
Graph Neural Networks

Charilaos I. Kanatsoulis, Navid NaderiAlizadeh,

Alejandro Parada-Mayorga, Alejandro Ribeiro, and Luana Ruiz

gnn.seas.upenn.edu

2023 International Conference on Acoustics, Speech, and Signal Processing

Rhodes, Greece – June 6, 2023

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Graph Neural Networks 1

gnn.seas.upenn.edu

Day 1: Machine Learning on Graphs

Charilaos I. Kanatsoulis, Navid NaderiAlizadeh,

Alejandro Parada-Mayorga, Alejandro Ribeiro, and Luana Ruiz

gnn.seas.upenn.edu

2023 International Conference on Acoustics, Speech, and Signal Processing

Rhodes, Greece – June 6, 2023

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 2

gnn.seas.upenn.edu

Visit our course website: https://gnn.seas.upenn.edu

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 3

https://gnn.seas.upenn.edu

Machine Learning on Graphs: Why?

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 4

Why Are Graphs so Common in Information Processing?

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Identify the author of a text of unknown provenance

Segarra et al ’16,, arxiv.org/abs/1805.00165

Recommendation Systems

Predict the rating a customer would give to a product

Ruiz et al ’18,, arxiv.org/abs/1903.12575

I In both cases there exists a graph that contains meaningful information about the problem to solve

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 5

arxiv.org/abs/1805.00165
arxiv.org/abs/1903.12575

Authorship Attribution with Word Adjacency Networks (WANs)

I Nodes represent different function words and edges how often words appear close to each other

⇒ A proxy for the different ways in which different authors use the English language grammar

William Shakespeare

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its
lik

e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

Christopher Marlowe

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

I WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 6

doi.org/10.1353/shq.2016.0024

Recommendation System with Collaborative Filtering

I Nodes represent different customers and edges their average similarity in product ratings

⇒ The graph informs the completion of ratings when some are unknown and are to be predicted

Variation Diagram for Original (sampled) ratings Variation Diagram for Reconstructed (predicted) ratings

I Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

Ruiz-Gama-Marques-Ribeiro, Invariance-Preserving Localized Activation Functions for Graph Neural Networks, arxiv.org/abs/1903.12575

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 7

arxiv.org/abs/1903.12575

Brain Networks: Brain Age Scoring (Thursday 11:35, Nafsika B)

Ageing is a risk factor for neurodegeneration and biological age (brain age) is elevated compared to chronological age in pathology.
Hence, Age-Gap (brain age – chronological age) is a biomarker of interest.

Cortical Thickness Brain Signals. GNN on anatomical covariance matrix leverages
cortical thickness (CT) features to predict brain age.
Regional age-gap is defined by the difference between GNN prediction and outputs at
the final layer of GNN.
Elevated brain age gap effect is driven by regional age-gap effects in impacted regions.

VNN
Architecture

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="cngSRBIg6ylJu2kahHSGTkQVI4c=">AAACRHicbVDLSgMxFM34dnxVXboJtoKrMiOiLkU3LhXaKnRKyaR3bDCTDMkdtQzzcW78AHd+gRsXirgV09qFrwOBwzn3cm5OnElhMQgevYnJqemZ2bl5f2FxaXmlsrrWsjo3HJpcS20uYmZBCgVNFCjhIjPA0ljCeXx1PPTPr8FYoVUDBxl0UnapRCI4Qyd1K+3IJtT3I6WF6oFCv2GYsgkYFgspcEB1EkXf7AjhFkexxU1fIJRFLayVNGOGpYAuiNaKiDNJT8pat1IN6sEI9C8Jx6RKxjjtVh6inuZ56oK4ZNa2wyDDTsEMCi6h9KPcQsb4FbuEtqPKRdpOMbqmpFtO6dFEG/cU0pH6faNgqbWDNHaTKcO+/e0Nxf+8do7JQacQKssRFP8KSnJJUdNho7QnDHCUA0cYN8LdSnnf9cGHdfiuhPD3l/+S1k493Kvvnu1UD4/GdcyRDbJJtklI9skhOSGnpEk4uSNP5IW8evfes/fmvX+NTnjjnXXyA97HJyNMsY8=</latexit>

Transferability of
1 parameters H

ROIs identified
for pathology

Readout
(unweighted

mean)

Brain age
estimation

Readout
(unweighted

mean)

Brain age
estimation

<latexit sha1_base64="o28P2OPSw00zPaJL9QyPGPeUF3c=">AAACJXicbVC7SgNBFJ31GddX1NJmMAqxCbtB1MIimMYygnlAEsLdyd1kyOzsMjMrhJCfsfFXbCwMIlj5K04ehRoPDBzOuZcz9wSJ4Np43qezsrq2vrGZ2XK3d3b39rMHhzUdp4phlcUiVo0ANAousWq4EdhIFEIUCKwHg/LUrz+i0jyWD2aYYDuCnuQhZ2Cs1MnetHRIXbfFUBpUXPbccqyMtQU1fc4GErWmXTBgh9z8adTxT2mIYFKF+ryTzXkFbwa6TPwFyZEFKp3spNWNWRrZMCZA66bvJaY9gmmiwLHbSjUmwAbQw6alEiLU7dHsyjE9s0qXhrGyTxo6U39ujCDSehgFdjIC09d/van4n9dMTXjdHnGZpAYlmweFqS0gptPKaJcrZEYMLQGmuP0rZX1QwGxj2rUl+H9PXia1YsG/LFzcF3Ol20UdGXJMTkie+OSKlMgdqZAqYeSJvJA3MnGenVfn3fmYj644i50j8gvO1zd1C6LC</latexit>

Cortical thickness data
(m1 features)

<latexit sha1_base64="RSVL+Zq1lGUc6XN4AMMwfMq83bA=">AAACJXicbVC7SgNBFJ31GddX1NJmMAqxCbtB1MIimMYygnlAEsLdyd1kyOzsMjMrhJCfsfFXbCwMIlj5K04ehRoPDBzOuZcz9wSJ4Np43qezsrq2vrGZ2XK3d3b39rMHhzUdp4phlcUiVo0ANAousWq4EdhIFEIUCKwHg/LUrz+i0jyWD2aYYDuCnuQhZ2Cs1MnetHRIXbfFUBpUXPbccqyMtQU1fc4GErWmXTBgh9z8adQpntIQwaQK9Xknm/MK3gx0mfgLkiMLVDrZSasbszSyYUyA1k3fS0x7BNNEgWO3lWpMgA2gh01LJUSo26PZlWN6ZpUuDWNlnzR0pv7cGEGk9TAK7GQEpq//elPxP6+ZmvC6PeIySQ1KNg8KU1tATKeV0S5XyIwYWgJMcftXyvqggNnGtGtL8P+evExqxYJ/Wbi4L+ZKt4s6MuSYnJA88ckVKZE7UiFVwsgTeSFvZOI8O6/Ou/MxH11xFjtH5Becr292mqLD</latexit>

Cortical thickness data
(m2 features)

<latexit sha1_base64="wAjtm45uhqaV0+m+bVRdQhXunLk=">AAACL3icbVDJSgNBEO1xd9yiHr00RkEvYUZEPbqAeIxgVMiEUNOpiY29DN09Ygz+kRd/xYuIIl79CzvLwa2g4PHqFa/qpbng1kXRSzAyOjY+MTk1Hc7Mzs0vlBaXzq0uDMMa00KbyxQsCq6w5rgTeJkbBJkKvEivj3rzixs0lmt15jo5NiS0Fc84A+epZuk4sRkNw4Shcmi4aocHCpyWXiAo0zdgOCiGXiLBGX5LNyy/Q7omm3HiuERLPVrbbJbKUSXqF/0L4iEok2FVm6WnpKVZIb0tE2BtPY5y1+iCcZwJvA+TwmIO7BraWPdQgbdqdPv/3tN1z7Ropo1v5Wif/b7RBWltR6Ze6a++sr9nPfK/Wb1w2V6jy1VeOFRsYJQVgjpNe+HRFjfInOh4AMxwfytlV2CA+exs6EOIf7/8F5xvVeKdyvbpVnn/cBjHFFkhq2SDxGSX7JMTUiU1wsgDeSKv5C14DJ6D9+BjIB0JhjvL5EcFn1/p4acl</latexit>

Anatomical covariance
matrix (size m1 ⇥ m1)

<latexit sha1_base64="DX3Hr7HTPJuhef+wtdJCUndCuNU=">AAACL3icbVDJSgNBEO1xd9yiHr00RkEvYSaIenQB8ahgVMiEUNOpiY29DN09wRj8Iy/+ihcRRbz6F3ZiDm4FBY9Xr3hVL80Fty6KnoOR0bHxicmp6XBmdm5+obS4dG51YRjWmBbaXKZgUXCFNcedwMvcIMhU4EV6fdifX3TQWK7Vmevm2JDQVjzjDJynmqWjxGY0DBOGyqHhqh3uK3BaeoGgTHfAcFAMvUSCM/yGblh+i3RNNquJ4xIt9Whts1kqR5VoUPQviIegTIZ10iw9Ji3NCultmQBr63GUu0YPjONM4F2YFBZzYNfQxrqHCrxVozf4946ue6ZFM218K0cH7PeNHkhruzL1Sn/1lf0965P/zeqFy3YbPa7ywqFiX0ZZIajTtB8ebXGDzImuB8AM97dSdgUGmM/Ohj6E+PfLf8F5tRJvV7ZOq+W9g2EcU2SFrJINEpMdskeOyQmpEUbuySN5Ia/BQ/AUvAXvX9KRYLizTH5U8PEJ7PenJw==</latexit>

Anatomical covariance
matrix (size m2 ⇥ m2)

<latexit sha1_base64="0FtkVmoDlT0HpPAIZ41bdHXosFk=">AAACOnicbVA9SwNBEN3z2/MrammzGAVtwp2IWoo2lgpGhSSEuc1csmRv99idU0Lwd9n4K+wsbCwUsfUHuIkp/BpYeLx5s2/mJbmSjqLoMRgbn5icmp6ZDefmFxaXSssrF84UVmBVGGXsVQIOldRYJUkKr3KLkCUKL5Pu8aB/eY3WSaPPqZdjI4O2lqkUQJ5qls7qLuVhWBeoCa3U7fCmYxTyxILUXBhLXqq8gjpSdDU6x1tA3pA8t7WRNeMNnoPfRanhj267WSpHlWhY/C+IR6DMRnXaLD3UW0YUmd9AKHCuFkc5NfowsFZ4G9YLhzmILrSx5qGGDF2jPzz9lm96psVTY/3TxIfs94k+ZM71ssQrM6CO+90bkP/1agWlB42+1HlBqMWXUVooToYPcuQtaVGQ6nkAwkq/KxcdsCB8jC70IcS/T/4LLnYq8V5l92ynfHg0imOGrbF1tsVits8O2Qk7ZVUm2B17Yi/sNbgPnoO34P1LOhaMZlbZjwo+PgGYmauH</latexit>

whole brain cortical
thickness dataset
(m1 parcellations)

<latexit sha1_base64="WCoge6rT08TtWSgRJcdlnB3m75M=">AAACOnicbVA9TyMxEPVycMAeHOEoaSzCSdBEuxECSgQNZSIRQEqiaNaZTax47ZU9C4oifhcNv4KOgoYChGj5ATghBV8jWXp688Zv5iW5ko6i6C6Y+TU793t+YTH8s7T8d6W0+u/UmcIKbAijjD1PwKGSGhskSeF5bhGyROFZMjga988u0Dpp9AkNc2xn0NMylQLIU51SveVSHoYtgZrQSt0LL/tGIU8sSM2FseSlyiuoL8VAo3O8C+QNyXNbm1mnuslz8LsoNfnRbXdK5agSTYp/B/EUlNm0ap3SbatrRJH5DYQC55pxlFN7BGNrhVdhq3CYgxhAD5seasjQtUeT06/4f890eWqsf5r4hP04MYLMuWGWeGUG1Hdfe2Pyp16zoHS/PZI6Lwi1eDdKC8XJ8HGOvCstClJDD0BY6Xflog8WhI/RhT6E+OvJ38FptRLvVnbq1fLB4TSOBbbONtgWi9keO2DHrMYaTLBrds8e2VNwEzwEz8HLu3QmmM6ssU8VvL4Bmi2riA==</latexit>

whole brain cortical
thickness dataset
(m2 parcellations)

Regional analysis
of final layer

outputs
<latexit sha1_base64="5iwdhHtJdvsVL+izjJo45bYZdxg=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYCu4sSRF1GV9LFxWsA9oQplMb9qhkwczE6XEfoobF4q49Uvc+TdO2yy09cCFwzn3cu89fsKZVLb9bSwtr6yurRc2zM2t7Z1dq7jXlHEqKDRozGPR9okEziJoKKY4tBMBJPQ5tPzh9cRvPYCQLI7u1SgBLyT9iAWMEqWlrlV0ZWCaZfcGuCLlk8s+dK2SXbGnwIvEyUkJ5ah3rS+3F9M0hEhRTqTsOHaivIwIxSiHsemmEhJCh6QPHU0jEoL0sunpY3yklR4OYqErUniq/p7ISCjlKPR1Z0jUQM57E/E/r5Oq4MLLWJSkCiI6WxSkHKsYT3LAPSaAKj7ShFDB9K2YDoggVOm0TB2CM//yImlWK85Z5fSuWqpd5XEU0AE6RMfIQeeohm5RHTUQRY/oGb2iN+PJeDHejY9Z65KRz+yjPzA+fwDPcJJt</latexit>

�-Age

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="sS93iBWn0WowBH0gtcW2/526jtE=">AAAB9XicbVDLSgMxFL3js46vqks3wSK4KjNF1GXRjcsK9gHtWDJppg3NJEOSUYah/+HGhSJu/Rd3/o1pOwttPRA4nHsu9+SECWfaeN63s7K6tr6xWdpyt3d29/bLB4ctLVNFaJNILlUnxJpyJmjTMMNpJ1EUxyGn7XB8M523H6nSTIp7kyU0iPFQsIgRbKz00NOR6zawGVnjMOuXK17VmwEtE78gFSjQ6Je/egNJ0pgKQzjWuut7iQlyrAwjnE7cXqppgskYD2nXUoFjqoN8lnqCTq0yQJFU9gmDZurvjRzHWmdxaJ2xTagXZ1Pxv1k3NdFVkDORpIYKMj8UpRwZiaYVoAFTlBieWYKJYjYrIiOsMDG2KNeW4C9+eZm0alX/onp+V6vUr4s6SnAMJ3AGPlxCHW6hAU0goOAZXuHNeXJenHfnY25dcYqdI/gD5/MHxLqSDQ==</latexit>

Pathology

ROIs identified
for pathology

Regional analysis
of final layer

outputs <latexit sha1_base64="5iwdhHtJdvsVL+izjJo45bYZdxg=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYCu4sSRF1GV9LFxWsA9oQplMb9qhkwczE6XEfoobF4q49Uvc+TdO2yy09cCFwzn3cu89fsKZVLb9bSwtr6yurRc2zM2t7Z1dq7jXlHEqKDRozGPR9okEziJoKKY4tBMBJPQ5tPzh9cRvPYCQLI7u1SgBLyT9iAWMEqWlrlV0ZWCaZfcGuCLlk8s+dK2SXbGnwIvEyUkJ5ah3rS+3F9M0hEhRTqTsOHaivIwIxSiHsemmEhJCh6QPHU0jEoL0sunpY3yklR4OYqErUniq/p7ISCjlKPR1Z0jUQM57E/E/r5Oq4MLLWJSkCiI6WxSkHKsYT3LAPSaAKj7ShFDB9K2YDoggVOm0TB2CM//yImlWK85Z5fSuWqpd5XEU0AE6RMfIQeeohm5RHTUQRY/oGb2iN+PJeDHejY9Z65KRz+yjPzA+fwDPcJJt</latexit>

�-Age

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="sS93iBWn0WowBH0gtcW2/526jtE=">AAAB9XicbVDLSgMxFL3js46vqks3wSK4KjNF1GXRjcsK9gHtWDJppg3NJEOSUYah/+HGhSJu/Rd3/o1pOwttPRA4nHsu9+SECWfaeN63s7K6tr6xWdpyt3d29/bLB4ctLVNFaJNILlUnxJpyJmjTMMNpJ1EUxyGn7XB8M523H6nSTIp7kyU0iPFQsIgRbKz00NOR6zawGVnjMOuXK17VmwEtE78gFSjQ6Je/egNJ0pgKQzjWuut7iQlyrAwjnE7cXqppgskYD2nXUoFjqoN8lnqCTq0yQJFU9gmDZurvjRzHWmdxaJ2xTagXZ1Pxv1k3NdFVkDORpIYKMj8UpRwZiaYVoAFTlBieWYKJYjYrIiOsMDG2KNeW4C9+eZm0alX/onp+V6vUr4s6SnAMJ3AGPlxCHW6hAU0goOAZXuHNeXJenHfnY25dcYqdI/gD5/MHxLqSDQ==</latexit>

Pathology

Figure 4: Overview of brain age prediction framework using VNNs.

3 Application: Brain Age Prediction

The gap between chronological age and biological age for a subject has been studied as a biomarker of

cognitive decline and neurodegeneration [56,77]. In particular, many studies leverage neuroimaging data to

estimate brain-predicted biological age, also referred to as brain age. Most existing studies treat biological

age as a scalar quantity which is expected to be elevated as compared to chronological age in pathological

contexts. However, in the absence of a ground truth, the notion of brain age is abstract and has a limited

clinical utility without identification of the main contributors to the elevated brain age due to pathology.

In this paper, we leverage the architecture of VNNs to provide an interpretable perspective to brain age

prediction and our results demonstrate that the elevated brain pathology is accompanied with abnormalities

in various regions of interest. Next, we discuss how the outputs at the final layer of VNNs may provide

insights into the impact of a pathology.

18

Interpretability:
Isolate brain
regions with
elevated
regional age-gap

Transferability:
Evaluate spatial
robustness of
age-gap effects

<latexit sha1_base64="ctPfEJQUkDARQCvlMkyMKyrKvE0=">AAAB83icbVBNSwMxEM3Wr7p+VT16CRbBi2W3iHqsetBjBfsB3VKy6Wwbms2GJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2njet1NYWV1b3yhuulvbO7t7pf2Dpk5SRaFBE56odkg0cCagYZjh0JYKSBxyaIWj26nfegKlWSIezVhCNyYDwSJGibFSEOjIda8HcHZHZK9U9ireDHiZ+Dkpoxz1Xukr6Cc0jUEYyonWHd+TppsRZRjlMHGDVIMkdEQG0LFUkBh0N5vdPMEnVunjKFG2hMEz9fdERmKtx3FoO2NihnrRm4r/eZ3URFfdjAmZGhB0vihKOTYJngaA+0wBNXxsCaGK2VsxHRJFqLExuTYEf/HlZdKsVvyLyvlDtVy7yeMooiN0jE6Rjy5RDd2jOmogiiR6Rq/ozUmdF+fd+Zi3Fpx85hD9gfP5A1NnkJQ=</latexit>

Age-Gap

<latexit sha1_base64="ctPfEJQUkDARQCvlMkyMKyrKvE0=">AAAB83icbVBNSwMxEM3Wr7p+VT16CRbBi2W3iHqsetBjBfsB3VKy6Wwbms2GJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2njet1NYWV1b3yhuulvbO7t7pf2Dpk5SRaFBE56odkg0cCagYZjh0JYKSBxyaIWj26nfegKlWSIezVhCNyYDwSJGibFSEOjIda8HcHZHZK9U9ireDHiZ+Dkpoxz1Xukr6Cc0jUEYyonWHd+TppsRZRjlMHGDVIMkdEQG0LFUkBh0N5vdPMEnVunjKFG2hMEz9fdERmKtx3FoO2NihnrRm4r/eZ3URFfdjAmZGhB0vihKOTYJngaA+0wBNXxsCaGK2VsxHRJFqLExuTYEf/HlZdKsVvyLyvlDtVy7yeMooiN0jE6Rjy5RDd2jOmogiiR6Rq/ozUmdF+fd+Zi3Fpx85hD9gfP5A1NnkJQ=</latexit>

Age-Gap

Interpretable regional profile to elevated brain age.

<latexit sha1_base64="sZ4Bp4dVB2e8aNNR2FFcTQqptlM=">AAACWnicbVBNa9tAEF2p+VTS1v249bLUKeQSI4XS9BiaS44pxEnAMma1GtmLV7vqzihgTP5kL6XQv1LIyPGhTTKw8Oa9GebtKxprkNL0dxS/2Njc2t7ZTfb2X7563Xvz9gp9GzQMtbc+3BQKwRoHQzJk4aYJoOrCwnUxP+v061sIaLy7pEUD41pNnamMVsTUpPcjx0omSa7BEQTjpoydN67kPrkMymEFQRXGGlpIX8lGBVUDjyJvHeRaWXl+IL2TdWvJHCETILUPZDopSWhm9NwBoiwVsU/CSa+fDtJVyacgW4O+WNfFpPczL71ua3akrUIcZWlD46Xqbli4S/IWoVF6rqYwYujYH46Xq2ju5CdmSln5wM+RXLH/bixVjbioC56sFc3wsdaRz2mjlqqv46VxTUvg9MOhqrWSvOxylqUJoMkuGCgdDHuVesbh6S67hEPIHn/5Kbg6HmRfBp+/H/dPv63j2BEfxEdxKDJxIk7FubgQQ6HFL/E32oq2oz9xHO/Gew+jcbTeeSf+q/j9PQp+stI=</latexit>

Transferability of parameters
H on multi-scale cortical

thickness datasets

<latexit sha1_base64="LXIMOFfoua0oDGxeSTgxK2M/S+Y=">AAACBHicbVDLSsNAFJ34rPEVddnNYCu4KkkRdVl0ocsK9gFNKJPppB06mQkzE6GELtz4K25cKOLWj3Dn3zhps9DWAxcO59zLvfeECaNKu+63tbK6tr6xWdqyt3d29/adg8O2EqnEpIUFE7IbIkUY5aSlqWakm0iC4pCRTji+zv3OA5GKCn6vJwkJYjTkNKIYaSP1nbLtqwjaNxIlI8FhNfNjpEdhBDvTat+puDV3BrhMvIJUQIFm3/nyBwKnMeEaM6RUz3MTHWRIaooZmdp+qkiC8BgNSc9QjmKigmz2xBSeGGUAIyFNcQ1n6u+JDMVKTeLQdOYnqkUvF//zeqmOLoOM8iTVhOP5oihlUAuYJwIHVBKs2cQQhCU1t0I8QhJhbXKzTQje4svLpF2veee1s7t6pXFVxFECZXAMToEHLkAD3IImaAEMHsEzeAVv1pP1Yr1bH/PWFauYOQJ/YH3+AEwIlp0=</latexit>

Graphon W

<latexit sha1_base64="BB+zuH+Wb5qvvGNNTqi5oqKxNec=">AAACFHicbZDLSsNAFIYnXmu8RV26GWwFQShJEXVZ7MZlBXuBJoTJdNIOnUzCzKRYQh/Cja/ixoUibl24822ctFlo6w8DH/85hznnDxJGpbLtb2NldW19Y7O0ZW7v7O7tWweHbRmnApMWjlksugGShFFOWooqRrqJICgKGOkEo0Ze74yJkDTm92qSEC9CA05DipHSlm+dm64ModmIx0hQxDGBEVKCPsBK5moaBiFsTP0s8p1pxbfKdtWeCS6DU0AZFGr61pfbj3EaEa4wQ1L2HDtRXoaEopiRqemmkiQIj9CA9DRyFBHpZbOjpvBUO30YxkI/ruDM/T2RoUjKSRToznxRuVjLzf9qvVSF115GeZIqwvH8ozBlUMUwTwj2qSBYsYkGhAXVu0I8RAJhpXM0dQjO4snL0K5VncvqxV2tXL8p4iiBY3ACzoADrkAd3IImaAEMHsEzeAVvxpPxYrwbH/PWFaOYOQJ/ZHz+AK9cnV4=</latexit>

Covariance matrix Cm1

<latexit sha1_base64="nlfp2EM1lsXgOSKGOI/mHjj8NgA=">AAACFHicbZDLSsNAFIYnXmu8RV26GWwFQShJEXVZ7MZlBXuBJoTJdNIOnUzCzKRYQh/Cja/ixoUibl24822ctFlo6w8DH/85hznnDxJGpbLtb2NldW19Y7O0ZW7v7O7tWweHbRmnApMWjlksugGShFFOWooqRrqJICgKGOkEo0Ze74yJkDTm92qSEC9CA05DipHSlm+dm64ModmIx0hQxDGBEVKCPsBK5moaBiFsTP0s8mvTim+V7ao9E1wGp4AyKNT0rS+3H+M0IlxhhqTsOXaivAwJRTEjU9NNJUkQHqEB6WnkKCLSy2ZHTeGpdvowjIV+XMGZ+3siQ5GUkyjQnfmicrGWm//VeqkKr72M8iRVhOP5R2HKoIphnhDsU0GwYhMNCAuqd4V4iATCSudo6hCcxZOXoV2rOpfVi7tauX5TxFECx+AEnAEHXIE6uAVN0AIYPIJn8ArejCfjxXg3PuatK0YxcwT+yPj8AbDinV8=</latexit>

Covariance matrix Cm2

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

VNN
Architecture

<latexit sha1_base64="y06F27H9/pfFBvZYJYS6wBx+Ig8=">AAACNHicbVDLSsNAFJ34Nr6qLt0MVsGFlKSIj53opuCmglWhKWUyuWkHJw9mbtQS8lFu/BA3IrhQxK3f4LRm4evAhcM59zFz/FQKjY7zZI2NT0xOTc/M2nPzC4tLleWVc51kikOLJzJRlz7TIEUMLRQo4TJVwCJfwoV/dTz0L65BaZHEZzhIoROxXixCwRkaqVs58XRIbS+A0CwYrcuDm75AKHLV84vcqR1sl1XYtodwiz+7NnKPM0kbxUbRrVSdmjMC/UvcklRJiWa38uAFCc8iiJFLpnXbdVLs5Eyh4BIK28s0pIxfsR60DY1ZBLqTj+4XdNMoAQ0TZSpGOlK/T+Qs0noQ+aYzYtjXv72h+J/XzjDc7+QiTjOEmH8dCjNJMaHDBGkgFHCUA0MYV8K8lfI+U4yjydk2Ibi/v/yXnNdr7m5t57RePTwq45gha2SdbBGX7JFD0iBN0iKc3JFH8kJerXvr2Xqz3r9ax6xyZpX8gPXxCVMiqqc=</latexit>H

<latexit sha1_base64="cngSRBIg6ylJu2kahHSGTkQVI4c=">AAACRHicbVDLSgMxFM34dnxVXboJtoKrMiOiLkU3LhXaKnRKyaR3bDCTDMkdtQzzcW78AHd+gRsXirgV09qFrwOBwzn3cm5OnElhMQgevYnJqemZ2bl5f2FxaXmlsrrWsjo3HJpcS20uYmZBCgVNFCjhIjPA0ljCeXx1PPTPr8FYoVUDBxl0UnapRCI4Qyd1K+3IJtT3I6WF6oFCv2GYsgkYFgspcEB1EkXf7AjhFkexxU1fIJRFLayVNGOGpYAuiNaKiDNJT8pat1IN6sEI9C8Jx6RKxjjtVh6inuZ56oK4ZNa2wyDDTsEMCi6h9KPcQsb4FbuEtqPKRdpOMbqmpFtO6dFEG/cU0pH6faNgqbWDNHaTKcO+/e0Nxf+8do7JQacQKssRFP8KSnJJUdNho7QnDHCUA0cYN8LdSnnf9cGHdfiuhPD3l/+S1k493Kvvnu1UD4/GdcyRDbJJtklI9skhOSGnpEk4uSNP5IW8evfes/fmvX+NTnjjnXXyA97HJyNMsY8=</latexit>

Transferability of
1 parameters H

<latexit sha1_base64="A+bM3tFQH6wVVKGRKA/4150t/Ik=">AAACJXicbZDLSsNAFIYn9VbjrerSzWArVJCSFFFBF8VuuqxgL9CEMJlO2qGTCzMTsYS8jBtfxY0LiwiufBUnbRFt/WHg5zvnMOf8bsSokIbxqeVWVtfWN/Kb+tb2zu5eYf+gLcKYY9LCIQt510WCMBqQlqSSkW7ECfJdRjruqJ7VOw+ECxoG93IcEdtHg4B6FCOpkFO4sYQHdb1kNYe0nFg+kkPXg49O4jtmml7DH1RPZ+xMIYwYbKSnJadQNCrGVHDZmHNTBHM1ncLE6oc49kkgMUNC9EwjknaCuKSYkVS3YkEihEdoQHrKBsgnwk6mV6bwRJE+9EKuXiDhlP6eSJAvxNh3VWe2s1isZfC/Wi+W3pWd0CCKJQnw7CMvZlCGMIsM9iknWLKxMghzqnaFeIg4wlIFq6sQzMWTl027WjEvKud31WLtdh5HHhyBY1AGJrgENdAATdACGDyBF/AGJtqz9qq9ax+z1pw2nzkEf6R9fQNEsqNL</latexit>

�(xm1 ;Cm1 , H)

<latexit sha1_base64="8lqwsuGUSa07bktLXpD5pnd9Y2Q=">AAACJXicbZDLSsNAFIYn9VbjLerSzWArVJCSFFFBF8VuuqxgL9CUMJlO2qGTCzMTsYS8jBtfxY0LiwiufBWnbRBt/WHg5zvnMOf8bsSokKb5qeVWVtfWN/Kb+tb2zu6esX/QEmHMMWnikIW84yJBGA1IU1LJSCfiBPkuI213VJvW2w+ECxoG93IckZ6PBgH1KEZSIce4sYUHdb1oN4a0lNg+kkPXg4+pk/hOJb2GP6iWoTOFMGKwnp4WHaNgls2Z4LKxMlMAmRqOMbH7IY59EkjMkBBdy4xkL0FcUsxIqtuxIBHCIzQgXWUD5BPRS2ZXpvBEkT70Qq5eIOGM/p5IkC/E2HdV53RnsVibwv9q3Vh6V72EBlEsSYDnH3kxgzKE08hgn3KCJRsrgzCnaleIh4gjLFWwugrBWjx52bQqZeuifH5XKVRvszjy4AgcgxKwwCWogjpogCbA4Am8gDcw0Z61V+1d+5i35rRs5hD8kfb1DUiBo00=</latexit>

�(xm2 ;Cm2 , H)

0 1

<latexit sha1_base64="PZFs1ZETTChWF9U56EOCKYJkMs0=">AAAB83icbVBNS8NAEJ3Urxq/qh69LBbBU0lE1GPRi8cK9gPSEDbbTbt0dxN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZenHGmjed9O5W19Y3Nreq2u7O7t39QOzzq6DRXhLZJylPVi7GmnEnaNsxw2ssUxSLmtBuP72Z+94kqzVL5aCYZDQUeSpYwgo2V+q47iQoR+dMgCaNa3Wt4c6BV4pekDiVaUe2rP0hJLqg0hGOtA9/LTFhgZRjhdOr2c00zTMZ4SANLJRZUh8X85ik6s8oAJamyJQ2aq78nCiy0nojYdgpsRnrZm4n/eUFukpuwYDLLDZVksSjJOTIpmgWABkxRYvjEEkwUs7ciMsIKE2Njcm0I/vLLq6Rz0fCvGpcPl/XmbRlHFU7gFM7Bh2towj20oA0EMniGV3hzcufFeXc+Fq0Vp5w5hj9wPn8A646Q+g==</latexit>

ym1
[f]

0 1

<latexit sha1_base64="3ly7T//3L+e5G38wKQ7hiIIqBFA=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSSlqMeiF48V7AekIWy2m3bp7ibsboQQ+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8KGVUadf9tiobm1vbO9Vde2//4PCodnzSU0kmMenihCVyECFFGBWkq6lmZJBKgnjESD+a3s39/hORiibiUecpCTgaCxpTjLSRhradhwUPmzM/DsJa3W24CzjrxCtJHUp0wtrXcJTgjBOhMUNK+Z6b6qBAUlPMyMweZoqkCE/RmPiGCsSJCorFzTPnwigjJ06kKaGdhfp7okBcqZxHppMjPVGr3lz8z/MzHd8EBRVpponAy0VxxhydOPMAnBGVBGuWG4KwpOZWB0+QRFibmGwTgrf68jrpNRveVaP10Kq3b8s4qnAG53AJHlxDG+6hA13AkMIzvMKblVkv1rv1sWytWOXMKfyB9fkD7RaQ+w==</latexit>

ym2
[f]

<latexit sha1_base64="Ht8brgR5rahZgJX/KEK6n0AxHYU=">AAACqnicbVFNb9QwEHXCVwkfXcqRy4gVYgvbbZJWgMSlKhcuiILY3aI4RI7jpFYdJ4odxOLmx/EXuPFvcNJVRVvm9Oa9GXvmTVoLrrTv/3HcGzdv3b6zcde7d//Bw83Ro62FqtqGsjmtRNUcp0QxwSWba64FO64bRspUsGV6+q7Xl99Zo3glv+hVzeKSFJLnnBJtqWT0C6scPA/LisuMSW1hygouDRG8kC86D5+tElMmQRflMezAkIRDAvgM101V6woMpkTAxw4f8mKC84ZQE3QGbNs3s4d/Mk12w52g6+AlXKj2mcti37yN304Ba/ZDG8irBjoYCgBzCZNwd28abIOHmcwu5vOS0dif+UPAdRCswRit4ygZ/cZZRdvSbksFUSoK/FrHhjSaU8Hsxq1iNaGnpGCRhZKUTMVmsLqDZ5bJhtHySmoY2H87DCmVWpWprSyJPlFXtZ78nxa1On8TGy7rVjNJzz/KWwHW3f5ukPGGUS1WFhDacDsr0BNivdT2ur0JwdWVr4NFOAtezfY/heODw7UdG+gJeoomKECv0QF6j47QHFHnufPBWThLd+p+dr+60Xmp66x7HqNL4WZ/AW79zFc=</latexit>

kym1 [f] � ym2 [f]k � O
⇣ 1

m
3�/2�1
1

+
1

m
3�/2�1
2

⌘
, for ⇣ 2 (2/3, 1)

<latexit sha1_base64="/fP3ls92Ooe7+TjfWiauJggtlRk=">AAACHXicbVDLSgMxFM3UVx1fVZdugkWomzJTi7osunFZoS9oS8mkd9rQTDIkGaGU/ogbf8WNC0VcuBH/xrSdhbYeCBzOuZeTe4KYM20879vJrK1vbG5lt92d3b39g9zhUUPLRFGoU8mlagVEA2cC6oYZDq1YAYkCDs1gdDvzmw+gNJOiZsYxdCMyECxklBgr9XLljg6x63aEZKIPwri1IUgFxg5wPEiIIsIAaFxY6BG+OHfdXi7vFb058CrxU5JHKaq93GenL2kS2QDKidZt34tNd0KUzeEwdTuJhpjQERlA21JBItDdyfy6KT6zSh+HUtknDJ6rvzcmJNJ6HAV2MiJmqJe9mfif105MeN2dMBEnBgRdBIUJx0biWVW4zxRQw8eWEKqY/SumQ9sINbbQWQn+8smrpFEq+pfF8n0pX7lJ68iiE3SKCshHV6iC7lAV1RFFj+gZvaI358l5cd6dj8Voxkl3jtEfOF8/lzKgVw==</latexit>

Theoretical guarantees (Theorem 3)

<latexit sha1_base64="PqoZwz9ujnI2oSeyK5WnDOtQr5Y=">AAACFHicbVDJSgNBEO1xd9yiHr00JoIihJkg6lHUg8cIRoUkDDWdGm3sWeiuEcOQj/Dir3jxoIhXD978GzvLwe1BUY/3quiuF2ZKGvK8T2dsfGJyanpm1p2bX1hcKi2vnJs01wIbIlWpvgzBoJIJNkiSwstMI8Shwovw5qjvX9yiNjJNzqibYTuGq0RGUgBZKShtt0zEXfcYCHilaIURv+sFRRz4vQrfrNhe4REC5RrNVlAqe1VvAP6X+CNSZiPUg9JHq5OKPMaEhAJjmr6XUbsATVIo7Lmt3GAG4gausGlpAjGadjE4qsc3rNLhUaptJcQH6veNAmJjunFoJ2Oga/Pb64v/ec2cov12IZMsJ0zE8KEoV5xS3k+Id6RGQaprCQgt7V+5uAYNgmyOrg3B/33yX3Jeq/q71Z3TWvngcBTHDFtj62yT+WyPHbATVmcNJtg9e2TP7MV5cJ6cV+dtODrmjHZW2Q84719ZHJvo</latexit>

Data xm1 (m1 features)

<latexit sha1_base64="VFQoMYLj1P5UlHlpz52TNXwXYDY=">AAACFHicbVDJSgNBEO1xd9yiHr00JoIihJkg6lHUg8cIRoUkDDWdGm3sWeiuEcOQj/Dir3jxoIhXD978GzvLwe1BUY/3quiuF2ZKGvK8T2dsfGJyanpm1p2bX1hcKi2vnJs01wIbIlWpvgzBoJIJNkiSwstMI8Shwovw5qjvX9yiNjJNzqibYTuGq0RGUgBZKShtt0zEXfcYCHilaIURv+sFRRzUehW+WbG9wiMEyjWaraBU9qreAPwv8UekzEaoB6WPVicVeYwJCQXGNH0vo3YBmqRQ2HNbucEMxA1cYdPSBGI07WJwVI9vWKXDo1TbSogP1O8bBcTGdOPQTsZA1+a31xf/85o5RfvtQiZZTpiI4UNRrjilvJ8Q70iNglTXEhBa2r9ycQ0aBNkcXRuC//vkv+S8VvV3qzuntfLB4SiOGbbG1tkm89keO2AnrM4aTLB79sie2Yvz4Dw5r87bcHTMGe2ssh9w3r8AXEKb6g==</latexit>

Data xm2 (m2 features)

<latexit sha1_base64="L4SiOGXZ7aqAAcLhvUhxyDIC3Is=">AAACBHicbZC7TsMwFIYdriXcAoxdLFqkslRJhYCxgoWxSPQiNVHluE5r1XYi20EqUQcWXoWFAYRYeQg23ga3zQAtv2Tp03/O0fH5w4RRpV3321pZXVvf2Cxs2ds7u3v7zsFhS8WpxKSJYxbLTogUYVSQpqaakU4iCeIhI+1wdD2tt++JVDQWd3qckICjgaARxUgbq+cUfRVBu6LoA4Fl3vN8TTlR0FD5tOeU3Ko7E1wGL4cSyNXoOV9+P8YpJ0JjhpTqem6igwxJTTEjE9tPFUkQHqEB6RoUyKwKstkRE3hinD6MYmme0HDm/p7IEFdqzEPTyZEeqsXa1Pyv1k11dBlkVCSpJgLPF0UpgzqG00Rgn0qCNRsbQFhS81eIh0girE1utgnBWzx5GVq1qndePbutlepXeRwFUATHoAI8cAHq4AY0QBNg8AiewSt4s56sF+vd+pi3rlj5zBH4I+vzB6AWlis=</latexit>

(size m1 ⇥ m1)

<latexit sha1_base64="K3UOvH8/jansHgmOvTMHqjYAm/g=">AAACBHicbZC7TsMwFIYdriXcAoxdLFqkslRJhYCxgoWxSPQiNVHluE5r1XYi20EqUQcWXoWFAYRYeQg23ga3zQAtv2Tp03/O0fH5w4RRpV3321pZXVvf2Cxs2ds7u3v7zsFhS8WpxKSJYxbLTogUYVSQpqaakU4iCeIhI+1wdD2tt++JVDQWd3qckICjgaARxUgbq+cUfRVBu6LoA4Fl3qv5mnKioKHyac8puVV3JrgMXg4lkKvRc778foxTToTGDCnV9dxEBxmSmmJGJrafKpIgPEID0jUokFkVZLMjJvDEOH0YxdI8oeHM/T2RIa7UmIemkyM9VIu1qflfrZvq6DLIqEhSTQSeL4pSBnUMp4nAPpUEazY2gLCk5q8QD5FEWJvcbBOCt3jyMrRqVe+8enZbK9Wv8jgKoAiOQQV44ALUwQ1ogCbA4BE8g1fwZj1ZL9a79TFvXbHymSPwR9bnD6Msli0=</latexit>

(size m2 ⇥ m2)

<latexit sha1_base64="GbW6eigMBomwFXAErbt3bZbzp/4=">AAACC3icbVC7TsMwFHXKq4RXgJHFaovEVCUVAsYKFsYi0YfURJHjOK1Vx4lsB6mKurPwKywMIMTKD7DxNzhtBmi5kqWjc8491j1ByqhUtv1tVNbWNza3qtvmzu7e/oF1eNSTSSYw6eKEJWIQIEkY5aSrqGJkkAqC4oCRfjC5KfT+AxGSJvxeTVPixWjEaUQxUpryrZorI2iaLk8oDwlXptmIfacBUyR0mrZI07fqdtOeD1wFTgnqoJyOb325YYKzWMdhhqQcOnaqvLxIxIzMTDeTJEV4gkZkqCFHMZFePr9lBk81E8IoEfpxBefs740cxVJO40A7Y6TGclkryP+0YaaiKy+nPM0U4XjxUZQxqBJYFANDKghWbKoBwkLfjiEeI4Gw0vUVJTjLJ6+CXqvpXDTP71r19nVZRxWcgBo4Aw64BG1wCzqgCzB4BM/gFbwZT8aL8W58LKwVo9w5Bn/G+PwBu5yY+g==</latexit>

m1 partitions

<latexit sha1_base64="TmuOAHeSrXM87zF7P9b0CcZjnYs=">AAACC3icbVC7TsMwFHXKq4RXgJHFaovEVCUVAsYKFsYi0YfURJHjOK1Vx4lsB6mKurPwKywMIMTKD7DxNzhtBmi5kqWjc8491j1ByqhUtv1tVNbWNza3qtvmzu7e/oF1eNSTSSYw6eKEJWIQIEkY5aSrqGJkkAqC4oCRfjC5KfT+AxGSJvxeTVPixWjEaUQxUpryrZorI2iaLk8oDwlXptmI/VYDpkjoNG2Rpm/V7aY9H7gKnBLUQTkd3/pywwRnsY7DDEk5dOxUeXmRiBmZmW4mSYrwBI3IUEOOYiK9fH7LDJ5qJoRRIvTjCs7Z3xs5iqWcxoF2xkiN5bJWkP9pw0xFV15OeZopwvHioyhjUCWwKAaGVBCs2FQDhIW+HUM8RgJhpesrSnCWT14FvVbTuWie37Xq7euyjio4ATVwBhxwCdrgFnRAF2DwCJ7BK3gznowX4934WFgrRrlzDP6M8fkDvS2Y+w==</latexit>

m2 partitions

Figure 3: Overview of transferability of VNNs. ym1 [f] is the continuous representation of f -th output

of VNN �(xm1 ;Cm1 , H) that is instantiated on data and covariance matrix with m1 features. Similarly,

ym2 [f] represents the f -th output of VNN �(xm2 ;Cm2 , H) that is instantiated on dataset with m2 features.

If the continuous counterparts of covariance matrices Cm1 and Cm2 , i.e., WCm1
and WCm2

, belong to a

sequence that converges to a graphon W (Definition 4) and the continuous representations of inputs xm1

and xm1 are close, the convergence between ym1 [f] and ym2 [f] is characterized in terms of m1 and m2 in

Theorem 3.

16

<latexit sha1_base64="Y4bCfEat9cNUZ0HXvtjQO1hF5Mw=">AAACQXicbVBNSwMxEM36bfyqevQSrIIHKbtF1KPoxZOo2Fpol5JNZ2swmyxJVijFv+bFf+DNuxcPinj14rT24NdA4OW9eZnMS3IlnQ/Dx2BsfGJyanpmls7NLywulZZX6s4UVkBNGGVsI+EOlNRQ89IraOQWeJYouEyujwb65Q1YJ42+8L0c4ox3tUyl4B6pdqnRcimjtCVAe7BSdxFrI3UH75SeAz7mEA67mUlZRzphwQOltH5ywkzh88Iz1OTAf8MV22iG21G80S6Vw0o4LPYXRCNQJqM6bZceWh0jigynCcWda0Zh7uM+t14KBbe0VTjIubjmXWgi1DwDF/eHCdyyTWQ6LDUWj/ZsyH539HnmXC9LsDPj/sr91gbkf1qz8Ol+3JcatwQtvgalhWLesEGcmIcF4VUPARdW4l+ZuOKWC0zDUQwh+r3yX1CvVqLdys5ZtXxwOIpjhqyRdbJFIrJHDsgxOSU1IsgdeSIv5DW4D56Dt+D9q3UsGHlWyY8KPj4Bfoat1A==</latexit>

Representation of discrete
VNN output on interval [0, 1]

GNN can be transferred across different graphs

a

b

Healthy Controls vs AD

Healthy Controls vs MCI

Healthy Controls vs MCI

Healthy Controls vs AD

OASIS-3
DKT Atlas

OASIS-3
DKT Atlas

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

32

a

b

Healthy Controls vs AD

Healthy Controls vs MCI

Healthy Controls vs MCI

Healthy Controls vs AD

OASIS-3
DKT Atlas

OASIS-3
DKT Atlas

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

FTDC
100 parcels

FTDC
300 parcels

FTDC
500 parcels

32

Regions with elevated age-gap in Alzheimer’s Disease

Sihag-Mateos-McMillan-Ribeiro, coVariance Neural Networks., arxiv.org/abs/2205.15856

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 8

arxiv.org/abs/2205.15856

Graphs in Multiagent Physical Systems

I Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

Coordinate a team of agents without central coordination

Tolstaya et al ’19,, arxiv.org/abs/1903.10527

Wireless Communications Networks

Manage resources in wireless communications

Eisen-Ribeiro ’19,, arxiv.org/abs/1909.01865

I The graph is the source of the problem ⇒ Challenge is that goals are global but information is local

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 9

arxiv.org/abs/1903.10527
arxiv.org/abs/1909.01865

Graphs in Multiagent Physical Systems

I Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

6

Learning for PAC Loops: Challenges & Solutions

Humans find it difficult to design autonomous distributed
collaborative intelligent behaviors. We know that even simple
problems have difficult solutions.

We can, however, learn collaborative behaviors.

We are interested in large scale systems. Scalable
learning is impossible unless we properly exploit structure.

Graph neural networks (GNNs) leverage spatial,
sensing and communication graphs.

We need to learned solutions that respect information
locality. Information flows over the communication graph.

GNNs respect communication constraints.
(a) A city simulated in Unity. (b) The graph representation of the task. (c) A team of 10 such quadrotors were used.

Fig. 1. The trained models were tested on a team of robots simulated in Unity and controlled by waypoint commands issued through a
Robot Operating System interface. The trained model allows the robots to divide and conquer to visit the points of interest more efficiently
than a greedy model. We visualize this experiment in a provided along with this work: https://youtu.be/MiYSeENTyoA

Fig. 2. Robots and waypoints comprise the nodes in the graph, with
the edges between them indicating the ability of robots to move to
new locations.

B. Graph Representations for Exploration

We view the exploration problem as the problem of
coverage on a growing graph. Waypoint nodes are added
to the graph when they are observed by a range sensor with
range S: if kpi

t �q j
t k S, then Wt+1 = Wt [{pi}, with the set

of waypoints growing over time. Exploration introduces the
possibility that an observed waypoint may or may not have
adjacent waypoints that are currently unexplored. We call
these frontier nodes and add an indicator feature to indicate
whether a waypoint is part of the set of frontier nodes, F :

vi = [1i2R,1i2W ,1i2X ,1i2F]. (5)

C. Aggregation Graph Neural Networks

Graph Neural Networks are an increasingly popular tool
for exploiting the known structure of any relational system
[9]. In graph convolutional networks, the graph convolution
operation is defined using learnable coefficients that multiply
powers of the adjacency matrix times the graph signal [21],
[22]. We extend this architecture by incorporating non-linear
graph convolution operations.

The building block of a GNN is the Graph Network Block.
Given a graph signal, G =

�
{ek},{vi}

, one application of

the GN block transforms these features, G0 =
�
{e0k},{v0i}

:

e0k = f e(ek,vrk ,vsk), v0i = f v(ē0i,vi), ē0i = re!v(E 0
i). (6)

GN(·) is a function of the graph signal G, described by
the application of f e, re!v and f v in that order to produce
the transformed graph signal G0, with the same connectivity
but new features on the edges and nodes.

The aggregation operation re!v takes the set of trans-
formed incident edge features E 0

i = {e0k}rk=i at node i and
generates the fixed-size latent vector ē0i. Aggregations must
satisfy a permutation invariance property since there is no
fundamental ordering of edges in a graph. Also, this function
must be able to handle graphs of varying degree, so the mean
aggregation is particularly suitable to normalizing the output
by the number of input edges [14]:

re!v(E 0
i) :=

1
|E 0

i | Â
e0k2E 0

i

e0k. (7)

The mean aggregation operation is especially helpful for
improving the stability of GNNs with large receptive fields.

Next, we describe two variants of the Aggregation GNN
architecture that build upon [23]. The linear Aggregation
GNN architecture uses the following parametrization:

f e
L(ek,vrk ,vsk) := vsk , f v

L(ē0i,vi) := ē0i, (8)

while the non-linear Aggregation GNN uses learnable non-
linear functions to update node and edge features:

f e
N(ek,vrk ,vsk) := NNe([ek,vrk ,vsk]),

f v
N(ē0i,vi) := NNv([ē0i,vi]), (9)

where NNe and NNv are 3 layer MLPs with 16 hidden units.
Note that the linear Aggregation GNN in (8) cannot use the
input edge features, such as those defined in (4), unlike the
non-linear GNN defined in (9).

D. Policy Architecture

While a Graph Network Block can be used to compose a
variety of architectures, for this work, we develop a variant
of the Aggregation GNN in which the output of every GN

[Ribeiro ‘20] ESE514: Graph Neural Networks, https://gnn.seas.upenn.edu
Collaborative navigation of roads with a team of agents

Tolstaya et al ’21,, arxiv.org/abs/2011.01119

Wireless Communications Networks

Mobile infrastructure on demand to support a task team

Mox et al ’22,, arxiv.org/abs/2112.07663

I The graph is the source of the problem ⇒ Challenge is that goals are global but information is local

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 10

arxiv.org/abs/2011.01119
arxiv.org/abs/2112.07663

Machine Learning on Graphs: How?

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 11

Neural Networks and Convolutional Neural Networks

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

I Generic NNs do not scale to large dimensions ⇒ Convolutional Neural Networks (CNNs) do scale

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 12

Convolutional Neural Networks and Graph Neural Networks

I CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs

I Generalize convolutions to graphs ⇒ Compose graph filter banks with pointwise nonlinearities

I Stack in layers to create a graph (convolutional) Neural Network (GNN)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 13

Convolutions in Time, in Space, and on Graphs

I How do we generalize convolutions in time and space to operate on graphs?

⇒ Even though we do not often think of them as such, convolutions are operations on graphs

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 14

Time and Space are Representable by Graphs

I We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

I Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 15

Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 16

Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

43

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 16

Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

432

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 16

Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4321

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

03 05

12 16

32 36

21 27

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 16

Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

4321

00

x00

01

x01

02

x02

03

x03

04

x04

05

x05

06

x06

07

x07

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

30

x30

31

x31

32

x32

33

x33

34

x34

35

x35

36

x36

37

x37

24

14

34

23 25

04

13 15

22 26

33 35

03 05

12 16

32 36

21 27

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 16

Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1 1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 17

Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

6

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 17

Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 17

Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

6

7

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

210

10 10

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 17

Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

2

3

4

5

6

7

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

2

1

3

4

65

10

210

10 10

I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑

k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 17

Graph Convolutional Filters as Diffusion Operators

I A graph convolution is a weighted linear combination of the elements of the diffusion sequence

I Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

y = h ?S x

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 18

Algebraic Convolutions

Definition (Convolution)

A convolutional filter is a polynomial on a shift operator with coefficients hk ⇒ z =
∞∑

k=0

hk Skx

I It is the same algebraic object whether we consider time, space, or graphs

I They all have compositionality (operator powers) and some kind of equivariance

I They all admit a frequency representation

⇒ Filters are pointwise operators in the eigenvector basis of the shift operator

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stability to Deformations, arxiv.org/abs/2009.01433

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 19

arxiv.org/abs/2009.01433

Convolutions with Multiple Features

Definition (Algebraic Convolutions with Multiple Features)

Input signal X ∈ RN×F with F features. Output signal Z ∈ RN×G with G features. Filter

coefficients Hk are F × G matrices. The convolutional filter with coefficients Hk is

Z =
∞∑

k=0

Sk × X × Hk

I It has the same algebraic structure of a regular filter with scalar coefficients.

I Retains compositionality, equivariance, and existence of a frequency representation

I Filters with multiple features are more expressive. The ones we use to build GNNs and CNNs

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 20

Convolutional Neural Networks and Graph Neural Networks

I CNNs and GNNe are minor variations of linear convolutional filters

⇒ Compose filters with pointwise nonlinearities and compose these compositions into several layers

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 21

Neural Networks (NNs)

I A neural network composes a cascade of layers

I Each of which are themselves compositions of

linear maps with pointwise nonlinearities

I Does not scale to large dimensional signals x

Layer 1

Layer 2

Layer 3

x = x0

z1 = H1 x0 x1 = σ
[

z1

]z1

z2 = H2 x1 x2 = σ
[

z2

]z2

z3 = H3, x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 22

Convolutional Neural Networks (CNNs)

I A convolutional NN composes a cascade of layers

I Each of which are themselves compositions of

convolutions with pointwise nonlinearities

I Scales well. The Deep Learning workhorse

I A CNNs are minor variation of convolutional filters

⇒ Just add nonlinearity and compose

⇒ They scale because convolutions scale

Layer 1

Layer 2

Layer 3

x = x0

z1 = h1 ? x x1 = σ
[

z1

]z1

z2 = h2 ? x1 x2 = σ
[

z2

]z2

z3 = h3 ? x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 23

When we Think of Time Signals as Supported on a Line Graph

I Those convolutions are polynomials on the

adjacency matrix of a line graph

0

x0

1

x1

2

x2

3

x3

4

x4

5

x5

I Just another way of writing convolutions and

Just another way of writing CNNs

I But one that lends itself to generalization

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x;H)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 24

Graph Neural Networks (GNNs)

I The graph can be any arbitrary graph

I The polynomial on the matrix representation S

becomes a graph convolutional filter

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 25

arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

I A graph NN composes a cascade of layers

I Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

I A NN with linear maps restricted to convolutions

I Recovers a CNN if S describes a line graph

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 26

arxiv.org/abs/1805.00165

Graph Neural Networks (GNNs)

I There is growing evidence of scalability.

I A GNN is a minor variation of a graph filter

⇒ Just add nonlinearity and compose

I Both are scalable because they leverage the

signal structure codified by the graph

Layer 1

Layer 2

Layer 3

x = x0

z1 =

K−1∑
k=0

h1k Sk x0 x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 27

arxiv.org/abs/1805.00165

Graph Neural Networks with Multiple Features

I In practice we use layers with multiple features

I This is to increase representation power but it does

not affect our fundamental observations

Layer 1

Layer 2

Layer 3

X = X0

Z1 =

K−1∑
k=0

Sk X0 H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X2

X2

X3 = Φ(X; S,H)

Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 28

arxiv.org/abs/1805.00165

Equivariance and Stability Properties of GNNs

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020, arxiv.org/abs/1905.04497

Gama-Isufi-Leus-Ribeiro, Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks, SPMag 2020, arxiv.org/abs/2003.03777

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and Transferability, PIEEE 2021 arxiv.org/abs/2008.01767

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 29

arxiv.org/abs/1905.04497
arxiv.org/abs/2003.03777
arxiv.org/abs/2008.01767

Permutation Equivariance and Stability

Fact 1

Graph filters and GNNs “work.” Outperform general linear transforms and fully connected NNs.

Fact 2

GNNs outperform graph filters in most learning tasks.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 30

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2

GNNs outperform graph filters in most learning tasks.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 31

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 32

Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 33

Permutation Equivariance of Graph Neural Networks

I It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PTSP and input signal x̂ = PTx. Then

Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

I Relabeling the input signal results in a consistent relabeling of the output signal

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 34

Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Graph signal x̂ = PT x supported on Ŝ = PT SP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 35

Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x; S,H) supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

GNN Φ(x̂; Ŝ,H) = PT Φ(x; S,H) on Ŝ = PT SP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 35

Graph Filters and GNNs Exploit Permutation Symmetries

I Graph filters and GNNs exploit permutation symmetries of graphs and graph signals

I By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

I Equivariance theorem implies ⇒ Φ
(

PTx; S,H
)

= Φ
(

PTx; PTSP,H
)

= PTΦ
(

x; S,H
)

From observing x supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Learn to process PT x supported on S = PT SP

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 36

Permutation Equivariance and Stability

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 37

It is Quasi-Symmetry we Want to Exploit. Not Symmetry

I Graph not symmetric but close to symmetric ⇒ Deformed version of a permutation of itself

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

I Quasi-Symmetry, not symmetry ⇒ Stability to deformations that are close to permutation.

I GNNs have better stability properties than graph filters ⇒ Better at leveraging quasi-symmetries.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 38

Frequency Response of a Graph Filter

I Graph filters are operators defined on graph shift operators ⇒ H(S) =
∞∑

k=1

hkSk = V
∞∑

k=1

hkΛkVH

I They are completely characterized by their frequency responses ⇒ h̃(λ) =
∞∑

k=1

hkλ
k

λ

h̃(λ)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 39

The Effect of the Graph

I Graph S has eigenvalues λi ⇒ The response is instantiated at these eigenvalues h̃(λi) =
∞∑

k=1

hkλ
k
i

I Graph Ŝ has eigenvalues λ̂i ⇒ The response is instantiated at these eigenvalues h̃(λ̂i) =
∞∑

k=1

hk λ̂
k
i

λ

h̃(λ)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 40

Relative Perturbations of a Shift Operator

I Meaningful perturbations of a shift operator operator are relative ⇒ PT ŜP = S + ES + SE

I Conceptually, we learn all there is to be learnt from dilations ⇒ Ŝ = S + εS

I Eigenvalues dilate λi → λ̂i = (1 + ε)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 41

Higher Frequencies are More Difficult to Process

I Large eigenvalues move more. Signals with high frequencies are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ε)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 42

Stability Requires Integral Lipschitz Filters

I To attain stable graph signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

I Either the eigenvalue does not change because we are considering low frequencies

I Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 43

Discriminative Filter at Low Frequencies

I At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ε)λl

)

λlλl λ

h̃(λ)

λl λ̂l

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 44

Discriminative Filter at Medium Frequencies

I At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ε)λm

)

λmλm λ

h̃(λ)

λm λ̂m

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 45

Discriminative Filter at High Frequencies

I At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ε)λh

)

λhλh λ

h̃(λ)

λh λ̂h

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 46

Discriminative Filter at High Frequencies

I We can have stability to deformations if we use an integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

⇒ But this precludes the discrimination of high frequency components

µh λhµh λh λ

h̃(λ)

µh λhµ̂h λ̂h

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 47

Pointwise Nonlinearities are Frequency Mixers

I Nonlinearities σ(vi) and σ(vj) spread

energy across all frequencies

I Some energy where it used to be

I Some energy at low frequencies

I Where it can be discriminated with a

stable filter in Layer 2

Spectrum of nonlinearity applied to vi ⇒ VHσ(vi)

λiλiλi λ̂i

Spectrum of nonlinearity applied to vj ⇒ VHσ(vj)

λjλjλj λ̂j

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 48

Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 49

Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

For the same sensitivity to deformations, GNNs are more discriminative than graph filters

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 50

Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,A) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between Φ(·; S,A) and Φ(·; Ŝ,A) is bounded by

∥∥Φ(·; Ŝ,A)−Φ(·; S,A)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020, arxiv.org/abs/1905.04497

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 51

arxiv.org/abs/1905.04497

Transferability Properties of Graph Neural Networks

I A GNN that is trained in a graph S can be executed on any other graph Ŝ

⇒ In particular, we can execute it in a much larger graph

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 52

Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ recommendation system

→

600 800 1000 1200 1400 1600 1800 2000
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

RM
SE

 d
iff

er
en

ce

Graph Filter
GNN
Lipschitz GNN

I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 53

Transferability of Graph Neural Networks

I Transferability of graph neural networks is ready to verify in practice ⇒ decentralized robot control

-4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0
n = 0 s
n = 300 s

30 40 50 60 70 80 90
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

co
st

 d
iff

er
en

ce

Graph Filter
GNN

I Performance difference on training and target graphs decreases as size of training graph grows

I GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 53

Do Graph Neural Networks Scale?

Q1: We have empirically observed that GNNs transfer at scale. Why do they?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

I To answer these questions, turn to CNNs ⇒ known to scale well for images and time sequences

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 54

Convolutional Neural Networks Have Limits

I Discrete time/image signals converge to continuous time/image signals ⇒ ↓ intrinsic dimension

143× 95 → 205× 136 → 294× 195 → 600× 399

⇒ From SP theory, CNNs have well-defined limits on the limits of images and time signals

I A1: Intrinsic dimensionality of the problem is less than the size of the image

I A2: Training with small images is sufficient ⇒ CIFAR 10 images are 32× 32

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 55

Graphons

I Graphs also have limit objects that effectively limit their dimensionality ⇒ one is the graphon

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

I A graphon can be thought of as a graph with an uncountable number of nodes

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 56

Large-Scale Graphs

I Graphs however do not have the Euclidean structure time and image signals have in the limit

n = 30 products n = 50 products n = 100 products

I So do graph convolutions and graph neural networks converge to limits on the graphon?

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 57

Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

I A1: Because graph convolutions and GNNs have well-defined limits on graphons

L. Ruiz et al, Graphon Signal Processing, TSP 2021, https://arxiv.org/abs/2003.05030

L. Ruiz et al, Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

I A2: Yes, as GNNs are transferable ⇒ can be trained on moderate-size and executed on large-scale

J. Cerviño et al, Learning by Transference: Training Graph Neural Networks on Growing Graphs., https://arxiv.org/abs/2106.03693

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 58

https://arxiv.org/abs/2003.05030
https://arxiv.org/abs/2112.04629
https://arxiv.org/abs/2106.03693

Graphon filters and Graphon Neural Networks (WNNs)

17

Graphon filters and Graphon Neural Networks (WNNs)

Graph Convolutional Filters as Di↵usion Operators

I A graph convolution is a weighted linear combination of the elements of the di↵usion sequence

I Can represent graph convolutions with a shift register) Convolution ⌘ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S
0x + h1S

1x + h2S
2x + h3S

3x

y = h ?S x

25

Graph convolutional filters are
polynomials on a matrix representation
of the graph acting on input signal.

The coefficients of the filter are the
coefficients of the polynomial.

Graphon convolutional filters and graph convolutional filters are the same algebraic object. Which is also the
same algebraic object of a standard convolutional filter.

Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter) Y (v) =
KX

k=1

hk

⇣
T

(k)
W X

⌘
(v)

I Only di↵erence is a change of shift operator) TW X : (TW)X (v) =

Z 1

0

W(u, v) X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y

51

Graphon convolutional filters are
polynomials on the graphon integral
operator acting on input signal.

The coefficients of the filter are the
coefficients of the polynomial.

Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter) Y (v) =
KX

k=1

hk

⇣
T

(k)
W X

⌘
(v)

I Only di↵erence is a change of shift operator) TW X : (TW)X (v) =

Z 1

0

W(u, v) X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y

51

Graphon integral operator:

WNNs are compositions of layers. Themselves compositions of graphon filters with pointwise nonlinearities

[Ruiz et al ‘20] Graphon Signal Processing, https://arxiv.org/abs/2003.05030

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 59

Frequency Representation of Graphon Filters

18

Frequency Representation of Graphon Filters

Graphon filters admit a frequency representation. Same as graph filters. Same as standard convolutions

They are still the same algebraic object: They are polynomials of scalar variables
Convergence of Graph Convolutions

I Because eigenvalues converge, graph convolutions converge in the spectral domain

-1.0 0 1.0

I But convergence in the spectral domain is not enough) convolution operates in the node domain

I Need convergence of the graph Fourier transform x̂n to the graphon Fourier transform X̂

) If ŷn = h(⇤n)x̂n converges, by the convolution theorem yn converges in the node domain

27

Representation of graph filter is
instantiated at graph eigenvalues

Representation of graphon filter is
instantiated at graphon eigenvalues

TSince graph eigenvalues converge to graphon eigenvalues convergence of graph to graphon filters follows.

The catch is that we have accumulation of eigenvalues around zero.

Thus, we can’t transfer filters that attempt to discriminate these
eigenvalues. There is a transferability vs discriminability tradeoff

Transferability-Discriminability Tradeo↵

I If filter is sharp near � = 0, spectral components of �j(Sn) and �j(W) are amplified di↵erently

0 0.35

I Transferability and discriminability are not compatible for graph convolutional filters

35

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 60

Transferability of Graph Filters and GNNs

19

Transferability of Graph Convolutions

Theorem (Graph Filter Transferability) (Ruiz, L. et al., Proc. IEEE’21)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W , X) along with

convolution outputs yn = H(Sn)xn and ym = H(Sm)xm. The di↵erence norm of the respective

graphon induced signals is bounded by

kYn�Ymk  2Aw

Ah +⇡

max(Bnc , Bmc)

min(�nc , �mc)

!
1

n
+

1

m

!
kXk+Ax(Ahc + 2)

1

n
+

1

m

!
+4AhckXk

I Filters that are more discriminative are more di�cult to transfer

I If we fix n and m we observe emergence of a transferability vs. discriminability tradeo↵

34

Transferability of Graph Filters and GNNs

We derive a finite sample transferability bound from a graph with m nodes to a graph with n nodes

Transferability of a filter depends on the Lipschitz constant of the frequency response of the graph (and graphon) filter

Transferability of Graph Convolutions

Theorem (Graph Filter Transferability) (Ruiz, L. et al., Proc. IEEE’21)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W , X) along with

convolution outputs yn = H(Sn)xn and ym = H(Sm)xm. The di↵erence norm of the respective

graphon induced signals is bounded by

kYn�Ymk  2Aw

Ah +⇡

max(Bnc , Bmc)

min(�nc , �mc)

!
1

n
+

1

m

!
kXk+Ax(Ahc + 2)

1

n
+

1

m

!
+4AhckXk

I Filters that are more discriminative are more di�cult to transfer

I If we fix n and m we observe emergence of a transferability vs. discriminability tradeo↵

34

Same bound holds for GNNs because the pointwise nonlinearity transfers verbatim because it does not mix components

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629

[Ruiz et al ‘20] Graphon Neural Networks and the Transferability of Graph Neural Networks, https://papers.nips.cc/paper/2020/hash/12bcd658ef0a540cabc36cdf2b1046fd-Abstract.html

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 61

Learning by Transference in Stochastic Graph Models

20

Learning by Transference in Stochastic Graph Models

[Cerviño et al ‘21] Learning by Transference: Training Graph Neural Networks on Growing Graphs, https://arxiv.org/abs/2106.03693

102 nodes 103 nodes 104 nodes graphon

.

We consider graphs of growing sizes and use the GNN
trained on a smaller graph as a warm start to learn the
optimal GNN for a larger graph.

Faster training. Enables training in large scale graphs.

Training with growing graphs
learns GNNs with the same
performance

Computational cost is reduced
by a 5.67 factor. More possible
if graph is larger

Transferability can be leveraged to learn in a sequence of growing graphs. We say that we learn by transference.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 62

Graph Neural Networks Architectures, Stability, and Transferability

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 63

Graph Neural Networks Architectures, Stability, and Transferability

I Graph neural networks compose layers, which compose graph filters with pointwise nonlinearities

I Graph filters are algebraically identical to standard convolutions ⇒ Polynomials ≡ Compositions

I Graph filters are stable to deformations of the graph that are close to perturbations

I Graph filters are transferable from medium scale graph to large scale graphs

I Stability and transferability properties follow from spectral representations of graph filters

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 64

Scalable Machine Learning

Large Scale Machine Learning

I Important real life application problems are naturally associated to data with high dimensionality

Image Classification
A. Krizhevsky, CIFAR, 2009

Controlling Robot Swarms
E. Tolstaya, et al., , arxiv.org/abs/1903.10527

Protein Structure Prediction
J. Jumper, et. al., Nature vol 596, 2021

I Scalable learning is di�cult) Learning with high dimensional inputs is (much) more challenging

A. Parada-Mayorga Algebraic Neural Networks 2

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 65

Scalable Machine Learning

Large Scale Machine Learning

I We know we can learn at scale with Convolutional Neural Networks adapted to several domains

Euclidean
Convolutional Neural Networks

Graph
Convolutional Neural Networks

Group
Convolutional Neural Networks

I One reason why CNNs are e↵ective solutions) Symmetries and equivariances on each domain

A. Parada-Mayorga Algebraic Neural Networks 3

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 66

The Mathematics of Convolutional Deep Learning

All convolutions share a common algebraic structure from which they inherit common stability

properties and (perhaps) common transferability properties.

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stability to Deformations, arxiv.org/abs/2009.01433

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 67

arxiv.org/abs/2009.01433

Statistical Learning

I Before we talk about GNNs, we need to specify what we mean by learning

⇒ Statistical Learning and Empirical Learning

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 68

Statistical Models and Statistical Estimation

I Observations (inputs) x and information (outputs) y are related by a statistical model p
(

x, y)

x ∈ Rn p
(

x, y) y ∈ Rp

I Given that the universe (nature) associates inputs x and outputs y according to distribution p
(

x, y)

⇒ The AI should predict y from x with the conditional distribution ⇒ y ∼ p
(

y
∣∣ x
)

⇒ Or, if we want deterministic output, a conditional expectation ⇒ y = E
[

y
∣∣ x
]

I There is a lot to say about statistical estimation but this is beyond the scope of this course

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 69

Statistical Models and Statistical Estimation

I Observations (inputs) x and information (outputs) y are related by a statistical model p
(

x, y)

x ∈ Rn p
(

y
∣∣ x
)

y ∈ Rp

I Given that the universe (nature) associates inputs x and outputs y according to distribution p
(

x, y)

⇒ The AI should predict y from x with the conditional distribution ⇒ y ∼ p
(

y
∣∣ x
)

⇒ Or, if we want deterministic output, a conditional expectation ⇒ y = E
[

y
∣∣ x
]

I There is a lot to say about statistical estimation but this is beyond the scope of this course

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 69

Statistical Models and Statistical Estimation

I Observations (inputs) x and information (outputs) y are related by a statistical model p
(

x, y)

x ∈ Rn E
[

y
∣∣ x
]

y ∈ Rp

I Given that the universe (nature) associates inputs x and outputs y according to distribution p
(

x, y)

⇒ The AI should predict y from x with the conditional distribution ⇒ y ∼ p
(

y
∣∣ x
)

⇒ Or, if we want deterministic output, a conditional expectation ⇒ y = E
[

y
∣∣ x
]

I There is a lot to say about statistical estimation but this is beyond the scope of this course

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 69

Estimation Loss

I AI is not perfect. Nature and AI may produce different outputs when presented with the same input

Nature relates x and y with distribution p(x, y)

x p
(

x, y) y

The AI relates x and ŷ with function Φ(x)

x ∈ Rn Φ
(

x) ŷ = Φ(x)

I Loss function `(y, ŷ) = `(y,Φ(x)) measures cost of predicting ŷ = Φ(x) when actual output is y

⇒ In estimation problems we often use quadratic loss ⇒ `(y, ŷ) = ‖y − ŷ‖2
2

⇒ In classification problems we often use hit loss ⇒ `(y, ŷ) = ‖y − ŷ‖0 = #(y 6= ŷ)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 70

Statistical Risk Minimization

I Average the loss `(y,Φ(x)) over nature’s distribution p(x, y) and choose best estimator/classifier

Φ∗ = argmin
Φ

Ep(x,y)

[
`
(

y,Φ(x)
)]

I Predict Φ(x). Nature draws y. Evaluate loss `. Take loss expectation over distribution p(x , y)

⇒ Optimal estimator is the function with minimum average cost over all possible estimators.

I This optimization program is called the statistical risk minimization (SRM) problem

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 71

Training / Learning

I Learning, or Training, is the process of solving the statistical risk minimization problem

Learning / Training

x Φ
(

x) ŷ = Φ(x)

x p(x, y) y

argmin
Φ

E
[
`
(

y, Φ(x)
)]

Φ∗

I Outcome of learning is function Φ∗ with minimum average statistical loss ⇒ We learn to estimate y

⇒ During execution time, we just evaluate Φ∗(x) to predict output associated with input x

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 72

Empirical Risk Minimization

I Learning bypasses models. It tries to imitate observations. Let us formulate mathematically.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 73

Artificial Intelligence (AI) / Machine Learning (ML)

I AI and ML in this course refer to the pipeline where we learn from data samples. Not distributions

Learning / Training

x Φ
(

x) ŷ = Φ(x)

x Data Samples y

argmin
Φ

E
[
`
(

y, Φ(x)
)]

Φ∗

I AI learns to imitate input-output pairs observed in nature.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 74

Approximating the Statistical Risk

I Statistical Risk Minimization works on the cost averaged over the distribution of inputs and outputs

Φ∗ = argmin
Φ

Ep(x, y)
[
`
(

y, Φ(x)
)]

I This expectation can be approximated with data

⇒ Acquire training set with Q pairs (xq, yq) ∈ T drawn independently from distribution p(x, y)

⇒ For sufficiently large Q we can approximate ⇒ Ep(x, y)
[
`
(

y, Φ(x)
)]
≈ 1

Q

Q∑

q=1

`
(

yq, Φ(xq)
)

⇒ This is just the law of large numbers. True under very mild conditions

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 75

Empirical Risk Minimization (ERM)

I Replace statistical risk minimization (SRM) with empirical risk minimization (ERM)

Φ∗S = argmin
Φ

Ep(x, y)
[
`
(

y, Φ(x)
)]

⇒ Φ∗E = argmin
Φ

1

Q

Q∑

q=1

`
(

yq, Φ(xq)
)

I Since the objectives are close, one would think the optima are close ⇒ Φ∗S ≈ Φ∗E

⇒ Alas, this it not true ⇒ Φ∗S 6≈ Φ∗E ⇒ Statistical and empirical risk minimizers need not be close

I In fact, the solution of ERM is trivial ⇒ Make Φ(xq) = yq for all pairs in the training set

I As trivial as nonsensical ⇒ Yields no information about observations outside the training set

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 76

ERM with Learning Parametrizations

I Our first attempt at learning from data led to an ERM problem that does not make sense

I The search for a problem that makes sense brings us to the notion of learning parametrizations

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 77

Learning Parametrization

I A sensical ERM problem, requires the introduction of a function class C

Φ∗ = argmin
Φ∈C

1

Q

Q∑

q=1

`
(

yq, Φ(xq)
)

I For example, we can select the class of linear functions Φ(x) = Hx and solve for

H∗ = argmin
H

1

Q

Q∑

q=1

`
(

yq, H xq

)

I This choice of parametrization may be good or bad. But at least is sensical

⇒ Good or bad, having H∗ allows estimates ŷ = H∗x for observations x outside the training set

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 78

Statistical and Empirical Risk Minimization with Learning Parametrizations

I Selecting C to contain sufficiently smooth functions makes SRM and ERM close

argmin
Φ∈C

Ep(x, y)
[
`
(

y, Φ(x)
)]

≈ argmin
Φ∈C

1

Q

Q∑

q=1

`
(

yq, Φ(xq)
)

I Fundamental theorem of statistical learning ⇒ ERM is a valid approximation of SRM

I Need to identify the appropriate function class C ⇒ But this problem is unavoidable

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 79

Learning / Training (For Real)

I SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:

Learning / Training

x Φ
(

x) ŷ = Φ(x)

x p(x, y) y

argmin
Φ

E
[
`
(

y, Φ(x)
)]

Φ∗

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 80

Learning / Training (For Real)

I SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:

⇒ The distribution is unknown ⇒ We have access to a training set of data samples

Learning / Training

xq Φ
(

xq) ŷq = Φ(xq)

xq (xq, yq) ∈ T yq

argmin
Φ∈C

1

Q

Q∑
q=1

`
(

yq, Φ(xq)
)

Φ∗

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 80

Learning / Training (For Real)

I SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:

⇒ The nonparametric ERM problem is nonsensical ⇒ We restrict the function class

Learning / Training

xq Φ
(

xq) ∈ C ŷq = Φ(xq)

xq (xq, yq) ∈ T yq

argmin
Φ∈C

1

Q

Q∑
q=1

`
(

yq, Φ(xq)
)

Φ∗

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 80

Learning / Training (For Real)

I SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:

⇒ The statistical risk ⇒ Is replaced by the empirical risk

Learning / Training

xq Φ
(

xq) ŷq = Φ(xq)

xq (xq, yq) ∈ T yq

argmin
Φ∈C

1

Q

Q∑
q=1

`
(

yq, Φ(xq)
)

Φ∗

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 80

The Meaning of ML or AI in this Course

I Here, Machine learning (ML) ≡ Artificial Intelligence (AI) ≡ Empirical Risk Minimization (ERM)

Φ∗ = argmin
Φ∈C

∑

(x,y)∈T

`
(

y,Φ(x)
)

= argmin
Φ∈C

1

Q

Q∑

q=1

`
(

yq,Φ(xq)
)

I The components of ERM are a dataset, a loss function and, most importantly, a function class

I Make parametrization more explicit ⇒ Parameter H ∈ Rp to span function class Φ(x; Ĥ)

H∗ = argmin
H

∑

(x,y)∈T

`
(

y,Φ(x; H)
)

I Designing an ML / AI system means selecting the appropriate function class C ⇒ What else?

⇒ The function class determines generalization from inputs in training set to unseen inputs

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 81

Machine Learning is Model Free but Not Model Free

I Machine learning does not require a model relating inputs x to outputs y

I But we need to know a class of functions to which the model belongs

⇒ For example, we need to know the model relating inputs to outputs is linear

I Model also needs to be sufficiently simple to operate with insufficient data

⇒ This is where we leverage structure using convolutional architectures such as CNNs and GNNs

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 82

Learning Ratings in Recommendation Systems

I Formulate recommendation systems as ERM problems that predict ratings that users give to items

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 83

Recommendation Systems

I In a recommendation system, we want to predict the rating a user would give to an item

I Collect ratings that some users give to some items ⇒ These are rating histories

I Exploit product similarities to predict ratings of unseen user-item pairs

I Example 1 ⇒ In an online store items are products and users are customers

I Example 2 ⇒ In a movie repository items are movies and users are watchers

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 84

Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 85

Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 85

Product Ratings as Graph Signals

I Construct product similarity graph with weights wij represent likelihood of similar scores

I Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

I The observed ratings xu of user u are a subsampling of this graph signal.

I Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

I Build similarity graph using available ratings. Use of expert knowledge is common as well

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 86

Product Similarity Graph

I Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

I Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑

u∈Uij

xui µji =
1

#(U ij)

∑

u∈Uji

xuj

I Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑

u∈Ui j

(
xui − µij

)(
xuj − µji

)

I Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 87

Loss for Measuring Rating Prediction Quality

I Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

`
(

yu,Φ(xu)
)

=
1

2

∥∥∥ yu − Φ(xu)
∥∥∥

2

I In reality, we want to predict the rating of specific item i

`
(

yu,Φ(xu)
)

=
1

2

(
eT
i yu − eT

i Φ(xu)
)2

I Where ei is a vector in the canonical basis ⇒ (ei)i = 1, (ei)j = 0 for j 6= i

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 88

Training Set

I For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(

eT
i xu

)
ei x = xu − y for all u ∈ U i , for all i

I Extract the rating xui of item i . Record into graph signal y

I Remove rating xui from xu. Record to graph signal x

I Repeat for all users in the set U i of users that rated i

I Repeat for all items ⇒ Training set T

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 89

Learning Rating Predictions

I Parametrized AI Φ(xu) = Φ(xu;H). We want to find solution of the ERM problem

H∗ = argmin
H

∑

(x,y)∈T

(
eT
i y − eT

i Φ(x;H)
)2

I Two bad ideas ⇒ Linear regression. Fully connected neural networks

I Two good ideas ⇒ Graph filters. Graph neural networks

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 90

Learning Ratings with Graph Filters and GNNs

I We use graph filters and graph neural networks to learn ratings in recommendation systems

I We contrast with the use of linear regression and fully connected neural networks

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 91

Movie Ratings Dataset

I Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

I The ratings for each movie are between 1 and 5. From one star to five starts

I Train and test several machine learning parametrizations.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 92

Empirical Risk Minimization

I We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑

(x,y)∈T

(
eT
i y − eT

i Φ(x;H)
)2

I Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

I Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 93

Linear Regression and Graph Filters

I Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

I Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 94

Linear Regression and Graph Filters

I Linear regression works even worse in the test set

I The test MSE of the graph filter is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 94

Fully Connected NNs and Graph NNs

I The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

I Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 95

Fully Connected NNs and Graph NNs

I But the fully connected NN does not do well in the test set. It does not generalize

I The test MSE of the graph NN is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 95

Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 96

Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 96

Transferability

I A GNN can be trained on a graph with a small number of nodes ...

⇒ And transferred to a graph with a (much) larger number of nodes. Without retraining

200 300 400 500 600 700 800
Nodes of the Graph

0.950

0.955

0.960

0.965

0.970

0.975

M
ea

n
Sq

ua
re

 E
rr

or

I In this recommendation system, transference incurs no MSE degradation ⇒ MSE is further reduced

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 97

Wireless Resource Management with GNNs

I GNNs can enable scalable resource management in autonomous wireless communication networks.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 98

Towards Next-Generation Wireless Networks

I Wireless networks are growing beyond humans’ ability to design and manage them → 5G, WiFi 6

I To address increasing complexity of wireless networks, we will make them autonomous→ 6G, WiFi 7

⇒ An autonomous wireless network makes (at least some) decisions without human intervention.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 99

Autonomous Wireless Networks

I Operational decisions in wireless networks are solutions of large constrained optimization problems.

I Solving these problems is very challenging, leading to the design and use of heuristic methods.

I Leverage data to learn better autonomous network management policies using machine learning.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 100

Wireless Resource Allocation Under Requirements

0 1 2 T − 1. . .t

f(Ht , p(Ht))

Network-level
performance

p(Ht)

Resource Allocation
policy

Ht

max
{p(Ht)}T−1

t=0

U
(

1

T

T−1∑

t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑

t=0

f(Ht , p(Ht))

)
≥ 0

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 101

arxiv.org/abs/2207.02242

Policy Parameterization

I Resource allocation decisions must be recalculated for any given network state H.

⇒ This makes learning and deploying such a policy infeasible in practice.

I We parameterize the resource allocation policy, replacing p(H) with p(H;θ).

I With parameterization, we do not need to solve the problem online to find optimal decisions.

Unparameterized Formulation

max
{p(Ht)}T−1

t=0

U
(

1

T

T−1∑

t=0

f(Ht , p(Ht))

)

s.t. g

(
1

T

T−1∑

t=0

f(Ht , p(Ht))

)
≥ 0

Parameterized Formulation

P? = max
θ∈Θ

U
(

1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)
≥ 0

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 102

This is an Unsupervised Learning Problem

Empirical Risk Minimization

max
θ∈Θ

− 1

N

N−1∑

i=0

` (ψ (xi ;θ))

Parameterized Resource Allocation

max
θ∈Θ

U
(

1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)

s.t. g

(
1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)
≥ 0

I Inclusion of constraints makes this problem fundamentally different from a regular learning problem.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 103

Learning in the Lagrangian Dual Domain

I We move to the dual domain, and associate non-negative dual variables µ to the constraints.

I The Lagrangian function can then be written as

L(θ,µ) = U
(

1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)
+ µTg

(
1

T

T−1∑

t=0

f(Ht , p(Ht ;θ))

)
.

I We then seek to maximize the Lagrangian over θ, while minimizing it over µ, i.e.,

D? = min
µ≥0

max
θ∈Θ
L(θ,µ).

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 104

Iterative Unsupervised Primal-Dual Updates

I The model parameters θ and dual variables µ can be iteratively updated via a primal-dual method.

I We define an iteration duration T0 between consecutive updates, and an iteration index k.

θk = arg max
θ∈Θ


U


 1

T0

(k+1)T0−1∑

t=kT0

f(Ht , p(Ht ;θ))


+ µk

Tg


 1

T0

(k+1)T0−1∑

t=kT0

f(Ht , p(Ht ;θ))






µk+1 =


µk − ηµg


 1

T0

(k+1)T0−1∑

t=kT0

f(Ht , p(Ht ;θk))






+

k ← k + 1

I Constraint slacks are the gradient of the Lagrangian with respect to the dual variables.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 105

Theoretical Guarantees of Primal-Dual Updates

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑

t=0

f
(
Ht , p

(
Ht ;θbt/T0c

))
)
≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U
(

1

T

T−1∑

t=0

f
(
Ht , p

(
Ht ;θbt/T0c

))
)]
≥ P? − cηµG

2

2
.

I There are no restrictions on the convexity of f and the parameterization p(·;θ).

I Time averages of instantaneous performance metrics are feasible and near-optimal.

⇒Time averages of parameters are not near-optimal. We cannot stop training at a finite iteration.

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 106

arxiv.org/abs/2207.02242

State-Augmented Algorithm

I We propose to use both network state H and dual variables µ as input to the policy.

I We leverage a revised state-augmented parameterization p(H,µ;φ) to replace p(H;θ).

Ht p(H;θ) pt p(H,µ;φ) pt

Ht

µk

Regular Parameterization State-Augmented Parameterization

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 107

State-Augmented Primal and Dual Dynamics

I The revised parameterization leads to the augmented Lagrangian

L(φ,µ) = U
(

1

T

T−1∑

t=0

f(Ht , p(Ht ,µ;φ))

)
+ µTg

(
1

T

T−1∑

t=0

f(Ht , p(Ht ,µ;φ))

)
.

I During training, we search for the parameters that maximize the augmented Lagrangian:

φ? = arg max
φ∈Φ

Eµ [L(φ,µ)] .

⇒ This resolves the need to re-optimize the model parameters for any given set of dual variables.

I We use the Lagrangian maximizers to run the dual updates online:

µk+1 =


µk − ηµg


 1

T0

(k+1)T0−1∑

t=kT0

f(Ht , p(Ht ,µk ;φ?))






+

.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 108

Theoretical Guarantees of State Augmentation

I ε-universal parameterization p(H,µ;φ): For any H and θ(·), there exists φ s.t.

E ‖p(H,µ;φ)− p(H;θ(µ))‖∞ ≤ ε.

I M-Lipschitz continuity of f: For any H, p1 and p2, E ‖f(H, p1)− f(H, p2)‖∞ ≤ ME ‖p1 − p2‖∞ .

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

lim
T→∞

g

(
1

T

T−1∑

t=0

f
(

Ht , p
(

Ht ,µbt/T0c;φ
?
)))

≥ 0, a.s.

and near-optimal, i.e.,

lim
T→∞

E

[
U
(

1

T

T−1∑

t=0

f
(

Ht , p
(

Ht ,µbt/T0c;φ
?
)))]

≥ P? − cηµG
2

2
−Mε.

I The decisions made by our method are close to those made by the original primal-dual iterations.
NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, IEEE TSP, arxiv.org/abs/2207.02242

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 109

arxiv.org/abs/2207.02242

Power Control in Interference Channels

I We focus on multi-user interference channels with m transmitter-receiver pairs.

I The performance function for the i th receiver represents its Shannon capacity,

fi (Ht , p) = log2

(
1 +

pi |hii,t |2
N

Pmax
+
∑m

j=1,j 6=i pj |hji,t |
2

)
.

I Considering a sum-rate utility and minimum-rate constraints leads to

max
{p(Ht)}T−1

t=0

1

T

T−1∑

t=0

m∑

i=1

fi (Ht , p(Ht)),

s.t.
1

T

T−1∑

t=0

f(Ht , p(Ht)) ≥ fmin1m.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 110

Our Method Satisfies All Minimum-Rate Constraints

Performance is shown in a 50-user interference channel with minimum-rate constraints of fmin = 0.6
bps/Hz.

0 100 200 300 400 500
Training epoch

3.6

3.7

3.8

3.9

4.0

4.1

M
ea

n
ra

te
 (b

ps
/H

z)

0 100 200 300 400 500
Training epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
in

im
um

 ra
te

 (b
ps

/H
z)

State-Augmented ITLinQ Full Reuse

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 111

State Augmentation Leads to Policy Switching

0 20 40 60 80 100
Time step (t)

0.2

0.4

0.6

0.8

1.0

1.2
Er

go
di

c
av

er
ag

e
ra

te
 (b

ps
/H

z)

0 2 4 6 8 10 12 14 16 18
Iteration (k)

0

5

10

15

20

25

D
ua

l v
ar

ia
bl

e

0 20 40 60 80 100
Time step (t)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 tr
an

sm
it

po
w

er

lim
T→∞

g

(
1

T

T−1∑

t=0

f
(

Ht , p
(

Ht ,µbt/T0c;φ
?
)))

≥ 0, a.s.

lim
T→∞

E

[
U
(

1

T

T−1∑

t=0

f
(

Ht , p
(

Ht ,µbt/T0c;φ
?
)))]

≥ P? − cηµG
2

2
−Mε.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 112

Modeling Interference Channels as Graphs

I We model the interference channel at each time step t as a graph Gt = (V, E ,Yt ,wt).

⇒ V = {1, 2, . . . ,m} denotes the set of transceiver nodes, and E ⊆ V ×V denotes the set of edges.

⇒ Yt ∈ Rm×1 denotes the initial node features, which we set to the dual variables: Yt = µbt/T0c.

⇒ wt : E → R denotes the edge weight function, which we define as wt(i , j) ∝ log
(
Pmax|hij,t |2/N

)
.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 113

Graph Neural Network (GNN) Parameterizations

I We leverage graph neural networks (GNNs) to parameterize the resource allocation policies.

I Final node features at the output of the GNN are converted to resource allocation decisions.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 114

Scalability With Constant Network Density

I The network area size increases proportionally to the number of transmitter-receiver pairs.

I Policies are evaluated on the same network size that they have been trained on.

50 100 150 200
Number of users

5.8

6.0

6.2

M
ea

n
ra

te
 (b

ps
/H

z)

50 100 150 200
Number of users

0.2

0.3

0.4

0.5

M
in

im
um

 ra
te

 (b
ps

/H
z)

State-Augmented Vanilla Primal-Dual ITLinQ Full Reuse

50 100 150 200
Number of users

0.90

0.95

1.00

1.05

5t
h

pe
rc

en
til

e
ra

te
 (b

ps
/H

z)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 115

Scalability With Variable Network Density

I The network area size is fixed regardless of the number of transmitter-receiver pairs.

I Policies are evaluated on the same network size that they have been trained on.

20 30 40 50
Number of users

4.0

4.5

5.0

5.5

6.0

6.5

M
ea

n
ra

te
 (b

ps
/H

z)

20 30 40 50
Number of users

0.0

0.1

0.2

0.3

0.4

0.5

M
in

im
um

 ra
te

 (b
ps

/H
z)

State-Augmented Vanilla Primal-Dual ITLinQ Full Reuse

20 30 40 50
Number of users

0.4

0.6

0.8

1.0

1.2

5t
h

pe
rc

en
til

e
ra

te
 (b

ps
/H

z)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 116

Transferability With Constant Network Density

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ergodic average rate (bps/Hz)

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

Trained on m=200
Trained on m=50

m = 50

m = 200

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 117

Transferability With Variable Network Density

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ergodic average rate (bps/Hz)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Trained on m=50
Trained on m=20

m = 20 m = 50

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 118

Federated Learning with GNNs

I GNNs can enable distributed training of models in a federated learning scenario.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 119

arxiv.org/abs/2305.15371

Federated Learning

I A group of agents attempt to learn a shared model w? with minimium average loss across agents:

w? = arg min
w∈Rd

1

N

N∑

i=1

E(x,y)∼Di
[`(fw(x), y)].

I Considering a graph structure, we can have a constrained formulation:

min
w1,...,wn∈Rd

g(W) =
1

N

N∑

i=1

E(x,y)∼Di
[`(fwi (x), y)],

s.t. wi =
1

|Ni |
∑

j∈Ni

wj , for all i = 1, . . . ,N.

I A major challenge: High communication cost between the agents (and a central server).

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 120

Learning to Optimize via Algorithm Unrolling

I Instead of training the model W directly, we train a meta model Φ(W0,D; θ), whose output is W?:

W? = Φ(W0,D; θ?) where θ? = arg min
θ∈Rp

E
[
g(Φ(W0,D; θ))

]
.

I The meta model takes as input the initial model W0 and a set of local datasets D.

I We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

Wl = φl(Wl−1,D;θl), l = 1, . . . , L.

3434

Learning to Optimize via Algorithm Unrolling

⋯
Initial model𝐖0 Meta model𝚽(𝐖0, 𝒟; 𝜽) Final model𝐖⋆ = 𝐖𝐿

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 121

Stochastic UnRolled Federated learning (SURF)

I Instead of the whole datasets D, we feed stochastic batches of data Bl to the meta model:

Wl = φl(Wl−1,D;θl) → Wl = φl(Wl−1,Bl ;θl).

I We encourage the model parameters to improve after every layer using descending constraints:

min
θ∈Rp

E
[
g(Φ(W0,B; θ))

]

s.t. E
[
‖∇g(Wl)‖ − (1− ε) ‖∇g(Wl−1)‖

]
≤ 0, for all l = 1, . . . , L,

Wl = φl(Wl−1,Bl ;θl), for all l = 1, . . . , L.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 122

arxiv.org/abs/2305.15371

Unrolling Distributed Gradient Descent via GNNs

I Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

wi (l) =
∑

j∈Ni

sijwj(l − 1)− β∇gi (wi (l − 1)), i = 1, . . . ,N.

I DGD relies on communication among agents, and local updates of the model using local data.

I We replace the first term with a GNN layer and the second term with a local FCNN:

Wl =
K−1∑

k=0

hklS
kWl−1 − σ ([Wl−1,Bl] Ml + bl)

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning, arxiv.org/abs/2305.15371

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 123

arxiv.org/abs/2305.15371

Empirical Evaluation of SURF + DGD with GNNs

I Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations

Centralized 25.81± 13.92 10

FedAvg 15.53± 12.29 10

SURF + DGD + GNN 90.83± 04.35 10

Centralized 92.71± 03.26 300

FedAvg 90.35± 03.69 300

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 124

Transferability of SURF + DGD with GNNs

I The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.

100 200 400 800
n

75

80

85

90

95

Ac
cu

ra
cy

 %

10 20 30 40 50 60
dataset size/agent

82.5

85.0

87.5

90.0

92.5

95.0

Ac
cu

ra
cy

 %
1 2 3 4 5 6

node degree

85

90

95

Ac
cu

ra
cy

 %

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs 125

	Machine Learning on Graphs: Why?
	Machine Learning on Graphs: How?
	Convolutions in Time, in Space, and on Graphs
	Convolutional Neural Networks and Graph Neural Networks
	Equivariance and Stability Properties of GNNs
	Transferability Properties of Graph Neural Networks
	Graph Neural Networks Architectures, Stability, and Transferability
	Statistical Learning
	Empirical Risk Minimization
	ERM with Learning Parametrizations
	Learning Ratings in Recommendation Systems
	Learning Ratings with Graph Filters and GNNs
	Wireless Resource Management with GNNs
	Federated Learning with GNNs

