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Lecture   9   Script   

9.1     Graphons     

Slide   1:   Graphons   -   Title   Page   

1. In  this  lecture  we  introduce  graphons  to  study  graph  filters  and  GNNs  in  the  limit  of                  
graphs   with   very   large   numbers   of   nodes.   

Slide   2:   Graphon   definition   

1. A  graphon  is  a  bounded  symmetric  measurable  function  W  mapping  points  of  the  unit                
square   to   the   unit   interval.   

2. This  definition  is  such  that  we  can  think  of  graphons  as  weighted  symmetric  graphs  with                 
an   uncountable   number   of   nodes.   

3. The  labels  of  the  nodes  are  the  arguments  of  the  graphon  functions.  That  is,  the  values                 
that   x   can   take   in   the   unit   interval.   

4. The  weights  of  the  edges  are  the  graphon  values.  The  value  W(x,y)  that  the  graphon                 
function  takes.  Observe  that  since  the  function  is  symmetric  W(x,y)  is  the  same  as                
W(y,x)   for   node   labels   x   and   y.   

Slide   3:   Graphon   examples   

1. To  gain  some  intuition  we  present  here  three  examples:  The  uniform  or  Erdos-Renyi               
graphon.  A  symmetric  stochastic  block  model  graphon.  And  an  asymmetric  stochastic             
block   model   graphon.     

2. The  uniform  or  Erdos-Renyi  graphon  is  such  that  W(x,y)  is  constant  and  equal  to  p  for  all                   
values  of  x  and  y.  This  graphon  is  related  to  the  Erdos  Renyi  family  of  random  graphs,                   
which  consists  of  graphs  where  edges  are  drawn  independently  with  the  same              
probability.     
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3. A  balanced  stochastic  block  model  graphon  takes  values  W(x,y)  =  p  when  x  and  y  are                  
both  between  0  and  ½  or  both  between  ½  and  1.  This  is  signified  by  the  dark  blue  areas                     
in  the  figure.  The  SBM  graphon  takes  values  W(x,y)  =  q  when  either  x  or  y  are  between                    
0  and  ½  and  the  other  argument,  y  or  x,  is  between  ½  and  1.  This  is  signified  by  the                      
light  blue  areas  in  the  figure.  The  value  p  is  much  larger  than  the  value  q.  This  graphon                    
models  two  communities,  one  community  with  labels  varying  from  0  to  ½  and  the  other                 
community  with  labels  varying  from  ½  to  1.  The  connection  within  communities  is  strong.                
The  edge  weights  are  large.  The  connection  across  communities  is  weak.  The  edge               
weights   are   small.   

4. An  unbalanced  SBM  graphon  has  an  analogous  definition  except  that  the  sizes  of  the                
communities  are  unbalanced.  One  community  is  larger  than  the  other.  In  the  figure  we                
have  a  community  that  spans  labels  from  0  to  0.2  and  another  community  that  spans                 
labels  from  0.2  to  1.  Within  communities  we  have  strong  weights  p.  Across  communities                
we   have   weaker   weights   q.   

Slide   4:   The   Purpose   of   a   Graphon   

1. What  is  the  purpose  of  defining  these  graphs  with  uncountable  nodes?  Philosophically,              
phenomena  are  easier  in  uncountable  spaces.  This  is  the  reason  humanity  invented              
calculus.   But   what   is   the   phenomenon   we   are   trying   to   simplify?     

2. In  practice,  graphons  are  abstractions  for  families  of  graphs  with  large  numbers  of  nodes                
in  which  members  of  the  family  have  similar  structure.  Instead  of  studying  individual               
members  of  the  family,  we  study  the  graphon.  This  is  likely  easier.  And  it  also  provides                  
information   about   the   whole   family.   Not   individual   graphs.     

3. In  theory,  the  graphon  provides  a  generative  model  for  graph  families.  We  can  generate                
graphs  through  stochastic  or  deterministic  sampling  of  the  graphon.  These  sampled             
graphs  share  a  common  property.  Which  is  that  they  are  sampled  from  the  same                
graphon.   

4. Another,  more  subtle,  epistemological  value,  is  that  graphons  are  limit  objects  for              
sequences  of  graphs.  As  the  number  of  nodes  of  the  graph  increases,  it  is  intuitive  to                  
expect  graphs  to  approach  a  limit.  The  graphon  is  this  limit.  Let  us  dwell  deeper  into                  
these   three   comments,   

Slide   5:   The   Product   Similarity   Graphon   
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1. In  terms  of  the  practical  value  of  graphons,  recall  our  encounters  with  product  similarly                
graphs.  As  we  look  at  these  graphs  for  different  collections  of  products,  we  see  that                 
these  graphs  “look  like  each  other.”  This  is  true  even  if  the  number  of  products  wea  re                   
considering   is   different.   

2. We  can  therefore  abstract  these  similarities  into  a  limit  object.  This  limit  object  is  what  we                  
would  call  the  “product  similarity  graphon.”  The  reason  for  creating  a  limit  abstraction  is                
that  similarities  are  more  apparent  for  larger  graphs.  We  can  think  of  product  similarity                
graphs  as  elements  of  a  sequence  converging  to  a  product  similarity  graphon  that               
encodes   this   shared   structure.   

3. It  is  important  to  point  out  that  this  limit  graphon  is   not  something  that  we  compute  in                   
practice.     

4. We  just  use  the  abstract  idea  of  a  graphon  to  work  with  all  of  these  graphs  as  if  they                     
were  the  same  object.  Which  in  a  sense  they  are.  They  are  all  close  to  the  “product                   
similarity   graphon.”     

Slide   6:   Graphons   as   Generative   Models   

1. To  use  graphons  as  generative  models  it  suffices  for  us  to  consider  samplings  of  the                 
[0,1]   interval.    

2. To  generate  the  vertices  of  a  graph  with  n  nodes  we  sample  n  points  u_1  through  u_n                   
from   the   unit   interval.   

3. These  points  can  be  sampled  in  a  number  of  ways.  Most  often  we  take  them  from  a                   
regular  partition  of  the  unit  interval  or  we  sample  uniformly  at  random  from  the  unit                 
interval.   

4. In  either  case,  each  sample  corresponds  to  a  node  label  of  the  graph.  We  can  use  u_i                   
itself  as  the  label.  Or  we  can  use  i  as  the  label.  Or  any  other  one  for  that  matter.  We                      
know   that   the   names   of   labels   are   not   important.   

5. What  is  more  important  in  the  generation  of  the  graph  is  the  determination  of  edge                 
weights.  For  doing  that  we  evaluate  the  weight  W(u_i,  u_j)  to  determine  the  properties  of                 
the  edge  i-j.  There  are  two  ways  in  which  we  can  use  W(u_i,  u_j)  to  generate  graph                   
edges.   
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6. In  the  stochastic  model  we  create  an  edge  connecting  i  and  j  with  probability  W(u_i,                 
u_j).   If   we   add   this   edge,   the   edge   is   unweighted   and   undirected.     

7. In  the  weighted  model  we  add  an  edge  connecting  i  and  j  whenever  the  graphon                 
function  W(u_i,  u_j)  is  not  null.  When  we  add  this  edge  the  edge  is  undirected  but  we                   
now   make   it   weighted.   The   weight   of   the   edge   is   the   graphon   function   value   W(u_i,u_j).     

Slide   7:   Uniform   Graphons   as   Generative   Models   

1. As  an  example  of  the  use  of  graphons  as  generative  models,  consider  the  uniform                
graphon.   

2. We   can   use   the   uniform   graphon.   

3. To   generate   uniform   random   graphs   with   the   same   

4. Or  with  a  different  number  of  nodes.  The  specific  edge  structure  of  the  generated                
graphs  differs  across  instantiations.  But  they  have  a  shared  structure  that  they  receive               
from   the   generating   graphon.   

Slide   8:   Balanced   SBM   Graphons   as   Generative   Models   

1. This  latter  observation  is  more  clear  if  we  consider  further  examples.  For  instance,               
consider   the   balanced   SBM   graphon.   

2. As   we   did   with   the   uniform   graphon,   we   can   use   this   balanced   SBM   graphon   

3. To   generate   balanced   SBM   random   graphs   with   the   same.   

4. Or  with  a  different  number  of  nodes.  Specific  edge  structures  differ  across  instantiations.               
But  this  graphs  have  a  common  structure  that  is  caerly  different  from  the  structure  of  the                  
uniform   random   graphs   we   have   just   seen.   

Slide   9:   Unbalanced   Stochastic   Block   Model   (SBM)   Graphon,   Stochastic   Graph   Samples   

1. Likewise,   if   we   consider   the   unbalanced   SBM   graphon.   

2. We   generate   unbalanced   SBM   random   graphs   with   the   same.   
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3. Or  with  a  different  number  of  nodes.  These  graphs  are  different  from  each  other.  But                 
they  are  more  similar  to  each  other  than  they  are  to  the  graphs  we  generated  with  the                   
balanced  SBM  graphon  or  to  those  we  generated  with  the  uniform  graphon.  They  belong                
to   a   family   we   have   generated   using   the   unbalanced   SBM   graphon.   

Slide   10:   Uniform   Graphons   as   a   Limit   Object   

1. The  other,  more  subtle  value  of  graphons,  is  their  use  as  limit  objects  of  sequences  of                  
graphs.  In  the  figure  we  consider  random  graphs  with  increasing  number  of  nodes.  It  is                 
clear   that   as   the   number   of   nodes   grows,   the   graph   is   approaching   some   sort   of   limit.   

2. But   it   is   unclear   what   that   limit   is.   

3. We  will  see  in  this  lecture,  that  the  graphon  is  the  limit.  That  the  graphon  is  introduced  to                    
formalize   the   notion   of   convergent   graph   sequences.     

9.2     Convergence   of   Graph   Sequences   

Slide   11:   Convergence   of   Graph   Sequences   -   Title   Page   

1. We  consider  graph  sequences  and  introduce  the  notion  of  convergence  in  terms  of               
homomorphism  densities.  We  use  this  convergence  notion  to  define  graphons  as  the              
limit   objects   of   convergent   sequences   of   graphs.   

Slide   12:   Convergent   Graph   Sequences   

1. Consider  a  sequence  of  graphs  G_n  with  growing  number  of  nodes  n.  Each  of  the                 
graphs  in  the  sequence  is  characterized  by  a  set  of  vertices  V_n,  a  set  of  edges  E_n,                   
and  an  adjacency  matrix  S_n.  The  graphs  in  the  sequence  may  be  weighted  or  not.                 
Thus,  the  entries  of  S_n  need  not  be  binary.  They  can  be  general  edge  weights.  We  also                   
point  out  that  we  are  using  S_n,  harking  back  to  the  concept  of  graph  shift  operator.  But                   
we  are  restricting  our  attention  to  adjacency  matrices.  S_n  is  not  an  arbitrary  matrix                
representation   of   the   graph.   
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2. We  have  already  intimated  that  we  want  to  study  graph  sequence  G_n  that  converges  to                 
a  graphon  W  as  n  goes  to  infinity.  This  is  illustrated  by  the  sequence  of  uniform  random                   
graphs  on  the  bottom  of  the  slide,  which  converge  to  the  uniform  graphon.  But,  and  as                  
we  already  intimated  as  well,  it  is  unclear  how  this  sequence  converges  and  in  what                 
sense   it   converges   to   the   graphon.   

3. To  understand  convergence  of  graph  sequences  to  graphons,  we  have  to  begin  with  the                
introduction   of   three   concepts:   Motifs,   homomorphisms,   and   homomorphism   densities.   

Slide   13:   Motif   and   Graph   Homomorphisms   

1. A  motif  F  is  a  graph.  It  can  be  any  graph,  but  it  is  convenient  to  think  of  it  as  a  small                        
graph   that   we   could   embed   into   another,   larger   graph.   

2. An  example  of  a  motif  is  this  star  graph  we  show  on  the  left.  Made  up  of  a  center  node                      
and  three  satellite  nodes.  This  motif  can  be  embedded  into  the  larger  graph  as  we  show                  
in  the  right.  It  is  important  to  observe  that  the  motif  can  be  embedded  into  the  graph  in                    
multiple   ways.   

3. This   is   another   place   where   the   star   motif   can   be   embedded     

4. This   is   another.   

5. This  is  another.  There  are  many  other  more  ways  in  which  we  can  embed  the  star  motif                   
into   this   graph.   

6. Another  possible  motif  is  this  cycle  graph  with  four  nodes.  This  motif  can  be  embedded                 
into   the   large   graph   on   the   right   as   shown.   

7. It   can   also   be   embedded   in   this   other   place   

8. Or   this   other   place   

9. Or  this  other.  As  was  the  case  of  the  star  graph  in  can  be  embedded  in  multiple  places.                    
An  important  observation  is  that  the  number  of  ways  in  which  we  can  embed  the  cycle                  
motif,  is,  in  all  likelihood,  different  from  the  number  of  ways  in  which  we  can  embed  the                   
star   motif   

10. Another  example  of  a  motif  is  this  hexagon  motif.  Which  is  in  fact  a  cycle  with  6  nodes.                    
The   hexagon   motif   can   be   embedded   as   shown   
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11. And   it   can   also   be   embedded   here   

12. And   here   

13. And  here.  Likely,  the  number  of  ways  in  which  we  can  embed  the  hexagon  motif  is                  
different   from   the   number   of   ways   in   which   we   can   embed   the   cycle   or   star   motif.   

14. Before  we  move  onwards  we  need  to  define  homomorphisms  formally.  A  homomorphism              
is  an  adjacency  preserving  map  from  a  motif  F  into  a  graph  G.  Thus,  If  the  motif  has                    
vertices   V-prime   and   edges   E-prime   while   the   graph   has   vertices   V   and   edges   E.   

15. A   homomorphism   is   a   map   beta   from   the    nodes    of   motif   F   into   the    nodes    of   graph   G.     

16. Such   that   if   i-j   is   an    edge    in   the   motif   F,   an   element   of   the   edge   set   E-prime.   

17. Then,  the  map  images  beta-of-i  and  beta-of-j  are  an  edge  of  the  graph  G.  An  element  to                   
the  edge  set  E.  It  is  ready  to  verify  that  this  is  true  of  the  homomorphisms  we  have                    
illustrated.     

Slide   14:   Homomorphism   Count   

1. As  we  have  already  emphasized,  a  motif  F  can  be  embedded  into  a  graph  G  in  multiple                   
ways.   There   are   multiple   homomorphisms   from   a   motif   F   to   a   graph   G.   

2. For   the   star   graph,   this   is   a   possible   homomorphism   function.   

3. This   is   a   second   possible   homomorphism.   

4. This   is   a   third.   

5. And   this   is   fourth.   There   are   may   more.   

6. The  count  of  all  homomorphism  functions  is  the  quantity  hom-of-F-G.  It  is  the  total                
number   of   ways   in   which   we   can   embed   the   motif   into   the   graph.   

Slide   15:   Homomorphism   Density   

1. Related  to  the  notion  of  homomorphism  count,  is  the  notion  of  homomorphism  density.               
To  define  this,  observe  that  If  the  graph  G  has  n  nodes  and  the  motif  F  has  n  prime                     
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nodes,  there  are  a  total  n  to  the  n  prime  different  maps  from  F  to  G.  Only  a  fraction  of                      
these   total   number   of   maps   are   homomorphisms.   

2. We  therefore  define  the  homomorphism  density  of  the  motif  F  into  the  graph  G  as  the                  
fraction   of   maps   that   are   homomorphisms.   

3. That  is,  the  ratio  between  the  homomorphism  count  hom-of-F-G  and  the  total  number  of                
maps   n   to   the   n-prime.   

4. We  denote  the  homomorphism  density  as  t(F,G).  This  is  a   relative  measure  of  the                
number  of  ways  in  which  the  motif  F  can  be  mapped  into  the  graph  G  while  preserving                   
the  adjacency  structure  of  the  motif.  It  is  therefore  a  quantity  that  we  can  expect  to  settle                   
into  a  limit.  As  the  size  of  the  graph  grows,  the  number  of  possible  homomorphisms                 
grows.   But   so   does   the   total   number   of   possible   maps.   

Slide   16:   Homomorphism   Density   for   Weighted   Graphs   

1. The  definition  we  have  just  given  can  be  extended  to  weighted  graphs.  The  extension  is                 
not  complicated.  But  it  gets  a  little  cumbersome.  Consider  a  graph  with  adjacency  matrix                
S.   Whose   entries   are   not   necessarily   binary.   

2. The  homomorphism  density  of  motif  F  into  the  weighted  graph  G  is  defined  as  shown.                 
This  definition  still  divides  by  the  total  number  of  possible  maps,  n  to  the  n-prime.  But  the                   
numerator   is   a   different   expression.   

3. The  expression  looks  quite  different  from  the  homomorphism  count  but  it  is  actually  quite                
similar.  We  are  still  counting  the  total  number  of  homomorphisms.  This  is  what  the  sum                 
over  different  beta  signifies.  But  each  homomorphism  is  weighted  by  the  product  of  the                
edge  weights  in  the  homomorphism  image.  If  we  map  the  motif  into  large  edge  weights,                 
we  multiply  by  larger  numbers.  We  add  a  large  value  to  this  weighted  homomorphism                
count.  If  me  map  the  motif  into  small  edge  waitsm  we  multiply  by  smaller  numbers.  We                  
add   a   small   value   to   this   weighted   homomorphism   count.     

Slide   17:   Homomorphism   Density   for   Graphon   

1. We  still  have  a  third  definition  of  homomorphism  density  to  introduce.  This  is  the               
homomorphism   density   of   a   graphon.     
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2. This  is  akin  to  the  definition  that  we  have  just  introduced  for  weighted  graphs  except  that                  
the  sum  is  replaced  by  an  integral.  Observe  how  in  the  definition  the  products  are  over                  
the   edges   and   vertices   that   define   the   motif.   

3. This  integral  has  a  very  simple  interpretation.  It  is  the  probability  of  drawing  the  motif  F                  
from   the   graphon   W   when   we   sample   n-prime   nodes   from   the   graphon.     

Slide   18:   Convergence   in   Homomorphism   Density   Sense   

1. With   these   definitions   in   place   we   can   now   define   convergent   graph   sequences.   

2. A  sequence  of  undirected  graphs  G_n  converges  to  the  graphon  W  if  and  only  if  for  all                   
motifs   F  

3. The  homomorphism  density  of  motif  F  into  the  graph  G_n  converges  to  the               
homomorphism   density   of   motif   F   into   the   graphon   W   as   n   goes   to   infinity.     

4. Convergence  of  graph  sequences  to  a  graphon  entails  convergence  of  the             
homomorphism  densities  of  all  motifs.  We  therefore  say  that  the  sequence  G_n              
converges   to   W   in   the   sense   of   homomorphism   density.     

5. An  important  aspect  to  emphasize  of  this  definition  is  that  every  graphon  is  the  limit                 
object   of   a   sequence   of   convergent   graphs   

6. The  complementary  observation,  namely,  that  every  convergent  graph  sequence           
converges   to   a   graphon   is   also   true.   

Slide19:   Example   of   Convergent   Graph   Sequence   

1. For  an  example  of  convergent  graph  sequences,  consider  a  sequence  of  random  graphs               
G_n   drawn   from   the   graphon   W   as   shown   on   the   bottom   of   the   slide.     

2. Each   graph   G_n   has   labels   u_i   drawn   uniformly   at   random   from   the   unit   interval   

3. And  the  edge  set  is  such  that  nodes  u_i  and  u_j  are  connected  with  probability                 
W(u_i,u_j).     

4. It  can  be  shown  that  this  graph  sequence  converges  to  the  graphon  in  the                
homomorphism  density  sense  with  probability  1.  The  figure  on  the  slide  illustrates  a               
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stochastic  graph  sequence  drawn  from  the  uniform  graphon  with  a  growing  number  of               
nodes.  The  limit  of  this  sequence  is  the  uniform  graphon  from  which  the  graphs  are                 
drawn.  The  almost  sure  convergence  of  the  random  graph  sequence  to  the  graphon               
from  which  the  graphs  are  drawn  holds  not  only  for  this  particular  choice  of  graphon.  It                  
holds   for   all   graphons.     

Slide   20:   Induced   Graphons   

1. We  close  this  video  with  a  concept  that  will  be  useful  in  later  discussions.  This  is  the                   
notion  of  the  graphon  induced  by  a  graph.  The  point  is  that  every  undirected  graph                 
admits   a   graphon   representation,   which   we   call   its   induced   graphon.   

2. Formally,  consider  a  graph  G  with  n  nodes  and  a  graph  shift  operator  S  in  which  the                   
weights   have   been   normalized   to   be   between   0   and   1.   

3. We  construct  a  partition  I_1  through  I_n  of  the  unit  interval.  In  which  the  intervals  I_i  are                   
regularly-spaced.  The  i-th  interval  goes  from  (i-1)  over  n  to  i  over  n.  This  is  what  is  called                    
a  regular  partition  of  the  unit  interval  with  n  subintervals.  Observe  that  the  partition                
subintervals  are  closed  on  the  left  and  open  on  the  right.  Except  for  the  last  partition  that                   
is  closed  on  the  left  and  the  right.  We  do  not  write  this  latter  fact  to  avoid  complicating  an                     
otherwise   simple   definition.   

4. We  define  the  induced  graphon  W_G  by  assigning  weight  S_ij  to  the  image  of  the                 
graphon  on  the  Cartesian  product  between  intervals  I_i  and  I_j.  That  is,  if  the  argument  u                  
belongs  to  partition  I-sub-i  and  the  argument  v  belongs  to  partition  I-sub-j,  we  assign  the                 
value  S-sub-i-j  to  the  induced  graphon.  The  weight  that  corresponds  to  the  edge  that                
matches  the  cardinality  of  the  intervals.  The  figure  illustrates  this  construction  for  the               
graphon  induced  by  the  cycle  graph  with  6  nodes.  The  colored  regions  are  the  parts  of                  
the  graphon  to  which  we  assign  nonzero  values.  Each  of  them,  corresponds  to  one  of                 
the   edges   of   the   cycle.     

9.3     Graphon   Signals   

Slide   21:   Graphon   Signals   -   Title   Page   
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1. In  this  section  we  introduce  the  concept  of  graphon  signals.  Graphon  sigals  are  signals                
supported   on   graphons   and   their   value   lies   in   that   they   are   limit   objects   of   graph   signals.   

Slide   22:   Graphon   Signals   

1. A  graphon  signal  is  a  pair  (W,  X)  in  which  W  is  a  graphon  and  X  is  a  function  mapping                      
the   unit   interval   to   the   real   numbers.   

2. The  function  X  in  the  graphon  signal  is  required  to  have  finite  energy.  This  is  equivalent                  
to   saying   that   X   belongs   to   the   space   of    L_2   functions   supported   in   the   unit   interval.     

3. In  case  you  are  not  familiar  with  the  meaning  of  finite  energy  for  continuous  signals,  it                  
just  means  that  the  integral  of  the  square  of  X  is  bounded.  The  figure  on  this  slide  shows                    
an  example  of  a  graphon  signal.  It  involves  a  function  supported  in  the  unit  interval,  and                  
a   graphon.   As   is   the   case   of   graphons,   graphon   signals   have   dual    interpretations:   

4. They   can   be   seen   as   generative   models   of   graph   signals.   

5. And   they   can   be   seen   as   limit   objects   of   convergent   sequences   of   graph   signals   

Slide   23:   Graphon   signals   as   generating   models   

1. The  use  of  a  graphon  signal  as  a  generative  model  involves  the  generation  of  graph                 
signals   (S_n   ,x_n)   by   taking   n   samples   of   the   graphon   signal   (W,X).   

2. This  sampling  process  involves  the  selection  of  labels  u_i  and  the  sampling  of  the                
graphon  at  these  labels.  The  sampling  can  be  stochastic  or  weighted.  Same  as  when  we                 
sample   graphs   from   graphons   

3. The  difference  is  that  now  we  add  a  samping  of  the  function  X  at  node  labels  u_i.  This                    
generates   the   values   of   the   graph   signal   associated   with   corresponding   nodes.   

4. An  important  point  to  emphasize  in  this  definition  is  that  the  sampling  of  the  graphon  and                  
the   function   X   must   be   at   the   same   labels.   The   sampling   must   be   consistent.     

Slide   24:   Induced   Graphon   Signals   
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1. To  explain  graphon  signals  as  limit  objects  we  need  the  notion  of  induced  graphon                
signals.  This  is  a  definition  that  we  obtain  by  leveraging  the  definition  of  induced                
graphons.     

2. Formally,  every  graph  signal  x  supported  on  a  graph  G  induces  a  graphon  signal  X_G                 
supported   on   the   induced   graphon   W_G.   

3. To  obtain  the  induced  graphon  signal  we  consider  the  regular  partition  of  the  unit  interval                 
with  n  nodes.  The  same  partition  we  used  for  the  induced  graphon.  We  have  n                 
subintervals   that   are   of   equal   width   1-over-n.     

4. We  obtain  the  signal  component  of  the  induced  graphon  signal  by  making  X_G  of  u                 
equal  to  x_i  for  all  the  arguments  u  that  lie  in  the  i-th  interval  of  this  regular  partition.  As                     
we  illustrate  in  the  figure  on  the  right  we  extend  the  graph  signal  value  to  cover  the                   
whole  of  the  i-th  partition.  Recall  that  the  subintervals  of  the  partition  are  closed  on  the                  
left  and  open  on  the  right.  Except  for  the  last  partition  that  is  closed  on  the  left  and  the                     
right.     

5. The  graphon  components  of  the  induced  graphon  signal  is  the  graphon  induced  by  the                
graph   G,   which   we   have   already   defined.     

6. For  completeness,  we  recall  that  this  induced  graphon  W_G  assign  the  value  S-sub-i-j               
when  the  argument  u  belongs  to  partition  I-sub-i  and  the  argument  v  belongs  to  partition                 
I-sub-j   

Slide   25:   Convergent   sequences   of   graph   signals   

1. We   can   now   introduce   graphon   signals   as   limit    objects   of   graph   signals.     

2. A  sequence  of  graph  signals  G_n  comma  x_n  is  said  to  converge  to  the  graphon  signal                  
(W,X)     

3. If   there   exists   a   sequence   of   permutations   pi_n   such   that   for   all   motifs   F   we   have   that:   

4. The  graph  sequences  converges  to  the  graphon  in  the  sense  of  homomorphism              
densities.  Namely,  the  homomorphism  density  of  the  motif  F  into  the  graphs  G_n               
converges  to  the  homomorphism  density  of  motif  F  into  the  graphon  W  for  all  motifs  F.                  
This   is   just   convergence   of   the   graph   sequence   to   the   graphon.    
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5. The  novel  aspect  of  the  definition  is  to  add  convergence  towards  0  of  the  L_2  norm  of                   
the  difference  between  the  graphon  signal  X  and  the  signal  X_sub  pi_n  of  G_n.  Namely,                 
the  graphon  signal  induced  by  the  graph  G_n  relabeled  according  to  the  permutation               
pi_n.   

6. We  say  that  the  graphon  signal  (W,X)  is  the  limit  of  the  graph  signal  sequence  (G_n,                  
x_n).   

7. The  permutation  is  used  in  this  definition  to  make  convergence  independent  of  labels.               
This  is  not  needed  in  the  definition  of  convergence  of  graph  sequences  because               
homomorphism  densities  are  independent  of  labeling.  To  retain  label  independence            
when  comparing  signals,  we  need  to  incorporate  the  proper  permutations  that  make  the               
signals  as  close  as  possible.  This  is  the  same  familiar  notion  of  distances  modulo                
permutation   which   we   encountered   in   our   stability   analysis   of   graph   filters   and   GNNs.     

8. Further  note  that  our  goal  is  to  compare  the   vector  x_n  with  the   function  X.  This  is  an                    
apples  to  oranges  comparison  that  we  resolve  with  the  use  of  the  induced  graphon                
signal.  We  do  not  compare  the   vector  x_n  with  X.  Rather,  we  compare  the  function                 
X_sub  pi_n  of  G_n  induced  by  x_n.  This  is  an  apples  to  apples  comparison.  We                 
compare   two   functions.     

Slide   26:   Graphon   shift   operator   

1. The  fundamental  operation  that  we  perform  on  graph  signals  is  a  multiplication  with  the                
shift  operator.  The  analogous  of  that  in  graph  signals  is  the  application  of  the  integral                 
linear  operator  T-sub-W  associated  with  with  the  graphon  W.  This  linear  operator  is  a                
functional   that   maps   graphon   signals   to   graphon   signals.   

2. When   applied   to   the   graphon   signal   X,   the   operator   T_W     

3. Produces   the   signal   T_wX   whose   value   at   v.     

4. Equals   the   integral   from   0   to   1   

5. Of   the   product   between   the   graphon   W   of   u-v   

6. And   the   graphon   signal   X-of-u.     

7. T_W  is  what  we  call  a  Hilbert-Schmidt  operator.  This  is  because  W  is  bounded  and                 
compact.   
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8. THe  most  important  point  to  remark  is  that  this  operation  is  conceptually  the  same  as  a                  
matrix  multiplication.  It  is,  in  fact,  the  limit  of  a  matrix  multiplication.  Integrals  are  not                 
sums.   But   it   is   always   helpful   to   think   of   them   as   sums.   

9. Drawing  on  the  proximity  of  the  operator  T_W  with  matrix  multiplications,  we  call  it  here                 
the   graphon   shift   operator   of   the   graphon   W.     

10. Applying  the  WSO  T_W  to  the  graphon  signal  X  has  the  effect  of  diffusing  the  signal  X                   
over  the  graphon  W.  We  know  that  this  is  true  intuitively  because  the  definition  of  the                  
WSO  is  akin  to  a  matrix  multiplication.  We  will  show  that  it  is  true  formally  when  we  get                    
to   studying   graphon   filters.   

9.4     The   Graphon   Fourier   Transform   

Slide   27:   The   Graphon   Fourier   Transform   -   Title   Page   

1.   Our  next  goal  is  to  generalize  notions  and  concepts  of  graph  signal  processing  to                 
graphons.   We   start   with   the   definition   of   a   Fourier   transform   for   graphon   signals.   

Slide   28:   Eigenfunctions   and   Eigenvalues   of   the   Graphon   Shift   Operator   

1. By  definition,  a  graphon  W  is  a  bounded  and  symmetric  measurable  function.  That               
makes  it  possible  for  us  to  associate  with  it  the  graphon  shift  operator  T_w,  which  is  a                   
self-adjoint   Hilbert-Schmidt   operator.   

2. This  operator  is  such  that  when  applied  to  the  signal  X,  it  produces  the  signal  T_w-X                  
whose   value   at   v   is:   

3. The  integral  of  the  product  between  the  kernel  of  the  operator  and  the  function  X.  From                  
this  definition  we  conclude  that  the  operator  T_W  is  bounded.  This  is  because  the  kernel                 
—-  the  graphon  W  —-  is  bounded.  We  also  conclude  that  the  operator  T_W  is  self                  
adjoint.   Because   the   graphon   W   is   symmetric.     

4. When  given  operators  of  this  type  we  can  define  eigenvalues  and  eigenfunctions.  We               
say  the  function  phi  from  the  interval  [0,1]  to  R  is  an  eigenfunction  of  T_W  with                  
associated   eigenvalue   lambda   if   
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5. After   applying   the   graphon   shift   operator   T_w   to   the   function   phi   

6. We  retrieve  a  scaling  of  the  original  function.  Thus,  as  the  name  suggests,  an                
eigenfunction   is   a   generalization   of   the   concept   of   eigenvectors   to   a   functional   space.   

7. A  graphon  shift  operator  Tw  has  an  infinite  but  countable  number  of              
eigenvalue-eigenfunction  pairs  lambda  i,  phi  i.  This  is  to  be  contrasted  with  the  fact  that                 
the  graphon  trakes  values  on  the  interval  0-1.  Which  is  uncountable.  This  property,               
namely,   that   the   eigenvalues   are   countable,   will   prove   very   important   in   our   theory.     

8. For  future  reference  we  observe  that  we  assume  the  eigenfunctions  to  be  normalized  to                
unit   energy.   That   is,   that   the   L2   norm   of   an   eigenfunction   phi-sub_i   is   equal   to   1.   

Slide   29:   Eigenfunctions   and   Eigenvalues   of   the   Graphon   Shift   Operator   

1. The  eigenfunctions  phi  i  of  the  graphon  shift  operator  Tw  form  an  orthonormal  basis  of                 
the  space  L2  [0,1].  That  property  will  be  fundamental  to  construct  a  graphon  Fourier                
transform  capable  of  decomposing  a  graphon  signal  on  the  basis  made  up  by  the                
eigenfunctions   of   the   graphon   shift   operator,   as   we   will   see   in   a   few   minutes.   

2. At  this  point  it  is  important  to  observe  that  since  the  kernel  of  a  self-adjoint  integral                  
Hilbert-Schmidt  operator  can  be  decomposed  in  the  operator  basis,  we  can  thus              
decompose  the  graphon  W  in  the  basis  of  eigenfunctions  of  the  operator  Tw.  In                
particular,  we  can  rewrite  W  as  a  sum  over  the  product  of  an  eigenvalue  lambda  i  and                   
associated   eigenfunction   phi_i.   

3. That  is  similar  to  the  eigenvector  decomposition  of  a  graph  shift  operator  S,  which,  as  we                  
have  seen  earlier  in  the  course,  can  be  decomposed  as  the  product  between  a  matrix  V                  
made  up  by  the  eigenvectors  of  S,  and  a  diagonal  matrix  Lambda  containing  the                
eigenvalues   of   the   graph   shift   operator.   

Slide   30:   The   Range   of   the   Graphon   Eigenvalues   

1. As  we  said,  the  graphon  shift  operator  Tw  is  self  adjoint,  symmetric,  and  defined  on  the                  
unit  interval.  That  implies  that  the  eigenvalues  of  a  graphon  are  real  and  lie  on  the                  
interval    minus   1,   1.   
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2. We  choose  to  order  eigenvalues  with  negative  indices  j  in  decreasing  order,  and  positive                
indexes  j  in  increasing  order.  As  we  show  in  the  figure,  the  eigenvalue  lambda_1  is  the                  
largest  positive  eigenvalue.  As  we  increase  the  index,  we  move  towards  smaller  positive               
eigenvalues.  The  eigenvalue  lambda_minus-1  is  the  largest  negative  eigenvalue.  As  we             
decrease  the  index,  as  we  increase  its  absolute  value,  we  move  towards  smaller               
negative  eigenvalues.  All  positive  eigenvalues  have  a  positive  index  and  all  negative              
eigenvalues   have   a   negative   index.   

Slide   31:   Eigenvalues   Concentrate   Around   Zero   

1. The  most  important  point  for  us  to  observe  abut  the  eigenvalues  of  a  graphon  is  that                  
thye  accumulate  at  the  point  lambda  equals  0.  That  is,  the  eigenvalues  converge  to  zero                 
as   j   tends   to   plus   or   minus   infinity.   

2.    And   This   is   the   only   point   of   accumulation   for   eigenvalues.     

3. A  consequence  of  this  fact  is  that  for  any  constant  c  that  we  fix,  the  number  of                   
eigenvalues   lambda   j   that   have   absolute   value   larger   than   c   is   finite.     

4. Another  important  property  to  point  out  is  that  all  eigenvalues  that  are   not  0  have  finite                  
multiplicity.   

Slide  32:  Eigenvalues  of  a  Convergent  Graph  Sequence  Converge  to  Those  of  the               
Graphon   

1. As  we  can  see  graphons  as  the  limit  objects  of  convergent  graph  sequences,  it  is  not                  
unreasonable  to  expect  the  eigenvalues  of  a  convergent  graph  sequence  to  converge  to               
the   eigenvalues   of   the   limit   graphon.   This   result   is   formalized   in   the   following   theorem.   

2.    According   to   the   theorem,   if   a   sequence   of   graphs   Gn   

3.    Converges   to   a   graphon   W   

4.    In   the   homomorphism   density   sense   

5. Then   

6. (empty)   



Page   17   of   26   

7. If   we   take   the   limit   as   n   tends   to   infinity   

8. Of   the   ratio   between   an   eigenvalue   lambda   j   of   Sn,   and   n   

9. That   is   equal   to   the   to   the   eigenvalue   lambda   j   of   the   limit   graphon   W     

10. Which  corresponds  to  the  limit  as  n  tends  to  infinity  of  the  eigenvalue  lambda  j  of  the                   
graphon   induced   by   Gn   

11. Which   holds   for   all   j   

12. That  is,  the  theorem  states  that,  for  any  convergent  graph  sequence  Gn,  the  eigenvalues                
lambda  j  of  the  graph  shift  operator  Sn  converge  to  the  eigenvalues  lambda  j  of  Tw,  with                   
Tw   the   graphon   shift   operator   associated   to    the   limit   graphon   W   

Slide  33:  Eigenvalues  of  a  Convergent  Graph  Sequence  Converge  to  those  of  the               
Graphon   

1. According   to   the   previous   theorem,   for   any   convergent   graph   sequence   

2. The   eigenvalues   of   the   graph,   in   blue   

3.    Converge   to   those   of   the   limit   graphon,   in   red   

4. Note  that,  as  expected  from  our  earlier  analysis,  the  eigenvalues  of  the  graphon               
accumulate   around   zero   —-   which   does   not   hold   for   the   eigenvalues   of   the   graph.   

5. More   precisely,    convergence   of   the   eigenvalues   holds   in   the   sense   that   

6. There   exists   some   n   0   

7. Such   that   

8. For   every   n   larger   than   n   0   

9. The   absolute   value   

10. Of   the   difference   between   the   eigenvalue   of   the   graph   shift   operator   of   Gn   

11. And   the   eigenvalue   of   the   limit   graphon   



Page   18   of   26   

12. Is   less   than   or   equal   to   some   epsilon   

13. But   the   value   of   n_0   for   which   convergence   holds   is   different   for   each   j   

14. Thus,   the   convergence   of   the   eigenvalues   is   not   uniform   

Slide   34:   The   Graphon   Shift   Operator   Induces   a   Transform   [if   keeping   this   slide]   

1. The  decomposition  of  the  graphon  on  the  operator’s  basis  allows  us  to  rewrite  the                
graphon   shift   operator   Tw   as   

2. A  sum  over  the  product  between  an  eigenvalue  lambda  j,  the  associated  eigenfunction               
phi  j  and  the  integral  of  the  product  of  that  eigenfunction  phi  j  and  the  original  graphon                   
signal   X   

3. The  integral  terms  in  that  expression  correspond  to  inner  products  <X,  phi  j>  between                
the  signal  and  a  particular  eigenfunction,  which  we  can  see  as  a  projection  of  the  original                  
graphon   signal   X   over   that   particular   eigenfunction   

4. But  we  saw  that  the  eigenfunctions  of  a  graphon  shift  operator  form  a  complete                
orthonormal   basis   of   L2   ([0,1])   

5. Thus,  those  inner  products  can  provide  a  complete  representation  of  the  original              
graphon   signal   X   on   the   basis   of   the   graphon   shift   operator   

6. That  change  of  basis  without  loss  of  information  about  the  signal  is  what  we  call  the                  
graphon  Fourier  transform.  Similar  to  how  a  graph  Fourier  transform  decomposes  a              
graph   signal   into   the   eigenfrequencies   of   the   graph   shift   operator.   

Slide   35:   The   Graphon   Fourier   Transform   (WFT)   

1. Given  that  motivation  for  the  definition  of  a  graphon  Fourier  transform,  we  now  proceed                
to   define   that   concept   formally   

2. The   graphon   Fourier   transform   (WFT)   

3. Of   a   graphon   signal   X   

4. Can   then   be   defined   another   graphon   signal   X   hat   defined   over   the   operator’s   basis   
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5. Where   each   component   X   hat   j   of   that   signal   

6.   Corresponds  to  the  component  of  the  signal  associated  to  a  particular  frequency  defined                
by   the   eigenvalue   lambda   j   

7. And   can   be   computed   as   the   integral   from   0   to   1   

8. Of   the   product   between   the   original   graphon   signal   X   

9.    And   the   corresponding   eigenfunction   phi   j   

10. With  lambda  j  the  eigenvalues  and  phi  j  the  eigenfunctions  of  the  associated  graphon                
shift   operator   Tw   

11. Since   the   eigenvalues   —   and   eigenfunctions   —-   are   countable   

12. The   graphon   Fourier   transform   X   hat   can   always   be   defined   

Slide   36:   The   Inverse   Graphon   Fourier   Transform   

1. Naturally,  we  next  define  an  inverse  graphon  fourier  transform  that  maps  signals  defined               
on   the   graphon   shift   operator’s   basis   back   to   the   original   domain   

2. The   inverse   graphon   Fourier   transform   (iWFT)   

3. Of   a   graphon   signal   X   hat   

4. Can   then   be   defined   as   

5. The   sum   over   the   countable   indexes   j   

6. Of   the   product   between   the   component   of   X   hat   

7. Corresponding   to   the   eigenvalue   lambda   j   

8. And   the   associated   eigenfunction   phi   j   

9. With  lambda  j  the  eigenvalues  and  phi  j  the  eigenfunctions  of  the  associated  graphon                
shift   operator   Tw   

10. Since   the   eigenfunctions   phi   j   form   a   complete   orthonormal   basis   of   L2   ([0,1])   
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11. We  can  see  that  the  inverse  graphon  Fourier  transform  retrieves  the  original  graphon               
signal  X  without  loss  of  information.  Hence,  the  iWFT  is  a  proper  inverse  of  the  graphon                  
Fourier   transform.   

9.5     The   GFT   Converges   to   the   WFT   

Slide   37:   The   GFT   converges   to   the   WFT   

1. In  this  part  of  the  lecture  we  discuss  the  convergence  of  the   graph  Fourier  transform  to                  
the    graphon    Fourier   transform   for   graphs   sequences   that   converge   to   graphons.   

2. Doing  so  requires  that  we  review  convergence  results  for  sequences  of  graphs  that               
converge   to   graphons.   

Slide   38:   The   Graphon   Fourier   Transform   and   the   Graph   Fourier   Transform   

1. The  graphon  Fourier  transform  of  a  graphon  signal  W-X  is  a  projection  of  the  signal  X  in                   
the  eigenspace  of  the  graphon  W.  Component  j  of  the  WFT  is  the  inner  product  of  the                   
signal  X  with  the  eigenfunction  phi_j.  This  is  the  j-th  eigenfunction  of  the  graphon,  which                 
is   associated   with   eigenvalue   lambda_j.   

2. The   graph   Fourier  transform  of  a   graph  signal  G_n-x_n  is  a  projection  of  the  signal  x  in                   
the  eigenspace  of  the  graph  G_n.  Component  j  of  the   G FT  is  the  inner  product  of  the                   
signal  x  with  the  eigenvector  v_n-j.  The  eigenvector  of  G_n  that  is  associated  with                
eigenvalue   lambda_j   

3. Given  the  similarity  of  these  two  definitions,  it  is  reasonable  to  conjecture  that  if  we  have                  
a  sequence  of  graph  signals  G_n-x_n  that  converges  to  the  graphon  signal  W-X  the                
corresponding   sequence   of    graph    FTs   converges   to   the    graphon    FT.   

4. This  conjecture  gets  more  credence  if  we  remember  that  eigenvalue  convergence  holds.              
The   eigenvalues   lambda_n-j   approach   the   eigenvalue   lambda_j.   

5. This   conjecture   should   hold   

6. Alas,   the   conjecture   is   wrong.   
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7. Convergence  of  the  GFT  to  the  WFT  does   not  hold  in  general.  It  is  not  true  that  the                    
sequence   of   GFTs   converges   to   the   WFT.   

8. The  reason  for  our  conjecture  to  fail  is  that  for  the  GFT  sequence  to  converge  to  the                   
WFT,   we   need   to   state   convergence   of   eigenvectors   to   eigenfunctions.   

9. Convergence  of  eigenvalue  sequence  is  not  sufficient  to  claim  convergence  of  the  GFT               
sequence  because  the  GFT  and  the  WFT  are  projections  on  eigenvectors  and              
eigenfunctions.   They   are   not   projections   on   eigenvalues.   

Slide   39:   Convergence   to   Graphon   Eigenvectors   

1. The  challenge  in  claiming  convergence  to  graphon  eigenvectors  is  that  convergence  is              
affected   by   how   close   the   eigenvalues   of   other   eigenvectors   are.   

2. Suppose  that  we  consider  convergence  towards  the  eigenvector  associated  with            
lambda_2  in  the  figure.  We  know  that  the  sequence  of  lambda_2  eigenvalues  associated               
with  the  sequence  of  graphs  converges  to  lambda_2.  We  expect  the  eigenvector              
sequence   to   converge   as   well.   This   is   true.   The   eigenvector   converges.   

3. But  how  deep  we  need  to  go  into  the  sequence  index  n  to  observe  that  we  approach  the                    
limit,  depends  on  how  far  lambda_2  is  to  other  eigenvalues.  In  this  particular  case,  how                 
far  lambda_2  is  from  lambda_1  and  lambda_3.  This  is  not  a  problem  for  the                
convergence  of  the  eigenvector  associated  with  lambda_2.  Eigenvalues  lambda_1  and            
lambda_3   are   not   close   to   lambda_2.   

4. But  it  is  a  problem  for  eigenvalues  lambda  that  are  close  to  zero.  The  eigenvalues  of  the                   
graphon  accumulate  at  zero.  All  eigenvalues  in  the  sequence  of  graphs  converge  to               
some   graphon   eigenvalue.   But   other   eigenvalues   of   the   graphon   are   close.   

5. This  makes  the  eigenvectors  slow  to  converge.  They  all  converge,  but  convergence  is               
not   uniform.   

Slide   40:   Eigenvalue   Margin   for   Linear   Operators   

1. To  state  eigenvector  convergence  formally  we  introduce  the  notion  of  eigenvalue  margin              
for  linear  operators.  Consider  eigenvalues  lambda_j  of  the  graphon  W  and  lambda_n-j  of               
the  graph  G_n.  This  graph  is  part  of  a  sequence  that  converges  to  W,  but  we  don’t  need                    
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that  information  in  this  definition.  It  is  important  to  notice  that  both  eigenvalues  have  the                 
same   index,   though.   

2. We  then  proceed  to  compare  the   graphon  eigenvalue  lambda_j  with  the  closest   graph               
eigenvalue   lambda_n-i   other   than   lambda_n-j.   

3. As  we  show  in  the  figure,  we  grow  an  interval  around  the   graphon  eigenvalue  lambda_j.                 
The  interval  grows  until  it  hits  the  first   graph  eigenvalue  lambda_n- i  that  is  not                
lambda_n- j .   We   call   this   margin   d_1.   

4. We  do  the  same  for  the  graph.  That  is,  we  compare  the   graph  eigenvalue  lambda_n-j                 
with   the   closest    graphon    eigenvalue   lambda-i   other   than   lambda-j.   

5. As  we  show  in  the  figure,  we  grow  an  interval  around  the   graph  eigenvalue  lambda_n-j.                 
The  interval  grows  until  it  hits  the  first   graphon  eigenvalue  lambda- i  that  is  not                
lambda_ j .   We   call   this   margin   d_2   

6. The  minimum  of  the  margins  d_1  and  d_2  is  the  eigenvalue  margin  for  d  of  lambda_j                  
comma  lambda_n-j.  This  margin  determines  the  convergence  properties  of  the            
eigenvector   associated   with   lambda_n-j   to   the   eigenvector   associated   with   lambda_j.   

Slide   41:   Convergence   of   Eigenvectors   

1. We  are  now  ready  to  state  a  classical  theorem  for  the  convergence  of  eigenfunctions  of                 
linear   operators.   

2. Given   a   graphon   W   and   a   graphon   W_G-n   induced   by   the   graph   G_n   

3. We  consider  the  graphon  eigenvalue  lambda_j  along  with  the  graph  eigenvalue             
lambda_n-j.   The   latter   is   also   an   eigenvalue   of   the   induced   graphon.   

4. Then,  the  distance  between  the  corresponding  associated  eigenfunctions.  Namely,  the            
eigenfunction  phi_j  of  the  graphon  W  and  the  eigenfunction  phi_n-j  of  the  induced               
graphon   W_G_n.   

5. Is   bounded   by   the   product   of   pi   over   2  

6. With  the  ratio  between  the  norm  of  the  difference  between  the  graphon  W  and  the                 
induced   graph   W_G_n   
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7. And   the   eigenvalue   margin   for   the   eigenvalues   lambda_j   and   lambda_n-j.  

8. The  theorem  implies  convergence  of  the  eigenfunctions  for  as  long  as  the  graph               
sequence  converges  to  the  graph.  Indeed,  if  the  graph  sequence  converges  to  the               
graphon,  the  induced  graphon  sequence  converges  to  the  graphon.  The  norm  in  the               
right  hand  side  of  the  inequality  vanishes  and  it  therefore  must  be  that  the  eigenfunctions                 
converge.   

9. This  is  true  irrespectively  of  the  eigenvalue  margin.  However,  as  the  eigenvalue  margin               
decreases,  it  takes  a  smaller  value  of  the  norm  of  the  difference  between  the  graphon                 
and  the  induced  graph  to  cancel  it  out.  This  means  that  we  need  to  go  deeper  into  the                    
sequence  index  n  to  claim  convergence.  All  eigenvectors  converge.  But  it  takes  larger               
graphs   for   convergence   to   manifest   when   the   eigenvalue   margin   is   small.   

Slide   42:   The   GFT   Does   Not   Converge   to   the   WFT   

1. Herein  lies  the  reason  why  the  GFT  does  not  converge  to  the  WFT.  For  graphon                 
eigenvalues   close   to   0   the   eigenvalue   margin   vanishes.   

2. These  has  to  be  the  case  because  we  know  there  are  an  infinite  number  of  eigenvalues                  
in   the   the   minus-c-c   interval.   Eigenvalues   accumulate   at   0.   

3. Thus,  for  any  fixed  sequence  index  n  and  constant  epsilon,  we  have  some  eigenvalue                
index  j  for  which  the  right  hand  side  of  the  bound  in  the  previous  theorem  exceeded                  
epsilon.  We  just  have  to  move  the  eigenvalue  sufficiently  close  to  zero  so  that  the                 
eigenvalue  margin  becomes  sufficiently  small.  Remember  that  we  have  fixed  the  index              
n.   

4. This   the   opposite   of   what   we   need   for   a   convergence   claim.   

5. Which  would  be  that  for  all  constants  epsilon,   all   iteration  indexes  n  that  exceed  a                 
certain  n_zero   and  all  eigenvalue  indexes  j ,  we  can  claim  the  bound  to  be  smaller  than                  
epsilon.  For  those  of  you  that  know  the  term,  we  can  claim  convergence  of  individual                 
eigenvectors.   But   we   cannot   claim    uniform    convergence   of   the   set   of   eigenvectors.   

Slide   43:   Graphon   Bandlimited   Signals   
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1. The  resolution  of  this  problem  is  quite  simple.  However  disappointing.  We  restrict              
attention  to  graphon  bandlimited  signals.  Which  are  those  whose  WFT  components  are              
null   below   a   certain   threshold.   

2. Formally,   A   graphon   signal   W-X   is   said   to   be   c-bandlimited.   

3. For   some   strictly   positive   bandwidth   c.   

4. If  the  Fourier  coefficients  of  the  graphon  Fourier  transform  associated  to  eigenvalues              
whose  absolute  values  is  less  than  c  is  0.  We  just  require  the  WFT  components                 
associated   with   eigenvalues   between   -c   and   c   to   be   null.   

Slide   44:   Bandlimited   and   Not-Bandlimited   Graphon   Signals   

1. This  definition  is  not  simple.  To  emphasize  this  point  suppose  that  we  have  a  signal  that                  
is   not   graphon-bandlimited   as   we   show   in   the   figure.   

2. We  can  make  it  graphon  c-bandlimited  by  nullifying  all  of  the  WFT  components  of  the                 
signal   that   lie   between   minus-c   and   c.   

Slide   45:   Graph   Fourier   Transform   Convergence   for   Bandlimited   Signals   

1. Introducing  a  bandwidth  limit  eliminates  the  problems  associated  with  the  accumulation             
of  eigenvalues  around  zero.  We  eliminate  the  challenge  of  having  garçon  eigenvalues              
too  close  to  each  other.  It  is  therefore  not  difficult  to  see  that  we  can  claim  convergence                   
of   the   sequence   of    graph    Fourier   transforms   to   the    graphon     Fourier   transform.   

2. Consider  then  a  sequence  of  graph  signals  G_n-x_n.  These  signals  converge  to  the               
graphon  signal  W-X,  which  we  assume  it  is  c-bandlimited.  Observe  ow  the  bandlimited               
assumption   is   on   the   graphon   signal.   

3. We   then   have   that   there   exist   a   sequence   of   graph   permutations   pi_n   such   that   

4. The  sequence  of  GFTs  of  the  graph  signals  G_n-x_n  converges  to  the  WFT  of  the                 
graphon   signal   W-X.   

5. The  proof  of  this  result  is  not  difficult.  We  have  eliminated  the  challenge  that  arises                 
because  of  the  accumulation  of  eigenvalues  at  0.  We  are  providing  the  proof  in  a                 
supplementary   material   that   you   can   download   from   the   course   webpage.   
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Slide   46:   Inverse   Graph   Fourier   Transform   Convergence   for   Bandlimited   Signals   

1. The  same  can  be  claimed  of  the  inverse  GFT.  Namely  that  the  sequence  of  inverse                 
graph    Fourier   transforms   converges   to   the   inverse    graphon     Fourier   transform.   

2. We  consider  then  a  sequence  of  graph  Fourier  transforms  G_n-x_n-hat  that  converge  to               
a  graphon  Fourier  transform  W-X.  This  requires  convergence  of  the  graph  sequence  to               
the   graphon   and   convergence   of   the   sequence   of   GFTs   to   the   WFT.   

3. The  graphon  Fourier  transform  is  assumed  to  be  associated  with  a  signal  that  is                
c-bandlimited.   

4. We   then   have   that   there   exist   a   sequence   of   graph   permutations   pi_n   such   that   

5. The  sequence  of  inverse   graph  Fourier  transforms  converges  to  the  inverse graphon              
Fourier   transform.   

6. The  proof  of  this  result  is  also  not  difficult.  You  can  find  it  in  supplementary  materials  that                   
you   can   download   from   the   course   webpage.   

Slide   47:   Graph   Fourier   Transform   Convergence   for   Bandlimited   Signals   

1. The  convergence  of  the  GFT  sequence  to  the  WFT  depends  on  the  convergence  of                
graph   eigenvalues   to   graphon   eigenvalues.   

2. We  know  that  graph  eigenvalues  approach  graphon  eigenvalues  as  n  grows.  This  bodes               
well  for  convergence  of  the  GFT.  This  is  mostly  true.  The  convergence  of  eigenvalues                
implies  convergence  of  the  GFT.  But  this  is  only  part  of  the  story.  We  have  a  technical                   
complication.   

Slide   48:   Graph   Fourier   Transform   Convergence   for   Bandlimited   Signals   

1. As  the  eigenvalue  index  grows,  the  eigenvalues  of  the  graph  and  the  graphon  become                
difficult  to  tell  apart  as  they  accumulated  around  0.  This  precludes  uniform  convergence               
of   eigenvectors.   

2. And  leads  to  a  GFT  convergence  result  that  applies  to  graphon  bandlimited  signasl.               
Those  that  don’t  have  GFT  components  associated  with  eigenvalues  that  lie  below  a               
threshold  c  in  absolute  value.  At  this  point  we  must  recognize  that  out  interest  in  the  GFT                   
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and  the  WFT  lies  in  their  ability  to  explain  the  behavior  of  graph  filters.  We  work  on  this                    
next.   

9.6     Graphon   Filters   

Slide   49:   Graphon   Filters   -   Title   Page   

1. We  give  the  definition  of  graphon  filters  and  give  their  frequency  response.  We  further                
show   that   the   frequency   response   is   independent   of   the   graphon   itself.     

Slide   50:   Graphon   Filters   

1. Every  graphon  W  induces  a  graphon  shift  operator  T_W.  By  recursively  applying  the               
graphon   shift   operator   to   a   graphon   signal,   we   can   create   a   diffusion   sequence   

2. With   the   k   th   element   of   that   diffusion   sequence,   T_w^k   X,   

3. Given   by   the   integral,   evaluated   between   0   and   1,   

4. Of   the   product   between   the   graphon   W   

5. And   the   previous   element   in   the   diffusion   sequence,   T_w^(k   -   1)   of   X   

6. For  this  definition  to  be  complete,  the  initial  term  of  the  diffusion  sequence  has  to  be                  
defined   as   the   signal   X   itself.   

7. We  can  now  use  that  diffusion  sequence  induced  by  a  graphon  shift  operator  to  define  a                  
graphon  filter.  Formally,  we  say  that  a  graphon  filter  of  order  K  is  defined  by  the  filter                   
coefficients  h_k  and  produces  outputs  Y  given  by  the  sum  —-  up  to  order  K  —-  of  the                    
product  between  the  coefficient  h_k  and  the  k-th  element  of  the  graphon  diffusion               
sequence   T_w^k   of   X   

8. A  graphon  filter  maps  a  graphon  signal  X  to  another  graphon  signal  Y.  Relying  on  our                  
standard   notation   for   operators,   we   then   denote   a   graphon   filter   by   T_H-X.   

9. Note   that   a   graphon   filter   is   nothing   more   than   a   linear   combination.     



Page   27   of   27   

10. Of   successive   graphon   diffusions   of   the   original   signal.   

11. Modulated   by   the   corresponding   filter   coefficients   h_k   

Slide   51:   Graphon   Filters   and   Graph   Filters   

1. In  this  sense,  a  graphon  filter  has  the  same  algebraic  structure  of  a  graph  filter.  As  we                   
saw  in  previous  lectures,  a  graph  filter  can  be  defined  as  a  polynomial  on  the  graph  shift                   
operator.  That  is,  a  graph  filter  of  order  K  is  comprised  of  successive  graph  diffusions  (up                  
to  order  K)  modulated  by  the  corresponding  filter  taps.  Likewise  a  graphon  filter  of  order                 
K  is  comprised  of  successive  graphon  diffusions  —-  represented  by  recursive             
applications  of  the  graphon  shift  operator  T_w  —-  also  modulated  by  filter  coefficients               
h_k.   

2. The  only  difference  lies  in  the  shift  operator.  Instead  of  a  graph  shift  operator,  we  now                  
rely  on  the  integral  graphon  shift  operator  T_w  of  X  instead.  But,  otherwise,  we  still                 
encounter  the  familiar  shift  register  structure.  With  its  familiar  use  of  shift,  scale,  and  sum                 
operations.     

3. Indeed,   to   construct   the   output   of   a   graphon   filter,   we   start   with   the   input   signal   X   

4. Which,   modulated   by   the   initial   filter   coefficient   h_0,   

5. Is   the   first   element   that   we   add   to   construct   the   output   

6. We  then  apply  the  graphon  shift  operator  T_w  to  the  input  signal,  observing  the  first                 
diffusion   of   the   graphon   signal/   

7. This   quantity   is   scaled   by   the   corresponding   filter   tap,   h_1   

8. And   summed   towards   the   output.  

9. With  another  application  of  the  graphon  shift  operator,  we  now  obtain  the  third  element  in                 
the   diffusion   sequence.   

10. Which   is   modulated   by   the   corresponding   filter   coefficient   h_2   

11. And   summed   towards   the   output.  



Page   28   of   28   

12. By  yet  another  application  of  the  graphon  shift  operator,  we  now  observe  the  fourth                
element   in   the   diffusion   sequence   

13.    Which   is   then   modulated   by   the   corresponding   filter   coefficient   h_3   

14. And   added   to   the   output.   

15. Since  we  have  a  filter  of  order  4  this  is  the  output  of  the  graphon  filter.  The  process  is                     
the  same  for  higher  order  graphon  filters.  We  just  repeat  the  shifting,  the  scaling,  and  the                  
summing   a   few   more   times.   

Slide   52:   Graphon   filters   in   the   Graphon   Fourier   Transform   Domain   

1. Now,  we  will  leverage  the  graphon  Fourier  transform  to  analyze  graphon  filters  in  the                
frequency  domain.  First,  we  compute  the  graphon  Fourier  transform  of  the  input  signal,               
X  hat,  with  each  component  X  hat_j  given  by  the  integral  of  the  product  between  the                  
signal   original   signal   X   and   the   j-th   eigenfunction,   phi   j,   

2. And   the   graphon   Fourier   transform   of   the   output,   Y   hat,   defined   in   a   similar   manner   

3. Now,   we   state   a   theorem   for   the   graph   frequency   representation   of   graphon   filters   

4. According   to   which,   given   a   graphon   filter   T_H   with   coefficients   h_k,   

5. The  components  of  the  graphon  Fourier  transforms  of  the  input  and  output  signals  are                
related   by   

6. That  is,  the  j_th  component  of  the  graphon  Fourier  transform  of  the  output,  Y  hat_j,  is                  
equal  to  the  product  of  the  j_th  component  of  the  graphon  Fourier  transform  of  the  input                  
signal,  X  hat_j,  and  a  polynomial  on  the  j_th  eigenvalue  of  the  graphon  shift  operator,                 
T_w,   modulated   by   the   filter   coefficients   h_k   

7. That  is  the  same  polynomial  that  defines  the  graphon  filter,  but  with  the  eigenvalue                
lambda   j   —-   and   not   the   graphon   shift   operator   —-   as   a   variable   

Slide   53:   Graphon   Frequency   Response   

1. Since  the  j_th  component  of  the  graphon  Fourier  transform,  Y  hat  _j,  depends  only  on                 
the  j_th  component  of  the  graphon  Fourier  transform  of  the  input  signal,  X  hat_j,  and  a                  
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polynomial  on  the  j_th  eigenvalue,  we  can  conclude  that  graphon  filters  are  pointwise  in                
the  graphon  fourier  transform  domain.  In  the  same  way  that  graph  filters  are  pointwise  in                 
the   graph   domain.   

2. That  pointwise  characteristic  of  graphon  filters  in  the  graphon  Fourier  transform  will             
allows   us   to   define   the   frequency   response   of   a   graphon   filter   

3. Given   a   graphon   filter   with   coefficients   h,     

4. the  frequency  response  of  the  graphon  filter  is  defined  as  a  polynomial  on  a  scalar                 
variable   lambda   modulated   by   coefficients   h_k.   

5. This  definition  is  such  that  we  can  write  the  output  of  a  graphon  filter  in  the  graphon                   
Fourier  transform  domain  by  multiplying  the  input  GFT  components  X_j  by             
h-of-lambda_j.     

6. But  a  very  important  observation  is  that  this  is  exactly  the  same  definition  of  the                 
frequency  response  of  a  graph  filter  with  the  same  filter  coefficients.  This  is  so  important                 
that  I  will  repeat  it.  This  is  the  exact  same  definition  of  the  frequency  response  of  a  graph                    
filter.   It   doesn’t   matter   that   we   are   now   working   with   graphons.     

Slide   54:   Frequency   Response   is   Independent   of   the   Graphon   

1. Why  is  this  so  important?  Well,  since  the  frequency  response  of  a  graphon  filter  and  a                  
graph  filter  are  the  same  if  they  share  the  same  filter  coefficients,  this  function  is  a                  
representation   of   both.     

2. The   effect   of   a   graphon   filter   is   to    instantiate   graphon   eigenvalues.   

3. And   the   effect   of   a   graph   filter   is   to   instantiate   graph   eigenvalues.   

4. If  we  now  consider  a  graph  sequence  converging  to  a  graphon,  we  know  that  the                 
eigenvalues   converge.   This   must   mean   that:   

5. The  filter   transfers !   From  the  graph  to  graphon.  Fom  the  graphon  to  the  graph.  Across                 
different  graphs  drawn  from  the  graphon.  Even  if  their  numbers  of  nodes  are  different.                
This  is  the  basis  for  our  analysis  of  the  transferability  of  graph  filters  and  GNNs  that  we                   
will   undertake   next   week.   
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