **S** and the permuted version of the perturbations \hat{S}

$$\left(\mathbf{P}^{\mathsf{T}} \hat{\mathbf{S}} \mathbf{P} \right)_{ij} = S_{ij} + \left(\mathbf{ES} \right)_{ij} + \left(\mathbf{SE} \right)_{ij}$$

$$= S_{ij} + \sum_{k \in n(j)} \mathbf{E}_{ik} S_{kj} + \sum_{k \in n(i)} S_{ik} \mathbf{E}_{kj}$$

- Edge changes are proportional to the degree of the incident nodes. Scaled by entries of error matrix
- Parts of the graph with weaker connectivity see smaller changes than parts with stronger links
- In generic additive perturbations weights can change the same regardless of local connectivity

Stability of Integral Lipschitz Filters to Relative Perturbations

▶ We show that integral Lipschitz filters are stable to relative perturbations of the graph support.

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter **h** along with shift operators **S** and \hat{S} having *n* nodes. If it holds that:

(H1) S and \hat{S} are related by $P^T \hat{S} P = S + ES + SE$ with P a permutation matrix

(H2) Error matrix has norm $\|\mathbf{E}\| = \epsilon$ and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and $H(\hat{S})$ is bounded by

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \|_{\mathcal{P}} \leq 2C \left(1 + \delta \sqrt{n} \right) \epsilon + \mathcal{O}(\epsilon^2).$$

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ is bounded by

$$\| \mathbf{H}(\hat{\mathbf{S}}) - \mathbf{H}(\mathbf{S}) \|_{\mathcal{P}} \leq 2C \left(1 + \delta \sqrt{n} \right) \epsilon + \mathcal{O}(\epsilon^2).$$

Save for the 2 factor, it is the same bound we have for the case of additive perturbations.

▶ The difference is in hypotheses (H1) and (H3). Hypothesis (H2) does not change

(H1) The perturbation is relative. $\Rightarrow \mathbf{P}^T \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}\mathbf{S} + \mathbf{S}\mathbf{E}$. Not additive.

(H3) The filter is integral Lipschitz with constant C. Not regular Lipschitz.

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and $H(\hat{S})$ is bounded by

$$\| H(\hat{S}) - H(S) \|_{\mathcal{P}} \leq 2C (1 + \delta \sqrt{n}) \epsilon + \mathcal{O}(\epsilon^2).$$

Bound depends on integral Lipschitz constant *C*. Very different from Lipschitz constant

► Can decrease *C* to increase stability. But effect on Discriminability depends on the frequency.

 \Rightarrow Discriminative at low frequencies regardless of C

 \Rightarrow Non-discriminative at high frequencies regardless of C

- Integral Lipschitz filters are necessary for stability to deformations of the supporting graph
- This is not an artifact of the analysis. The result is tight. The term $\sum_{k=0}^{\infty} k h_k \lambda_i^k = \lambda_i h'(\lambda_i)$ appears.

- One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- It is impossible to separate signals with high frequency features and be stable to deformations

- One would expect a stability vs discriminability tradeoff. But in a sense, we get a non-tradeoff.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- It is impossible to separate signals with high frequency features and be stable to deformations

Stability Properties of Graph Neural Networks

> The stability properties we studied for graph filters are inherited by GNNs

- Lipschitz filters are stable to additive deformations of the shift operator
 - \Rightarrow GNNs with Lipschitz layers are stable to additive deformations of the shift operator

- Integral Lipschitz filters are stable to relative deformations of the shift operator
 - \Rightarrow GNNs with integral Lipschitz layers are stable to relative deformations of the shift operator

▶ At each layer of the GNN, the filters have unit operator norm $\Rightarrow \| H_{\ell}(S) \| = 1$

 \Rightarrow Easy to achieve with scaling \Rightarrow Equivalent to $\max_{\lambda} \tilde{h}_\ell(\lambda) = 1$

► The nonlinearity σ is Lipschitz and normalized so that $\Rightarrow \|\sigma(\mathbf{x}_2) - \sigma(\mathbf{x}_1)\| \le \|\mathbf{x}_2 - \mathbf{x}_1\|$

 \Rightarrow Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value

▶ Joining both assumptions \Rightarrow If input energy is $\|\mathbf{x}\| \le 1$, all layer outputs have energy $\|\mathbf{x}_{\ell}\| \le 1$

Theorem (GNN Stability to Additive Perturbations)

Consider a GNN operator $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ along with shifts operators **S** and $\hat{\mathbf{S}}$ having *n* nodes. If:

(H1) Shift operators are related by $\mathbf{P}^T \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}$. With \mathbf{P} a permutation matrix

(H2) The error matrix **E** has norm $\|\mathbf{E}\| = \epsilon$ and eigenvector misalignement δ relative to **S**

(H3) The GNN has L single-feature layers with Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ and $\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H})$ is bounded by

$$\| \Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) - \Phi(\cdot; \mathbf{S}, \mathcal{H}) \|_{\mathcal{P}} \leq C (1 + \delta \sqrt{n}) L\epsilon + \mathcal{O}(\epsilon^2).$$

Theorem (GNN Stability to Additive Perturbations)

The operator distance modulo permutation between $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ and $\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H})$ is bounded by

$$\| \Phi(\cdot; \hat{\mathbf{S}}, \mathbf{h}) - \Phi(\cdot; \mathbf{S}, \mathbf{h}) \|_{\mathcal{P}} \leq C (1 + \delta \sqrt{n}) L \epsilon + \mathcal{O}(\epsilon^2).$$

It is essentially the same bound we have for the case of Lipschitz filters. Propagated over L layers

- ► A GNN with Lipschitz layers inherits the stability of the Lipschitz filter class
- The nonlinearity is pointwise \Rightarrow Graph deformations have no effect on its action

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator $\Phi(\cdot; S, H)$ along with shifts operators S and \hat{S} having *n* nodes. If:

(H1) Shift operators are related by $\mathbf{P}^T \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}\mathbf{S} + \mathbf{S}\mathbf{E}$ with \mathbf{P} a permutation matrix

(H2) The error matrix **E** has norm $\|\mathbf{E}\| = \epsilon$ and eigenvector misalignement δ relative to **S**

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ and $\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H})$ is bounded by

$$\left\| \Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) - \Phi(\cdot; \mathbf{S}, \mathcal{H}) \right\|_{\mathcal{P}} \leq 2C \left(1 + \delta \sqrt{n} \right) L\epsilon + \mathcal{O}(\epsilon^2).$$

Theorem (Single Feature GNN Stability to Relative Perturbations)

The operator distance modulo permutation between $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ and $\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H})$ is bounded by

$$\left\| \Phi(\cdot; \hat{\mathbf{S}}, \mathbf{h}) - \Phi(\cdot; \mathbf{S}, \mathbf{h}) \right\|_{\mathcal{P}} \leq 2C \left(1 + \delta \sqrt{n} \right) L \epsilon + \mathcal{O}(\epsilon^2).$$

It is essentially the same bound we have for integral Lipschitz filters. Propagated over L layers

- ► A GNN with integral Lipschitz layers inherits the stability of integral Lipschitz filters
- The nonlinearity is pointwise \Rightarrow Graph deformations have no effect on its action

GNNs Inherit the Stability Properties of Graph Filters

• Provide a generic inheritance proof \Rightarrow the steps apply to any stability claim on any filter class.

Let's do the proof for relative perturbations and integral Lipschitz filters.

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator $\Phi(\cdot; S, H)$ along with shifts operators S and \hat{S} having *n* nodes. If:

(H1) Shift operators are related by $\mathbf{P}^T \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}\mathbf{S} + \mathbf{S}\mathbf{E}$ with \mathbf{P} a permutation matrix

(H2) The error matrix **E** has norm $\|\mathbf{E}\| = \epsilon$ and eigenvector misalignement δ relative to **S**

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between $\Phi(\cdot; \mathbf{S}, \mathcal{H})$ and $\Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H})$ is bounded by

$$\left\| \Phi(\cdot; \hat{\mathbf{S}}, \mathcal{H}) - \Phi(\cdot; \mathbf{S}, \mathcal{H}) \right\|_{\mathcal{P}} \leq 2C \left(1 + \delta \sqrt{n} \right) L\epsilon + \mathcal{O}(\epsilon^2).$$

Proof: Let x_{ℓ} be the Layer ℓ output of GNN $\Phi(x; S, \mathcal{H})$. Input signal x with ||x|| = 1

Let \hat{x}_{ℓ} be the Layer ℓ output of GNN $\Phi(\mathbf{x}; \hat{S}, \mathcal{H})$. Input signal \mathbf{x} with $\|\mathbf{x}\| = 1$

• Layer
$$\ell$$
 is a perceptron with filter $\mathbf{H}_{\ell} \Rightarrow \|\hat{\mathbf{x}}_{\ell} - \mathbf{x}_{\ell}\| = \|\sigma \Big[\mathbf{H}_{\ell}(\hat{\mathbf{S}})\hat{\mathbf{x}}_{\ell-1}\Big] - \sigma \Big[\mathbf{H}_{\ell}(\mathbf{S})\mathbf{x}_{\ell-1}\Big]\|$

 $\blacktriangleright \text{ Nonlinearity is normalized Lipschitz } \Rightarrow \left\| \hat{x}_{\ell} - x_{\ell} \right\| \leq \left\| \mathsf{H}_{\ell}(\hat{\mathsf{S}}) \hat{x}_{\ell-1} - \mathsf{H}_{\ell}(\mathsf{S}) x_{\ell-1} \right\|$

This is the critical step of the proof. The rest of the proof is just algebra.

▶ In last bound, add and subtract $H_{\ell}(\hat{S})x_{\ell-1}$. Triangle inequality. Submultiplicative property of norms

$$\left|\hat{x}_{\ell} - x_{\ell}\right| \leq \left\| \mathsf{H}_{\ell}(\hat{S})\hat{x}_{\ell-1} - \mathsf{H}_{\ell}(S)x_{\ell-1} + \mathsf{H}_{\ell}(\hat{S})x_{\ell-1} - \mathsf{H}_{\ell}(\hat{S})x_{\ell-1} \right\|$$

$$\leq \ \left\| \, \mathsf{H}_{\ell}(\hat{\mathsf{S}}) - \mathsf{H}_{\ell}(\mathsf{S}) \, \right\| \times \left\| \, \mathsf{x}_{\ell-1} \, \right\| + \left\| \, \mathsf{H}_{\ell}(\hat{\mathsf{S}}) \, \right\| \times \left\| \, \hat{\mathsf{x}}_{\ell-1} - \mathsf{x}_{\ell-1} \, \right\|$$

- ► Since filters are normalized \Rightarrow Filter norm $\| H_{\ell}(\hat{S}) \| = 1$. Signal norm $\Rightarrow \| x_{\ell-1} \| \le 1$
- ► Relative perturbations and integral Lipschitz $\Rightarrow \| \mathbf{H}_{\ell}(\hat{\mathbf{S}}) \mathbf{H}_{\ell}(\mathbf{S}) \| \leq 2C(1 + \delta\sqrt{n})\epsilon + \mathcal{O}(\epsilon^2)$
- $\blacktriangleright \text{ Put all bounds together } \Rightarrow \left\| \hat{\mathbf{x}}_{\ell} \mathbf{x}_{\ell} \right\| \leq 2C(1 + \delta\sqrt{n})\epsilon \times 1 + 1 \times \left\| \hat{\mathbf{x}}_{\ell-1} \mathbf{x}_{\ell-1} \right\| + \mathcal{O}(\epsilon^2)$
- Apply recursively from Layer L back to Layer 1. The L factor appears

GNNs Inherit the Stability of Graph Filters

Since Stability is inherited from graph filters, mutatis mutandis, the same observations hold here.

The stability bounds are universal for all graphs with a given number of nodes

- Bounds depend on filter's Lipschitz constant *C* and the number of layers *L*. Which we control.
- ▶ And the eigenvector misalignment constant. Which we don't control. Depends on the perturbation.

- GNNs whose layers are made up of Lipschitz graph filters are stable to additive deformations
- \blacktriangleright This is good news \Rightarrow We have a genuine stability vs discriminability tradeoff
- ▶ Alas, a bit of a mirage \Rightarrow Graph perturbations are more naturally measured in relative tems

- ▶ Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.
- ▶ Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can't discriminate
- It is impossible to separate signals with high frequency features and be stable to deformations

- ▶ Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.
- On the flip side, integral Lipschitz filter can be very sharp at low frequencies
- We can be very discriminative at low frequencies. And at the same very stable to deformations

- ► GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies
- Where they can be discriminated sharply with a stable filter at the next layer
- ▶ Thus, they can be stable and discriminative. Something that linear graph filters can't be

Stability vs Discriminability: An illustrative Example

▶ The stability vs discriminability tradeoff depends on the frequency components of the signal

- Meaningful perturbations of a shift operator operator are relative $\Rightarrow P^T \hat{S} P = S + ES + SE$
- Conceptually, we learn all there is to be learnt from dilations $\Rightarrow \hat{S} = S + \epsilon S$
- Eigenvalues are dilated $\lambda_i \rightarrow \hat{\lambda}_i = (1 + \epsilon)\lambda_i$. Frequency response instantiated on dilated eigenvalues

- Higher eigenvalues move more. Signals with high frequency components are more difficult to process
 - \Rightarrow Even small perturbations yield large differences in the filter values that are instantiated
 - \Rightarrow We think we instantiate $h\left(\lambda_{i}\right) \Rightarrow$ But in reality we instantiate $h\left(\hat{\lambda}_{i}\right) = h\left((1 + \epsilon)\lambda_{i}\right)$

Renn

- ► To attain stable graph signal processing we need integral Lipschitz filters $\Rightarrow |\lambda \tilde{h}'(\lambda)| \leq C$
- Either the eigenvalue does not change because we are considering low frequencies
- Or the frequency response does not change when we are considering high frequencies

nn

At low frequencies a sharp highly discriminative filter is also highly stable

► At intermediate frequencies a sharp highly discriminative filter is somewhat stable

$$\Rightarrow$$
 Ideal response $h\Big(\,\lambda_m\,\Big)$ is somewhat close to perturbed response $h\Big(\,\hat\lambda_m\,\Big) = h\Big(\,(1+\epsilon)\,\lambda_m\,\Big)$

► At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

 \Rightarrow Ideal response $h(\lambda_h)$ is very different from perturbed response $h(\hat{\lambda}_h) = h((1 + \epsilon)\lambda_h)$

Separates them from the rest. But it doesn't discriminate between them

It is, however, stable to deformations.

Fact: It is impossible to discriminate high frequency components with a stable filter

We can have a filter that is discriminative. Or a filter that is stable. But not one that is both.

Table: Eigenvalues of \mathcal{G} and Graph Fourier Transform of the graph signal.

$\frac{\lambda_n}{\lambda_n}$	3.47	0.91	0	-2.00	-1.58	-0.80
$\tilde{\mathbf{x}}(\lambda_n)$	10	0	10	0	0	0

Table: Eigenvalues of \mathcal{G} and Graph Fourier Transform of the graph signal.

λ_n	3.	.47	0.91	0	-2.00	-1.58	-0.80
$\tilde{\mathbf{x}}(\lambda_n)$		10	0	10	0	0	0

Table: Eigenvalues of \mathcal{G} and Graph Fourier Transform of the graph signal.

λ_n	3.47	0.91	0	-2.00	-1.58	-0.80
$\tilde{\mathbf{x}}(\lambda_n)$	10	0	10	0	0	0

- GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies
- They can add information to zero frequency components
- Thus, they can be stable and discriminative/expressive.

Representation Power of Graph Neural Networks

Given a pair of different (non-isomorphic) graphs \mathcal{G} , $\hat{\mathcal{G}}$ with adjacency matrices **S**, $\hat{\mathbf{S}}$ and anony-

mous inputs $\mathbf{x}, \ \hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq_{\Pi} \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

Given a pair of different (non-isomorphic) graphs \mathcal{G} , $\hat{\mathcal{G}}$ with adjacency matrices **S**, $\hat{\mathbf{S}}$ and anony-

mous inputs $\mathbf{x}, \ \hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq_{\Pi} \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

Given a pair of **different** (non-isomorphic) graphs \mathcal{G} , $\hat{\mathcal{G}}$ with adjacency matrices **S**, $\hat{\mathbf{S}}$ and anony-

mous inputs \mathbf{x} , $\hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq_{\Pi} \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

Given a pair of different (non-isomorphic) graphs $\mathcal{G}, \, \hat{\mathcal{G}}$ with adjacency matrices S, \hat{S} and anony-

mous inputs \mathbf{x} , $\hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq_{\Pi} \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

- ► The inputs are anonymous ⇒ structure and identity agnostic, i.e., they carry no information about the graph and the nodes.
- Study the ability of a GNN to **generate** information about the graph.
- GNNs have high representation power, if they can produce discriminative representations from anonymous inputs, for a large class of graphs

Given a pair of **different** (non-isomorphic) graphs \mathcal{G} , $\hat{\mathcal{G}}$ with adjacency matrices **S**, $\hat{\mathbf{S}}$ and anonymous inputs \mathbf{x} , $\hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq_{\Pi} \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

- ► The expressive power of a GNN is related to the function approximation properties of GNNs.
- ► The above definition is related to the Graph Isomorphism problem ⇒ It belongs to the class of NP problems. It is not known whether it is P or NP-complete.
- A number of algorithms exist that can separate a large set of nonisomorphic graphs e.g., the Weisfeiler-Lehman (WL) test.

Results of Vertex Domain Analysis:

- GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test [Weisfeiler, & Leman, 1968].
- ► GNNs cannot produce informative representations for a large class of real-world graphs.

► WL indistinguishable non-isomorphic graphs.

Heterocyclic antibiotics.

Graph Neural Networks Are More Powerful Than we Think! [Kanatsoulis et al '22]

Vertex Domain Analysis

Frequency Domain Analysis

GNNs are more powerful than the WL test!

Can produce **informative** representations for almost all practical graphs.

Stay tuned to see how this analysis can be used in practice to efficiently train GNNs.

 \blacktriangleright [Xu et al '19] study the representation power of $\Phi(\mathbf{1}; \mathbf{S}, \mathcal{H})$ and not of $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$.

Studying a function Φ(x; S, H) by only observing a subset of the domain of Φ(1; S, H), cannot yield concrete conclusions about the representation power.

▶ The all-one vector is associated with limitations involving the spectral decomposition of the graph.

Frequency Domain Analysis

Spectral Decomposition: $S = V\Lambda V^T$

• Recall the definition of a **Graph Convolution**: $\mathbf{z} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^T \mathbf{x}.$

When
$$\mathbf{x} = \mathbf{1}$$
:
$$\mathbf{z} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{1} = \sum_{k=0}^{K-1} h_k \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^T \mathbf{1} = \sum_{n=1}^{N} \sum_{k=0}^{K-1} h_k \lambda_n^k \left(\mathbf{v}_n^T \mathbf{1} \right) \mathbf{v}_n$$

The information associated with the spectral components that are orthogonal to one has been lost!

Spectral limitations of GNNs with all-one inputs

G	λ_n	2.303	1.618	1.303	1	0.618	-2.303	-1.618	-0.618	-1	-1.303
Ĝ	$\hat{\lambda}_n$	2.303	1.861	1	0.618	0.618	0.254	-1.303	-1.618	-1.618	-2.115

Spectral limitations of GNNs with all-one inputs

G	$egin{array}{c c} \lambda_n & \ & 2.303 \ \langle oldsymbol{v}_n, oldsymbol{1} angle & \ & 3.048 \end{array}$	1.618 0	1.303 0	1 -0.816	0.618 0	-2.303 0	-1.618 0	-0.618 0	-1 0	-1.303 -0.210
Ĝ	$egin{array}{c c} \hat{\lambda}_n & 2.303 \ \langle \hat{oldsymbol{v}}_n, oldsymbol{1} angle & 3.048 \end{array}$	$\begin{array}{c} 1.861 \\ 0 \end{array}$	1 -0.816	0.618 0	$\begin{array}{c} 0.618 \\ 0 \end{array}$	0.254	-1.303 -0.210	-1.618 0	-1.618 0	-2.115 0

Spectral limitations of GNNs with all-one inputs

Given a pair of different (non-isomorphic) graphs \mathcal{G} , $\hat{\mathcal{G}}$ with adjacency matrices **S**, $\hat{\mathbf{S}}$ and anonymous inputs **x**, $\hat{\mathbf{x}}$, is there a GNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ such that $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \neq \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H})$?

- ▶ Revisit the above problem by studying GNNs with linear algebraic tools and white inputs.
- ► GNNs produce different representations for all graphs with different eigenvalues.
- ▶ The novel constructive analysis enables the design of simple and expressive GNNs.

• x is a white random vector:
$$\mathbb{E}[\mathbf{x}] = 0$$
, $\mathbb{E}[\mathbf{x}\mathbf{x}^T] = \sigma^2 \mathbf{I}$

- White vectors are anonymous:
 - \Rightarrow structure and identity agnostic.

▶ White inputs allow us to study the domain of $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H}) \Rightarrow \mathbf{x} \in \mathbb{R}^{N}$.

• White inputs do not admit the spectral limitations of x = 1.

$$x \longrightarrow z = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ x is a random vector with $\mathbb{E}[x] = 0 \Rightarrow z$ is a random vector with $\mathbb{E}[z] = 0$.

▶ **x** is a random vector with $\mathbb{E}[\mathbf{x}^2] = \text{diag}(\mathbb{E}[\mathbf{x}\mathbf{x}^T]) = \sigma^2 \mathbf{1} \Rightarrow \mathbf{z}$ is a random vector with:

$$\xrightarrow{\mathbf{x}} \qquad \mathbf{z} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x} \qquad \xrightarrow{\mathbf{z}}$$

▶ x is a random vector with $\mathbb{E}[x] = 0 \Rightarrow z$ is a random vector with $\mathbb{E}[z] = 0$.

▶ **x** is a random vector with $\mathbb{E}[\mathbf{x}^2] = \text{diag}(\mathbb{E}[\mathbf{x}\mathbf{x}^T]) = \sigma^2 \mathbf{1} \Rightarrow \mathbf{z}$ is a random vector with:

$$\mathsf{var}[\mathbf{Z}] = \mathbb{E}[\mathbf{z}^2] = \mathsf{diag}\left(\mathbb{E}\left[\mathbf{z}\mathbf{z}^{\mathsf{T}}\right]\right) = \mathsf{diag}\left(\sum_{k=0}^{2\mathcal{K}-2} h'_k \mathbf{S}^k\right) = \sum_{k=0}^{2\mathcal{K}-2} h'_k \mathsf{diag}\left(\mathbf{S}^k\right)$$

- A white input is passed through a convolutional Graph Filter.
- The filter output is being processed by the square nonlinearity and the expectation operator to measure the variance.

► The output is a linear combination of the adjacency powers diagonals: $\mathbb{E}[\mathbf{z}^2] = \sum_{k=0}^{2K-2} h'_k \operatorname{diag}(\mathbf{S}^k)$

\Rightarrow permutation equivariant.

Theorem [Kanatsoulis et al '22]

Given non-isomorphic graphs \mathcal{G} , $\hat{\mathcal{G}}$ and a GNN with anonymous input $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$: $\mathbb{G} \to \mathbb{R}^N$. If

 \mathcal{G} and $\hat{\mathcal{G}}$ have different eigenvalues, $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ maps \mathcal{G} and $\hat{\mathcal{G}}$ to different representations.

GNNs produce different representations for all graphs with different eigenvalues.

GNNs are more powerful than the WL test!

Theorem [Kanatsoulis et al '22]

Given non-isomorphic graphs \mathcal{G} , $\hat{\mathcal{G}}$ and a GNN with anonymous input $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$: $\mathbb{G} \to \mathbb{R}^N$. If

 \mathcal{G} and $\hat{\mathcal{G}}$ have different eigenvalues, $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ maps \mathcal{G} and $\hat{\mathcal{G}}$ to different representations.

The majority of real graphs have different eigenvalues.

Cospectral graphs involve certain tree structures.

GNNs can differentiate between WL indistinguishable non-isomorphic graphs.

Proposition [Kanatsoulis et al '22]

A GNN with anonymous input can compute $\mathbf{c}^{(k)} = \text{diag}(\mathbf{S}^k) \in \mathbb{N}_0^N$ that count the number of

closed paths of length k from each node to itself.

- For $k = 0 \Rightarrow \mathbf{c}^{(k)} = \mathbf{1}$
- For $k = 1 \Rightarrow \mathbf{c}^{(k)} = \mathbf{0}$

For $k = 2 \Rightarrow \mathbf{c}^{(k)} = \mathbf{S1}$, counts the 1-hop neighbors of each node.

For $k = 3 \Rightarrow \mathbf{c}^{(k)}$ counts the number of triangles each node is involved in.

For $k = 4 \Rightarrow \mathbf{c}^{(k)}$ counts the 1-hop neighbors, the 2-hop neighbors and the number of tetragons each node is involved in.

$$\mathbf{x} \sim \mathcal{N}(0, I) \longrightarrow \mathbf{z} = \sum_{k=0}^{K-1} h_k \, \mathbf{S}^k \mathbf{x} \quad \longrightarrow \quad \mathbf{y} = E \bigg[\mathbf{z}^2 \bigg] \longrightarrow$$

$$\mathbf{x} \sim \mathcal{N}(0, I) \longrightarrow \mathbf{z} = \sum_{k=0}^{K-1} \frac{h_k \, \mathbf{S}^k \mathbf{x}}{\mathbf{y} = E\left[\mathbf{z}^2\right]} \longrightarrow$$

Given a collection of graphs that belong to different classes, we aim to predict the class of each graph.

 \implies Positive in Lung Cancer Prevention

 \implies Negative in Lung Cancer Prevention

- The Circular Skip Link (CSL) dataset is the golden standard when it comes to benchmarking GNNs for isomorphism and classification.
- CSL contains 150 4-regular graphs, that belong to one of 10 classes, each consisting of 41 nodes and 164 edges.

▶ The all-one vector is always an eigenvector in regular graphs, therefore GNNs with x = 1 cannot classify these graphs.

► The variance of a graph filter with filter parameters:

$$(h_0, h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8, h_9) = \left(0, 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \frac{1}{7}, -\frac{1}{8}, \frac{1}{9}\right)$$

can perfectly classify these graphs.

Class									
0	1	2	3	4	5	6	7	8	9
73616	-45968	1059	-30593	-25345	-26001	-17555	-28543	16065	-21163

Table: GNN output \mathbf{y} for every class of the CSL graphs.

Dataset	# Graphs	Average # Vertices	Average # Edges	# Classes	Network Type
CSL	150	41	164	10	Circulant
IMDBBINARY	1,000	20	193	2	Social
IMDBMULTI	1,500	13	132	3	Social
REDDITBINNARY	2000	430	498	2	Social
REDDITMULTI	5000	509	595	5	Social
PROTEINS	1,113	39	146	2	Bioinformatic
MUTAG	188	18	20	2	Chemical

[Xu et al '19]
[Kanatsoulis et al '22]

- Graph Neural Networks are more powerful than we think:
 - \Rightarrow **Differentiate** between almost all real graphs.
 - \Rightarrow **Count** substructures of the graph.
- Our framework yields **improved performance** of GNNs in graph classification.