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How to use this site (I am not at Penn)

If you are a not a student at Penn, the instructors are honored that you consider the materials worth
checking. We wish we had the time to work with you, alas, we do not. However, we think there is quite
a lot that you can learn by watching the recorded video lectures and by working on the lab
assignments. We have designed the materials with the goal of making them useable in self directed
learning. How much we have succeeded at that is for you to decide.

When you check the video lectures you will see that they come with a handout and a script. The
handout and the script are designed to be used in conjunction with the videos. The videos are the
union of the handout and the script. In addition to video lectures, you will find lab assignments and
their solutions accessible through the lab webpage. The labs are designed with a complexity
progression in mind. Start from Lab 1 if you have never worked in machine learning. Start from Lab 2 if
you have ever encountered GNNs. Labs 3 and onwards are serious applications of GNN to practical
problems.

If you are hardcore and would rather read papers, this post has links to the papers that have inspired
this course. These papers are part of the work on graph neural networks going on at Alelab. They are
not a comprehensive literature review. You can find a lttle bit of that in this tutorial article in the signal
processing magazine and in this more comprehensive review in the Proceedings of the IEEE.

If there is something you think we could to to help. We are happy to hear suggestions.
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Visit our course website: https://gnn.seas.upenn.edu

Video 1.2 - Machine Learning on Graphs: The Why

We care about GNNs because they enable machine learning on graphs. But why should we care
about machine learning on graphs? We dwell here on the whys of machine learning on graphs. Why
is it interesting? Why do we care? The reason we care is simple: Because graphs are pervasive in
information processing.

+ Covers Slides 6-10 in the handout.

Video 1.3 - Machine Learning on Graphs: The How

Having discussed the why, we tackle the how. How do we do machine learning on graphs? The
answer to this question is pretty easy: We should use a neural network. We should do this, because
we have overwhelming empirical and theoretical evidence for the value of neural networks
Understanding this evidence is one of the objectives of this course. But before we are ready to do
that, there is a dealbreaker challenge potentially lurking in the shadows: Neural Networks must
exploit structure to be scalable.

e

+ Covers Slides 11-13 in the handout.

e Learning on Graphs
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Machine Learning on Graphs: Why?
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Why Are Graphs so Common in Information Processing?

» Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

Recommendation Systems

= \‘\»;<4///'
Identify the author of a text of unknown provenance

Predict the rating a customer would give to a product
Segarra et al '16,

Ruiz et al '18,

» In both cases there exists a graph that contains meaningful information about the problem to solve

NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz
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arxiv.org/abs/1805.00165
arxiv.org/abs/1903.12575

thorship Attribution with jacency Networks (WANSs)

» Nodes represent different function words and edges how often words appear close to each other

= A proxy for the different ways in which different authors use the English language grammar

William Shakespeare Christopher Marlowe

» WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016
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doi.org/10.1353/shq.2016.0024

Recommendation System with Collaborative Filtering

» Nodes represent different customers and edges their average similarity in product ratings

= The graph informs the completion of ratings when some are unknown and are to be predicted
Variation Diagram for Original (sampled) ratings

Variation Diagram for Reconstructed (predicted) ratings
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> Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal
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Brain Networks: Brain Age Scoring (Thursday 11:35, Nafsika B)

Ageing is a risk factor for neurodegeneration and biological age (brain age) is elevated compared to chronological age in pathology.

Hence, Age-Gap (brain age — chronological age) is a biomarker of interest.

Cortical thickness data
(s features)

Anatomical covariance
matrix (size my % my)

Interpretal
Isolate brain
regions with
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whole brain cortical
thickness dataset
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Cortical Thickness Brain Signals. GNN on anatomical covariance matrix leverages
cortical thickness (CT) features to predict brain age.

Regional age-gap is defined by the difference between GNN prediction and outputs at
the final layer of GNN.

Elevated brain age gap effect is driven by regional age-gap effects in impacted regions.

Mateos-McMillan-Ribeiro, coVariance Neural Networ
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Interpretable regional profile to elevated brain age.

Regions with elevated age-gap in Alzheimer’s Disease
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GNN can be transferred across different graphs
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Representation of discrete
VNN output on interval [0, 1
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arxiv.org/abs/2205.15856

Graphs in Multiagent Physical Systems

» Graphs are more than data structures = They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems Wireless Communications Networks

Coordinate a team of agents without central coordination Manage resources in wireless communications

Tolstaya et al '19, Eisen-Ribeiro '19,

» The graph is the source of the problem = Challenge is that goals are global but information is local
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arxiv.org/abs/1903.10527
arxiv.org/abs/1909.01865

Graphs in Multiagent Physical Systems

» Graphs are more than data structures = They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems Wireless Communications Networks

 Points of interest &9
| Robots

)
¥

Collaborative navigation of roads with a team of agents Mobile infrastructure on demand to support a task team

Tolstaya et al '21, Mox et al '22,

» The graph is the source of the problem = Challenge is that goals are global but information is local
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arxiv.org/abs/2011.01119
arxiv.org/abs/2112.07663

Machine Learning on Graphs: How?
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Neural Networks and Convolutional Neural Networks

» There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this
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» Generic NNs do not scale to large dimensions =- Convolutional Neural Networks (CNNs) do scale
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Convolutional Neural Networks and Graph Neural Networks

» CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs

» Generalize convolutions to graphs =- Compose graph filter banks with pointwise
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» Stack in layers to create a graph (convolutional) Neural Network (GNN)

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz
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Convolutions in Time, in Space, and on Graphs

» How do we generalize convolutions in time and space to operate on graphs?

= Even though we do not often think of them as such, convolutions are operations on graphs
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Time and Space are Representable by Graphs

» We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph
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» Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients i, = Output z = ho S"x
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients i, = Output z=hoS°x + h; S'x
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients iy = Output z= hoS°x + h1 S'x + hy S°x
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients by = Output z = hoS’x + h1 S'x + h2 S°x + h3 $°x
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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> Filter with coefficients i, = Output z= hoS°x +h1 S'x +hS’x +h3S’x +...= Z hi S*x
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Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
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> Filter with coefficients i, = Output z= o S"x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS e x3 X
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> Filter with coefficients i, = Output z=hoS°x + h; S'x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS e x3 X
x| N N xg x4 / \
w23 wer °
Nows e% -
7 7 x5 X6

3 w35 x5 w57 7

> Filter with coefficients iy = Output z= hoS°x + h1 S'x + hy S°x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs



Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6 x
— — 3 x2 X9 xg
fw (& — 1
X1 w34, w5 W w47 xg u_/ N\ x0_/ x7
w23 wer °
k 4/"‘{' —| —
x3 '735/7 5 '¥W57/7 X7 X5 X6 x11 x12

> Filter with coefficients by = Output z = hoS’x + h S'x + h2 S°x + h3 $°x

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
xp w24 x4 W46 X6
VS VS *3 *2 9 *8
fw (& — —1
AT B & = ® )
w23 wer
\ 4/‘/ \ / \
w13 8 — —
5 e e e x5 %6 11 x12
w35 X5 w57
oo
. . .. _ 0 1 2 3 _ k
» Filter with coefficients hy = Outputz= hgS'x +h1S'x +hSx +h3Sx +...= thS X
k=0

» Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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Graph Convolutional Filters as Diffusion Operators

» A graph convolution is a weighted linear combination of the elements of the diffusion sequence

» Can represent graph convolutions with a shift register = Convolution = Shift. Scale. Sum
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Algebraic Convolutions

Definition (Convolution)

A convolutional filter is a polynomial on a shift operator with coefficients hy = z = Z hi S*x
k=0

» It is the same algebraic object whether we consider time, space, or graphs
» They all have compositionality (operator powers) and some kind of equivariance
» They all admit a frequency representation

= Filters are pointwise operators in the eigenvector basis of the shift operator

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stability to Deformations
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arxiv.org/abs/2009.01433

Convolutions with Multiple Features

Definition (Algebraic Convolutions with Multiple Features)
Input signal X € RM*F with F features. Output signal Z € RY*C® with G features. Filter

coefficients H, are F x G matrices. The convolutional filter with coefficients Hy is

Z = ZS"xXka
k=0

» It has the same algebraic structure of a regular filter with scalar coefficients.
» Retains compositionality, equivariance, and existence of a frequency representation

» Filters with multiple features are more expressive. The ones we use to build GNNs and CNNs
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Convolutional Neural Networks and Graph Neural Networks

» CNNs and GNNe are minor variations of linear convolutional filters

= Compose filters with pointwise nonlinearities and compose these compositions into several layers
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Neural Networks (NNs)

» A neural network composes a cascade of layers

» Each of which are themselves compositions of

linear maps with pointwise nonlinearities

» Does not scale to large dimensional signals x

X = Xq
¥
z
z; = Hy xg ! xlzo[zl]
T Layer 1
[
X1
z
2z = Hyxg 2 XQZU{Zz]
T Layer 2
[
X2
z
z3 = H3, x2 g X3:a[z3:|
Layer 3

L x3 = ®(x; H)
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Convolutional Neural Networks (CNNs)

» A convolutional NN composes a cascade of layers

» Each of which are themselves compositions of

convolutions with pointwise nonlinearities
» Scales well. The Deep Learning workhorse

» A CNNs are minor variation of convolutional filters
= Just add nonlinearity and compose

= They scale because convolutions scale

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz

X = Xg
v
]
z; =h; *x x xlzo[zl]
T Layer 1
[
X1
2
23 = hy * x1 XQZU{Zz]
T Layer 2
[
X2
z3
z3 = h3 x xp X3:0[Z3:|
Layer 3
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When we Think of Time Signals as Supported on a Line Graph

X = Xp
|
¥
» Those convolutions are polynomials on the o Kil P o = 0[21]
k=0
adjacency matrix of a line graph T Layer 1
[
X1
X0 X1 X2 X3 X4 X5
-0—0—0—-0—-0-0- =
zzzthkS X1 XQZU{Zz]
=0 T Layer 2
» Just another way of writing convolutions and IXZ
X2
Just another way of writing CNNs
K—1
1322 h3kSkx2 £ X3:0[Z3:|
. . . k=0
» But one that lends itself to generalization Layer 3
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Graph Neural Networks (GNNs)

X = Xg
¥
» The graph can be any arbitrary graph K1 . zn
21:Zh1k5 Xq xlzo[zl]
= Layer 1
. . . ayer
» The polynomial on the matrix representation S i i
X1
becomes a graph convolutional filter X
K—1 2
zZ:thks"xl XQZU{Zz]
k=0
w24 iz T Layer 2
U U
@O Qs E
//’ \ .
w34 w25 Wse, wa7
o - &
K—1 P 23
Q0.0 i B
=0
A S 4 A S 4
Wi Ws7 Layer 3

b x3 = ®(x; S, H)

Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019,
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Graph Neural Networks (GNNs)

» A graph NN composes a cascade of layers

» Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

» A NN with linear maps restricted to convolutions

» Recovers a CNN if S describes a line graph

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz

X = Xp
¥
K—1 7
21:Zh1k5 Xg xlzo[zl]
k=0
T Layer 1
[
X1
K—1
2
zzzzhzkskxl XQZU{Zz]
k=0
T Layer 2
[
X2
K—1 23
13:Zh3k5kx2 X3:0[Z3:|
k=0
Layer 3
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Graph Neural Networks (GNNs)

X = Xg
¥
K—1 n 71
o . a=3 mstxo n=ola]
» There is growing evidence of scalability. e
T Layer 1
[
» A GNN is a minor variation of a graph filter Xl
Just add nonlinearity and 5 z
= Just add nonlinearity and compose n=3 hx F s = U{ZZ]
k=0
T Layer 2
» Both are scalable because they leverage the l"z
X2
signal structure codified by the graph
K—1
z3
13:Zh3k5kx2 X3:0[Z3:|
k=0
Layer 3
L x3 = ®(x; S, H)
a-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs


arxiv.org/abs/1805.00165

Graph Neural Networks with Multiple Features

X = Xq
|
M
73 = > sFxgHy, X; = o[2]
k=0
Layer 1
. . . X
» In practice we use layers with multiple features « !
1
K—1 2,
. . . . 2= > 5" xqHy X2=0[22}
» This is to increase representation power but it does k=0
Layer 2
not affect our fundamental observations X2
X2
K—1 3
z3= > sKxyHg X3 = o[23]
k=0
Layer 3
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Equivariance and Stability Properties of GNNs

Gama-Bruna-Ribeiro, Stability Properties of Graph Neural Networks, TSP 2020
Gama-lsufi-Leus-Ribeiro, Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks, SPMag 2020,

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and Transferability, PIEEE 2021

Day 1: Machine Learni
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arxiv.org/abs/2008.01767

Permutation Equivariance and Stability

Fact 1

Graph filters and GNNs “work.” Outperform general linear transforms and fully connected NNs.

Fact 2

GNNs outperform graph filters in most learning tasks.
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Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2

GNNs outperform graph filters in most learning tasks.

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs



Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.
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Permutation Equivariance and Stability

Fact 1: Graph Filters and GNNs are Permutation Equivariant

Graph filters and GNNs leverage symmetries of graph signals
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Permutation Equivariance of Graph Neural Networks

» It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator S = P”SP and input signal X = P"x. Then

d(%;8,H) = PTo(x;S,H)

» Relabeling the input signal results in a consistent relabeling of the output signal

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs



Signal Processing with Graph Filters and GNNs is Independent of Labeling

» Graph filters and GNNs, perform label-independent processing of graph signals

= Permute input and shift = Relabel input = Permute output = Relabel output

Graph signal x Supported on S Graph signal ¥ = P7x supported on S=P7spP
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Signal Processing with Graph Filters and GNNs is Independent of Labeling

» Graph filters and GNNs, perform label-independent processing of graph signals
= Permute input and shift = Relabel input = Permute output = Relabel output

GNN output ®(x; S, H) supported on S GNN ®(%;8,H) =PTd(x;S,H) on § = PTSP

4( 4(

xz/ X3
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Graph Filters and GNNs Exploit Permutation Symmetries

» Graph filters and GNNs exploit permutation symmetries of graphs and graph signals

» By symmetry we mean that the graph can be permuted onto itself = S = PSP

» Equivariance theorem implies = ¢(PTx; S,’H) = <D(PTx; PTSP,H) = PT¢(X; S,H)

From observing x supported on S Learn to process P x supported on S = P7SP
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Permutation Equivariance and Stability

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.
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It is Quasi-Symmetry we Want to Exploit. Not Symmetry

» Graph not symmetric but close to symmetric = Deformed version of a permutation of itself

» Quasi-Symmetry, not symmetry = Stability to deformations that are close to permutation.

» GNNs have better stability properties than graph filters =- Better at leveraging quasi-symmetries.
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Frequency Response of a Graph Filter

o0 X
» Graph filters are operators defined on graph shift operators = H(S) = Z hSK =V Z hN V!
k=1 k=1

» They are completely characterized by their frequency responses =- 77()\) = Z Ak
k=1

h()\)
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The Effect of the Graph

> Graph S has eigenvalues \; = The response is instantiated at these eigenvalues h(\;) = Z B\
k=1

> Graph S has eigenvalues \; = The response is instantiated at these eigenvalues h(}\;) = Z h A
k=1
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Relative Perturbations of a Shift Operator

» Meaningful perturbations of a shift operator operator are relative = P'SP =S + ES + SE
» Conceptually, we learn all there is to be learnt from dilations = S=S+¢S

» Eigenvalues dilate \; — N = (1 + €)Ai. Frequency response instantiated on dilated eigenvalues

A()) - - — — — -

AL A Am Am An b A
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Higher Frequencies are More Difficult to Process

» Large eigenvalues move more. Signals with high frequencies are more difficult to process

= Even small perturbations yield large differences in the filter values that are instantiated

= We think we instantiate h()\,-) = But in reality we instantiate h(s\;) = h((l +¢) )\,-)

A()) - - — — — —

AL A Am Am An An A
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Stability Requires Integral Lipschitz Filters

» To attain stable graph signal processing we need integral Lipschitz filters = ‘)\B'()\) | <C
» Either the eigenvalue does not change because we are considering low frequencies

» Or the frequency response does not change when we are considering high frequencies
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Discriminative Filter at Low Frequencies

> At low frequencies a sharp highly discriminative filter is also highly stable

= Ideal response h()\/) is very close to perturbed response h(:\/) = h( (1+¢) )\/)

A(\) : - — — — —
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Discriminative Filter at Medium Frequencies

» At intermediate frequencies a sharp highly discriminative filter is somewhat stable

= Ideal response h()\m) is somewhat close to  perturbed response h(:\m) = h( (1+¢) )\m)

A(\) : - - — — —
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Discriminative Filter at High Frequencies

» At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

= Ideal response h()\h) is very different from  perturbed response h(:\h) = h( (I1+¢€) )\h)

) C— — — — —
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Discriminative Filter at High Frequencies

> We can have stability to deformations if we use an integral Lipschitz filters = [ \A'(\)| < C

= But this precludes the discrimination of high frequency components
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Pointwise Nonlinearities are Frequency Mixers

» Nonlinearities o(v;) and o(v;) spread

energy across all frequencies

[ IR I X o o

A A;

» Some energy where it used to be

o . ) H oo
> Some energy at low frequencies Spectrum of nonlinearity applied to v; = V"o(v;)

» Where it can be discriminated with a

stable filter in Layer 2
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Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

GNNs can be simultaneously discriminative and stable to deformations. Graph filters cannot.
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Stability vs Discriminability Tradeoff of GNNs

Fact 2: Stability Properties of GNNs

For the same sensitivity to deformations, GNNs are more discriminative than graph filters
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator ®(+; S, A) along with shifts operators S and S having n nodes. If:

(H1) Shift operators are related by P'SP = S 4 ES + SE with P a permutation matrix
(H2) The error matrix E has norm [|[E|| = € and eigenvector misalignement 0 relative to S
(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between ®(+; S, A) and ®(-; §7A) is bounded by

| ®(;S,A) - ®(;S,A) ||, < 2C(1+6vn)Le
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arxiv.org/abs/1905.04497

Transferability Properties of Graph Neural Networks

» A GNN that is trained in a graph S can be executed on any other graph S

= In particular, we can execute it in a much larger graph
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Transferability of Graph Neural Networks

» Transferability of graph neural networks is ready to verify in practice = recommendation system

~}— Graph Filter
GNN
~#- Lipschitz GNN

Lesattesad, 010

0.08

0.06 4

0.049

Relative RMSE difference

0.02 4

0.004

600 800 1000 1200 1400 1600 1800 2000
Nodes

» Performance difference on training and target graphs decreases as size of training graph grows

» GNNs appear to be more transferable than graph convolutional filters =- better ML model
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Transferability of Graph Neural Networks

» Transferability of graph neural networks is ready to verify in practice =- decentralized robot control

10.0
1.0 —}— Graph Filter

0.8

o
>

o
=

Relative cost difference

o
o

-4.0 00
-40 -20 0.0 2.0 4.0 6.0 8.0 10.0 30 40 50 60 70 80 90

» Performance difference on training and target graphs decreases as size of training graph grows

» GNNs appear to be more transferable than graph convolutional filters =- better ML model
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Do Graph Neural Networks Scale?

Q1: We have empirically observed that GNNs transfer at scale. Why do they?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

» To answer these questions, turn to CNNs = known to scale well for images and time sequences
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Convolutional Neural Networks Have Limits

> Discrete time/image signals converge to continuous time/image signals = | intrinsic dimension

143 x 95 — 205 x 136 — 294 x 195 — 600 x 399

= From SP theory, CNNs have well-defined limits on the limits of images and time signals

» Al: Intrinsic dimensionality of the problem is less than the size of the image

» A2: Training with small images is sufficient = CIFAR 10 images are 32 x 32
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Graphons

» Graphs also have limit objects that effectively limit their dimensionality =- one is the graphon

i

01 02 03 04 05 06 07 08 09 1

n = 50 nodes — n = 100 nodes — n = 200 nodes — Graphon W(u,v) =p

» A graphon can be thought of as a graph with an uncountable number of nodes
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Large-Scale Graphs

» Graphs however do not have the Euclidean structure time and image signals have in the limit

pepestine.,

n = 30 products n = 50 products n = 100 products

» So do graph convolutions and graph neural networks converge to limits on the graphon?

Day 1: Machine Learning on Graphs
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Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

» Al: Because graph convolutions and GNNs have well-defined limits on graphons

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

» A2: Yes, as GNNs are transferable =- can be trained on moderate-size and executed on large-scale
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Graphon filters and Graphon Neural Networks (WNNs)

Graphon convolutional filters and graph convolutional filters are the same algebraic object. Which is also the
same algebraic object of a standard convolutional filter.

Graph convolutional filters are
polynomials on a matrix representation S’ s s 3
ho hy hy hs
+ + + +

of the graph acting on input signal.

y=hxsx
The coefficients of the filter are the s T h e T hSx
coefficients of the polynomial.
Graphon convolutional filters are
X

polynomials on the graphon integral T . T X = WX =
operator acting on input signal. g J\h ,Lh J\h
Y
The coefficients of the filter are the , f " X :,”X » :X X :WX
ho Ty +hTy e Ty +hs Ty
coefficients of the polynomial.

1
Graphon integral operator: TwX : (Tw)X(v) = / W(u, v) X(u) du
0

WNNs are compositions of layers. Themselves compositions of graphon filters with pointwise nonlinearities

[Ruiz et al '20] Graphon Signal Processing, hitps:/arxiv.org/abs/2003.05030
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Frequency Representation of Graphon Filters

Graphon filters admit a frequency representation. Same as graph filters. Same as standard convolutions

They are still the same algebraic object: They are polynomials of scalar variables

Representation of graph filter is
instantiated at graph eigenvalues

Representation of graphon filter is
instantiated at graphon eigenvalues

$ince graph eigenvalues converge to graphon eigenvalues convergence of graph to graphon filters follows.

The catch is that we have accumulation of eigenvalues around zero.

Thus, we can't transfer filters that attempt to discriminate these
eigenvalues. There is a transferability vs discriminability tradeoff

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, htps://arxiv.orglabs/2112.04629
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Transferability of Graph Filters and GNNs

We derive a finite sample transferability bound from a graph with m nodes to a graph with n nodes

Transferability of a filter depends on the Lipschitz constant of the frequency response of the graph (and graphon) filter

Theorem (Graph Filter Transferability)
Consider graph signals (Sn,xn) and (Sm,xm) sampled from graphon signal (W, X) along with
convolution outputs y, = H(Sn)x, and y,, = H(Sm)xm. The difference norm of the respective

graphon induced signals is bounded by

1 1
1Ya=Yal < (Ah ) <7+7>||X|| +4Anc|IX]|
n m

Same bound holds for GNNs because the pointwise nonlinearity transfers verbatim because it does not mix components

[Ruiz et al ‘20] Graphon Neural Networks and the Transferability of Graph Neural Networks, nip: html

[Ruiz et al ‘21] Transferability Properties of Graph Neural Networks, https://arxiv.org/abs/2112.04629
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Learning by Transference in Stochastic Graph Models

We consider graphs of growing sizes and use the GNN
trained on a smaller graph as a warm start to learn the
optimal GNN for a larger graph.

Faster training. Enables training in large scale graphs.
102 nodes 108 nodes 104 nodes graphon
00 LTI 200 oh ot opoc Training with growing graphs

—— 10 nodes per epoch

— Trained on 100 nodes (9 epochs) learns GNNs with the same

—4— Trained on 100 nodes (30 epochs)

—— 10 nodes per epoch
—H= Trained on 100 nodes (10 epochs)
—H~ Trained on 100 nodes (30 epochs)

performance

g o0 g 90
3 80 % 80
A g
ae 12
E FI Computational cost is reduced
i LT § e ——— by a 5.67 factor. More possible e\\‘xfxz
W T ] 20 . . S
a if graph is larger . SR
T3 i i 67 s totintietsiet T3 45 67 6 s toit it ie
Wik ok Wonbar ot pachs

[Cervifio et al '21] Learning by Transference: Training Graph Neural Networks on Growing Graphs, https://arxiv.org/abs/2106.03693
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Graph Neural Networks Architectures, Stability, and Transferability
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Graph Neural Networks Architectures, Stability, and Transferability

» Graph neural networks compose layers, which compose graph filters with pointwise nonlinearities

v

Graph filters are algebraically identical to standard convolutions =- Polynomials = Compositions

v

Graph filters are stable to deformations of the graph that are close to perturbations

v

Graph filters are transferable from medium scale graph to large scale graphs

v

Stability and transferability properties follow from spectral representations of graph filters
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Scalable Machine Learning

Image Classification Controlling Robot Swarms Protein Structure Prediction
A. Krizhevsky, CIFAR, 2009 E. Tolstaya, et al., , arxiv.org/abs/1903.10527 J. Jumper, et. al., Nature vol 596, 2021

» Scalable learning is difficult = Learning with high dimensional inputs is (much) more challenging
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Scalable Machine Learning

» We know we can learn at scale with Convolutional Neural Networks adapted to several domains

Euclidean Graph Group
Convolutional Neural Networks Convolutional Neural Networks Convolutional Neural Networks

» One reason why CNNs are effective solutions = Symmetries and equivariances on each domain
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The Mathematics of Convolutional Deep Learning

All convolutions share a common algebraic structure from which they inherit common stability

properties and (perhaps) common transferability properties.

Parada Mayorga-Ribeiro , Algebraic Neural Networks: Stability to Deformations
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Statistical Learning

» Before we talk about GNNs, we need to specify what we mean by learning

= Statistical Learning and Empirical Learning
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Statistical Models and Statistical Estimation

» Observations (inputs) x and information (outputs) y are related by a statistical model p(x7 y)

x € R" ——| p(x,y) ———yER’

> Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
= The Al should predict y from x with the conditional distribution =y ~ p(y|x)

= Or, if we want deterministic output, a conditional expectation =y =E[y|x]

» There is a lot to say about statistical estimation but this is beyond the scope of this course
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Statistical Models and Statistical Estimation

» Observations (inputs) x and information (outputs) y are related by a statistical model p(x7 y)

x € R" ———> p(y|x) ———>y cRP

> Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
= The Al should predict y from x with the conditional distribution =y ~ p(y|x)

= Or, if we want deterministic output, a conditional expectation =y =E[y|x]

» There is a lot to say about statistical estimation but this is beyond the scope of this course
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Statistical Models and Statistical Estimation

» Observations (inputs) x and information (outputs) y are related by a statistical model p(x7 y)

x € R" ——> Ely|x] ———>ycRP

> Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
= The Al should predict y from x with the conditional distribution =y ~ p(y|x)

= Or, if we want deterministic output, a conditional expectation =y =E[y|x]

» There is a lot to say about statistical estimation but this is beyond the scope of this course
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Estimation Loss

» Al is not perfect. Nature and Al may produce different outputs when presented with the same input

Nature relates x and y with distribution p(x,y) The Al relates x and § with function ®(x)

x —) p(x,y) Y x € R" ——> ®(x) 9 = ®(x)

» Loss function £(y,¥) = £(y, P(x)) measures cost of predicting § = ®(x) when actual output is y
= In estimation problems we often use quadratic loss = £(y,¥) = |ly — ¥|I?

= In classification problems we often use hit loss = £(y,¥) = |ly — ¥|lo = #(y # ¥)
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Statistical Risk Minimization

> Average the loss {(y, ®(x)) over nature's distribution p(x,y) and choose best estimator/classifier
®* = argmin Epxy) V(y, Cb(x)) }
®

> Predict ®(x). Nature draws y. Evaluate loss £. Take loss expectation over distribution p(x, y)

= Optimal estimator is the function with minimum average cost over all possible estimators.

» This optimization program is called the statistical risk minimization (SRM) problem
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Training / Learning

» Learning, or Training, is the process of solving the statistical risk minimization problem

X o(x) y = d(x)

l

arg;nin]E[Z(y, ¢(x))] L ¢

, T

X p(x,y)

Learning / Training

» QOutcome of learning is function ®* with minimum average statistical loss = We learn to estimate y

= During execution time, we just evaluate ®*(x) to predict output associated with input x
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Empirical Risk Minimization

» Learning bypasses models. It tries to imitate observations. Let us formulate mathematically.
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Artificial Intelligence (Al) / Machine Learning (ML)

» Al and ML in this course refer to the pipeline where we learn from data samples. Not distributions

x d(x) § = d(x) l
argg’lin E [K(y, ¢(x))] > o*
X Data Samples y T

Learning / Training

» Al learns to imitate input-output pairs observed in nature.
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Approximating the Statistical Risk

» Statistical Risk Minimization works on the cost averaged over the distribution of inputs and outputs
& = argminE,(x,y) [E(y, ¢(x))]
®

» This expectation can be approximated with data

= Acquire training set with Q pairs (xq,yq) € 7 drawn independently from distribution p(x,y)
1 Q
= For sufficiently large Q we can approximate = E,(x,y) [Z(y7 ¢(x))] ~ 2 Zé(yq, CD(xq))

= This is just the law of large numbers. True under very mild conditions
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Empirical Risk Minimization (ERM)

» Replace statistical risk minimization (SRM) with empirical risk minimization (ERM)

> o(n 00x)

q=1

o+

oS = argdr>nin Ep(x,y) [ﬂ(y, d>(x))] = O&f= arg:)nin
» Since the objectives are close, one would think the optima are close = ®: ~ ¢
= Alas, this it not true = ®% % ®f = Statistical and empirical risk minimizers need not be close
» In fact, the solution of ERM is trivial = Make ®(xq) =y, for all pairs in the training set

» As trivial as nonsensical = Yields no information about observations outside the training set
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ERM with Learning Parametrizations

» OQur first attempt at learning from data led to an ERM problem that does not make sense

» The search for a problem that makes sense brings us to the notion of learning parametrizations
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Learning Parametrization

» A sensical ERM problem, requires the introduction of a function class C

d)*

Q
.1
argmin — E(y,d>x )
S Q ; q ( q)
» For example, we can select the class of linear functions ®(x) = Hx and solve for

H*

Q
1
argmin — K( , Hx )
gH Q Z: Yq q
q=1
» This choice of parametrization may be good or bad. But at least is sensical

= Good or bad, having H* allows estimates § = H"x for observations x outside the training set
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Statistical and Empirical Risk Minimization with Learning Parametrizations

» Selecting C to contain sufficiently smooth functions makes SRM and ERM close
1 Q
argminE,(x,y) [é(y, ¢(x))] ~ argmin — Zé(yq, ¢(xq))
veC vec Q o
» Fundamental theorem of statistical learning = ERM is a valid approximation of SRM

» Need to identify the appropriate function class C =- But this problem is unavoidable
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Learning / Training (For Real)

» SRM learns from model = Parametrized ERM learns from data = Three differences:

X ¢(x) —— 9 :d)(x)—l

argql;ninIE[Z(y, <1>(x))] s ¢

!

x p(x,y) y

Learning / Training
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Learning / Training (For Real)

» SRM learns from model

= Parametrized ERM learns from data = Three differences:

= The distribution is unknown =- We have access to a training set of data samples

Xq

Xq

¢(xq)

(xq’y¢7) S T

——> ¥q = ®(xq) —l

vec Qoo

Q
argmin % Zl(yq, <I>(xq)) —— o~

!

Yq

Learning / Training
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Learning / Training (For Real)

» SRM learns from model

= Parametrized ERM learns from data = Three differences:

= The nonparametric ERM problem is nonsensical =- We restrict the function class

Xq

Xq

P(xq) €C

——> Jq = ®(xq) ﬁ

(xq’yQ) € T

dec

Q
argmin % Z Z(yqa ¢(Xq)) e
q=1

!

Yq

Learning / Training
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Learning / Training (For Real)

» SRM learns from model

= The statistical risk = Is replaced by the empirical risk

= Parametrized ERM learns from data = Three differences:

Xq

Xq

®(xq)

8 = 8 —————

(xq’yQ) € T

1 Q
ar;)ggmcin 9 ;@(yq, ¢(xq)) —> &*

!

Yq

Learning / Training

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz

Day 1: Machine Learning on Graphs




The Meaning of ML or Al in this Course

» Here, Machine learning (ML) = Artificial Intelligence (Al) = Empirical Risk Minimization (ERM)

®* = argmin Z é(y,(b(x)) argmin

» The components of ERM are a dataset, a loss function and, most importantly, a function class

> Make parametrization more explicit = Parameter H € R to span function class ®(x; I:I)

H” _argmm Z (y,d)(x;H))

(x,y)eT

» Designing an ML / Al system means selecting the appropriate function class C = What else?

= The function class determines generalization from inputs in training set to unseen inputs
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Machine Learning is Model Free but Not Model Free

» Machine learning does not require a model relating inputs x to outputs y

» But we need to know a class of functions to which the model belongs

= For example, we need to know the model relating inputs to outputs is linear

» Model also needs to be sufficiently simple to operate with insufficient data

= This is where we leverage structure using convolutional architectures such as CNNs and GNNs
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Learning Ratings in Recommendation Systems

» Formulate recommendation systems as ERM problems that predict ratings that users give to items
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Recommendation Systems

v

In a recommendation system, we want to predict the rating a user would give to an item

v

Collect ratings that some users give to some items = These are rating histories

v

Exploit product similarities to predict ratings of unseen user-item pairs

v

Example 1 = In an online store items are products and users are customers

v

Example 2 =- In a movie repository items are movies and users are watchers
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Ratings and Sampled Ratings

» For all items /i and users u there exist ratings = y,i

= User rating vector y, has entries y,;

» We only observe a subset of ratings = x;

= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u
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Ratings and Sampled Ratings

T 1T
» For all items /i and users u there exist ratings = y,i I :ﬁ

= User rating vector y, has entries y,;

T T

» We only observe a subset of ratings = x;

= Observed user rating vector x, has entries x,;

= We assume x,; = 0 if item / is unrated by user u
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Product Ratings as Graph Signals

» Construct product similarity graph with weights w;; represent likelihood of similar scores

» Interpret vector of ratings y, of user u as a graph signal supported on the product similarity graph

» The observed ratings x, of user u are a subsampling of this graph signal.

v

Our goal is to learn to reconstruct the rating graph signal y, from the observed ratings x,

v

Build similarity graph using available ratings. Use of expert knowledge is common as well
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Product Similarity Graph

» Consider pair of products / and j. Restrict attention to set of users that rated both products = U;

» Mean ratings restricted to users that rated products i/ and j

1 1
WS ) 2T ) 2

u€U;; u€U;;
N . , : L
» Similarity score = correlation restricted to users in U :!-
1y 2 (=) (o =) 2
ojj = - ui = Hij uj — Mji
#y) &

» Weights = normalized correlations = w; = (J'jj/\/(f,'j(fjj
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Loss for Measuring Rating Prediction Quality

> Given observed ratings x, the Al produces estimates ®(x,). We want ®(x,) to approximate y,

((r906) = vt |

» In reality, we want to predict the rating of specific item /
1 2
(v ®(x) ) = 5 (e yu el 0(x.) )

» Where e; is a vector in the canonical basis = (e;);i =1, (e;); =0 for j # i
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Training Set

v

For each item / let U; be the set of users that have rated i. Construct training pairs (x,y) with

y= (e,-Txu)e; X=X, —Y for all u e U;, for all i

v

Extract the rating x,; of item /. Record into graph signal y

» Remove rating x,; from x,. Record to graph signal x

v

Repeat for all users in the set U/, of users that rated i

v

Repeat for all items = Training set T
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Learning Rating Predictions

» Parametrized Al ®(x,) = ®(x,; H). We want to find solution of the ERM problem

2
H* = argmin Z (e,-Ty — e/ d(x; H))
M (xy)ET

» Two bad ideas =- Linear regression. Fully connected neural networks

» Two good ideas =- Graph filters. Graph neural networks

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs



Learning Ratings with Graph Filters and GNNs

» We use graph filters and graph neural networks to learn ratings in recommendation systems

» We contrast with the use of linear regression and fully connected neural networks

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz Day 1: Machine Learning on Graphs



Movie Ratings Dataset

» Use MovieLens-100k as benchmark = 10° ratings given by U = 943 users to M = 1,682 movies

» The ratings for each movie are between 1 and 5. From one star to five starts

» Train and test several machine learning parametrizations.
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Empirical Risk Minimization

» We predict ratings using Al that results from solving the ERM problem

2
H* = argmin Z (e,-Ty — e/ O(x; H))
M (x:y)eT

» Parameterizations that ignore data structure= =- Linear regression. Fully connected NNs

» Parameterizations that leverage data structure= = Graph filters. Graph NNs
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Linear Regression and Graph Filters

> Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

» Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

Mean Square Error
I )
Mean Square Error
I

o
o

°
@
2

100 150 200 250 300 100 150 200 250 300
Iterations Iterations

°
@
2

» Graph filter outperforms linear regression = Leverages underlying permutation symmetries
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Linear Regression and Graph Filters

» Linear regression works even worse in the test set

» The test MSE of the graph filter is about the same as the training MSE. It generalizes

o

@

Mean Square Error
PN

Mean Square Error

~

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» Graph filter outperforms linear regression = Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs

» The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

» Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

o o N o
[ SRR

Mean Square Error
IS

Mean Square Error
PN

~
~

o
o

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations

» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs

» But the fully connected NN does not do well in the test set. It does not generalize

» The test MSE of the graph NN is about the same as the training MSE. It generalizes

o

@
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» Graph NN outperforms fully connected NN =- Leverages underlying permutation symmetries
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Graph Filters and Graph Neural Networks

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant

o

@
@

w
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» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff
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Graph Filters and Graph Neural Networks

» The graph filter and the GNN do well in the training and test set. They generalize well

» The GNN does a little better. Not by much. But an extra 10% is not irrelevant
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» GNN outperforms graph filter = The GNN has a better stability-discriminability tradeoff
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Transferability

» A GNN can be trained on a graph with a small number of nodes ...

= And transferred to a graph with a (much) larger number of nodes. Without retraining

0.975
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°
©
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» In this recommendation system, transference incurs no MSE degradation =- MSE is further reduced
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Wireless Resource Management with GNNs

» GNNs can enable scalable resource management in autonomous wireless communication networks.
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Towards Next-Generation Wireless Networks

» Wireless networks are growing beyond humans’ ability to design and manage them — 5G, WiFi 6

» To address increasing complexity of wireless networks, we will make them autonomous — 6G, WiFi 7

= An autonomous wireless network makes (at least some) decisions without human intervention.
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Autonomous Wireless Networks

» Operational decisions in wireless networks are solutions of large constrained optimization problems.

» Solving these problems is very challenging, leading to the design and use of heuristic methods.

e = e
g

7 'l/‘% & N Yo N \1(

P Leverage data to learn better autonomous network management policies using machine learning.
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Wireless Resource Allocation Under Requirements

£(He, p(H:))

1

Network-level

_— performance
1T
max L{(T f(Ht,p(Ht))> T

T-1
{P(Ht)}f:o p(Ht)

.
s.t. g<; f(H:,p(Ht))> >0 1
Resource Allocation
policy

f

. H,
0 1 2 t .- T-1

NaderiAlizadeh-Eisen-Ribeiro, State-Augmented Learnable Algorithms for Resource Management in Wireless Networks, |IEEE TSP,
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Policy Parameterization

» Resource allocation decisions must be recalculated for any given network state H.
= This makes learning and deploying such a policy infeasible in practice.
» We parameterize the resource allocation policy, replacing p(H) with p(H; ).

» With parameterization, we do not need to solve the problem online to find optimal decisions.

Unparameterized Formulation Parameterized Formulation

T-1 71
max U (71_ Z f(Ht7p(Ht))> P*=max U (71_ f(H,, p(Hy; 6)))

{p(H)} '
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This is an Unsupervised Learning Problem

Empirical Risk Minimization Parameterized Resource Allocation

-
R D oz (35 om0

s.t. g( 5 f(th(Ht;e))) >0

t=0

=

» Inclusion of constraints makes this problem fundamentally different from a regular learning problem.
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Learning in the Lagrangian Dual Domain

» We move to the dual domain, and associate non-negative dual variables p to the constraints.

» The Lagrangian function can then be written as

T-1

L(O,p)=U <; Zf(an(Hr;@))> +u'g ( ! f(He, p( Hrﬂ)))

t=0

> We then seek to maximize the Lagrangian over 8, while minimizing it over pu, i.e.,

D* = min ?EagL(O, ).
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Iterative Unsupervised Primal-Dual Updates

» The model parameters 0 and dual variables 1 can be iteratively updated via a primal-dual method.

» We define an iteration duration Ty between consecutive updates, and an iteration index k.

(k+1)Tp—1 (k+1)Tp—1
1 ) T 1 ]
9k:3rg|g“§é< u T TZT f(He,p(H:;0)) | + i 8 T ZT f(H:, p(H:; 0))

k< k+1 1 (k+1)To—1
Picer = | P = 18 | Z f(He, p(H:; 04))
t=kTo
: +

» Constraint slacks are the gradient of the Lagrangian with respect to the dual variables.
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Theoretical Guarantees of Primal-Dual Updates

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the primal-dual updates is both feasible, i.e.,

T-1
. 1
lim g <T Zf (He,p (Ht;elt/TOJ))> >0, as.

T—oo
t=0

and near-optimal, i.e.,

lim E

T—o00

= cn, G?
u (T Zf(thp(Ht;eLt/ToJ))>:| 2P ==

t=0

» There are no restrictions on the convexity of f and the parameterization p(-; 8).
» Time averages of instantaneous performance metrics are feasible and near-optimal.

=Time averages of parameters are not near-optimal. We cannot stop training at a finite iteration.
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State-Augmented Algorithm

» We propose to use both network state H and dual variables v as input to the policy.

> We leverage a revised state-augmented parameterization p(H, i; ¢) to replace p(H; 0).

Regular Parameterization State-Augmented Parameterization

|
H, —— p(H; 0) }—» Pt ‘ p(H, 1; @) }—» Pt
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State-Augmented Primal and Dual Dynamics

» The revised parameterization leads to the augmented Lagrangian

L(p,p) = ( Zf He,p(He, 1t ¢))> +u'g <71. Z_f(H:,p(H:,u;¢>))> :
t=0 t=0

» During training, we search for the parameters that maximize the augmented Lagrangian:
* = E,.[L(p, .
¢ = argmaxl,, [£(¢, )]

= This resolves the need to re-optimize the model parameters for any given set of dual variables.

» We use the Lagrangian maximizers to run the dual updates online:

(k+1)To—1

P = | =g | — O f(He,p(He, s 07))
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Theoretical Guarantees of State Augmentation

» e-universal parameterization p(H, p; ¢): For any H and 6(-), there exists ¢ s.t.
Ellp(H, p; @) — p(H; (1)), < e

» M-Lipschitz continuity of f: For any H, p1 and p2, E||f(H,p1) — f(H,p2)||., < ME |p: — p2||, -

Theorem (NaderiAlizadeh-Eisen-Ribeiro)

The sequence of decisions made by the proposed state-augmented algorithm is both feasible, i.e.,

T—1
. 1 -
T'meg <T tgo f (an (HhNLt/TOJ;¢ ))) >0, as.

and near-optimal, i.e.,
1

u ( Ti:f (Ht7p (Ht,u“/m@*)))

t=0

lim E

T—o0

==

» The decisions made by our method are close to those made by the original primal-dual iterations.
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Power Control in Interference Channels

» We focus on multi-user interference channels with m transmitter-receiver pairs.

» The performance function for the i*" receiver represents its Shannon capacity,

N m . L2
o T 21 jozi Pi | hiie

. pi |hii,:|2
fi(He,p) = log, | 1+ .

» Considering a sum-rate utility and minimum-rate constraints leads to

T—1 m
1
max = fi(He, p(Ht)),
(Hy S T ; ;
L T2
s.t. ? f(Ht,p(Ht)) > fainlm.
=0

Ayt
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Our Method Satisfies All Minimum-Rate Constraints

Performance is shown in a 50-user interference channel with minimum-rate constraints of fy,;, = 0.6
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State Augmentation Leads to Policy Switching
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Modeling Interference Channels as Graphs

» We model the interference channel at each time step t as a graph G: = (V, &, Y, we).
=V ={1,2,...,m} denotes the set of transceiver nodes, and £ C V x V denotes the set of edges.
= Y, € R™! denotes the initial node features, which we set to the dual variables: Y, = B/l

= w; : £ = R denotes the edge weight function, which we define as w:(i, j) o log (Pmax|hij,c|*/N).
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Graph Neural Network (GNN) Parameterizations

» We leverage graph neural networks (GNNs) to parameterize the resource allocation policies.

» Final node features at the output of the GNN are converted to resource allocation decisions.
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» The network area size increases proportionally to the number of transmitter-receiver pairs.

» Policies are evaluated on the same network size that they have been trained on.
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Scalability With Variable Network Density

» The network area size is fixed regardless of the number of transmitter-receiver pairs.
» Policies are evaluated on the same network size that they have been trained on.
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Transferability With Constant Network Density

Policies are evaluated on a family of networks with m = 200 transmitter-receiver pairs.
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Transferability With Variable Network Density

Policies are evaluated on a family of networks with m = 50 transmitter-receiver pairs.
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Federated Learning with GNNSs

» GNNs can enable distributed training of models in a federated learning scenario.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning
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Federated Learning

» A group of agents attempt to learn a shared model w* with minimium average loss across agents:

w* = arg mm — ZE(x,y JO(fa(x), y)]-

» Considering a graph structure, we can have a constrained formulation:

N
Lomin_gW) =g ZE(” w0, [0 (%), )],
1
s.t. w; = w;j, foralli=1,...,N.
P

» A major challenge: High communication cost between the agents (and a central server).
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Learning to Optimize via Algorithm Unrolling

» Instead of training the model W directly, we train a meta model ®(Wq, D; 6), whose output is W*:

W* = ®(Wo,D;0*) where 0 =arg 0’“1&31 E[g(®(Wo, D; 0))].
€R

» The meta model takes as input the initial model Wy and a set of local datasets D.
» We parameterize the meta model using L layers to mimic update rules of an iterative algorithm:

W, =¢(W,;_1,D;0)), I=1,..., L

s il ¢
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Stochastic UnRolled Federated learning (SURF)

» Instead of the whole datasets D, we feed stochastic batches of data 3, to the meta model:

W, =¢(Wi-1,D;0)) — W;=¢(Wi—1,B,;6)).

» We encourage the model parameters to improve after every layer using descending constraints:

min E[g(®(Wo, 5;6))]

st E[IVg(W)I|l —(1-¢) [VeWi)[] <0, forall 1=1,...,L,
W/ :ng,(W,,l,B/;O/), for all | = 1,...,L.

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning
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Unrolling Distributed Gradient Descent via GNNs

» Distributed gradient descent (DGD) is a distributed iterative algorithm with the update rule:

W,(/) = Z S,'J'Wj(/ - 1) - /BVg,-(w,-(/ - 1))7 i = ].7 ey N.
JEN;

» DGD relies on communication among agents, and local updates of the model using local data.

» We replace the first term with a GNN layer and the second term with a local FCNN:

K—1
W, = Z hyS*W,_1 — & (W=1, BIM, + b))
k=0

p P

AR AT S A AN

o [ ] ’ .‘ 4 ” *'\\_.. A
¢ Q;{;--\\ 3 2
Ne N o

Hadou-NaderiAlizadeh-Ribeiro, Stochastic Unrolled Federated Learning,
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Empirical Evaluation of SURF + DGD with GNNs

» Accuracy levels evaluated over randomly selected 3-class subsets of CIFAR-10 with 100 agents.

Training Algorithm Accuracy #Layers/Iterations
Centralized 25.81 +£13.92 10
FedAvg 15.53 +£12.29 10
SURF + DGD + GNN | 90.83 +04.35 10
Centralized 92.71 + 03.26 300
FedAvg 90.35 4+ 03.69 300
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Transferability of SURF + DGD with GNNs

» The trained meta-GNN transfers to different numbers of agents, dataset sizes, and topologies.

95.0
° °
S g0 > 9255
9 9
90.0
Css e
= 3875
3 3
< 80 < 85.0
s 82.5

100 200 400 800

Kanatsoulis, NaderiAlizadeh, Parada-Mayorga, Ribeiro, Ruiz

10

© ©
=3 a

Accuracy %
0
&

20 30 40 50 60 1 2 3 4 5 6

dataset size/agent

node degree

Machine Learning on Graphs



	Machine Learning on Graphs: Why?
	Machine Learning on Graphs: How?
	Convolutions in Time, in Space, and on Graphs
	Convolutional Neural Networks and Graph Neural Networks
	Equivariance and Stability Properties of GNNs
	Transferability Properties of Graph Neural Networks
	Graph Neural Networks Architectures, Stability, and Transferability
	Statistical Learning
	Empirical Risk Minimization
	ERM with Learning Parametrizations
	Learning Ratings in Recommendation Systems
	Learning Ratings with Graph Filters and GNNs
	Wireless Resource Management with GNNs
	Federated Learning with GNNs

