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Lecture   12   Script   

12.1     Linear   Algebra   

Slide   1:   Linear   Algebra   -   Title   Page   

1. Algebraic  neural  networks  are  rooted  in  the  theory  of  algebraic  signal  processing.  This  is                
a  recasting  of  signal  processing  in  the  language  of  abstract  linear  algebra.  We  therefore                
must  begin  with  some  recollections.  In  this  video  we  go  over  the  foundational  concepts                
of   linear   algebra:   fields,   vectors   spaces   and   algebras.   

2. We  will  use  these  definitions  to  point  out  that  linear  information  processing  is  tantamount                
to  the  application  of  operators  that  live  in  the  algebra  of  endomorphisms  of  a  vector                 
space.   

Slide   2:   Fields   

1. The  first  definition  that  we  recall  is  that  of  a  field  F.  If  we  are  not  interested  in  being                     
formal,  a  Field  can  be  defined  as  a  set  in  which  a  sum  and  a  multiplication  operation  are                    
defined.     

2. Thus,  the  introduction  of  a  particular  field  is  intended  to  define  numbers  and  the                
operations  we  perform  on  them.  This  is  not  sophisticated.  We  are  referring  about  things                
like   the   set   of   real   numbers.   Or   the   set   of   complex   numbers.   

3. On  which  there  are  two  operations  defined.  The  sum  and  the  product.  Which  have  the                 
usual   meaning   with   which   you   are   familiar   since   your   kindergarten   days.     

4. If  we  want  to  be  formal  about  it,  a  field  is  defined  as  a  set  on  which  two  binary  operations                      
are  defined:  Addition  and  Multiplication.  These  operations  must  satisfy  certain            
properties:   

5. They   must   be   associative   operations   

6. They   must   also   be   commutative   
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7. And  they  both  must  have  identity  elements.  A  zero  for  the  sum.  And  a  1  for  the                   
multiplication.     

8. The   sum   is   required   to   have   an   inverse   (or   opposite)   for   all   elements   

9. And  the  multiplication  is  required  to  have  an  inverse  for  all  elements,  except  the  identity                 
element   of   the   product.     

10. The  final  property  of  the  field  is  the  distributive  property  of  the  multiplication  operation                
over  the  addition  operation.  It  may  look  supercilious  to  be  formal  about  the  definition  of                 
something  so  simple  as  additions  and  multiplications.  But  it  is  not.  The  idea  is  to  see  that                   
any  set  with  a  pair  of  operations  that  satisfy  these  properties  is  analogous  to  a  set  of                   
numbers.  This  may  include  sets  that  do  not  look  like  numbers.  And  as  long  as  the  results                   
we  derive  depend  on  the  properties  we  list,  they  would  hold  true  for  these  other  sets  that                   
don’t   look   like   numbers   but   share   these   fundamental   properties   with   them.   

Slide   3:   Vector   Spaces   

1. The   second   foundational   concept   of   linear   algebra   is   that   of   a   vector   space.     

2. A  vector  space  M  over  a  field  F  is  a  set  whose  elements  can  be  added  together  and  that                     
can  also  be  multiplied  by  elements  of  the  field.  Very  importantly,  the  elements  of  the                 
vector  space  don’t  have  to  be  multipliable.  We  don’t  require  the  definition  of  a  product                 
between  elements  of  the  vector  space.  We  just  require  that  the  definition  of  a  product                 
between   elements   of   the   vector   space   and   the   field.   

3. A   vector   space   is   a   set   of   arrows.     

4. For  our  purposes,  the  vector  space  defines  the  type  of  signals  we  want  to  process.  They                  
can  be  vectors  in  R-n.  Or  square  integrable  functions  in  the  interval  0-1.  Sequences  are                 
another   example.   

5. The  difference  between  a  field  and  a  vector  space,  is  the  incorporation  of  two  new                 
operations.     

6. The   addition   of   signals.   And   the   multiplication   of   signals   by   scalars.   

7. Formally,  A  vector  space  over  the  field  F  is  a  set  with  two  operations.  Vector  addition  and                   
scalar   multiplication.   These   operations   must   satisfy   the   following   properties:   
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8. The   vector   addition   must   be   associative   

9. Commutative   

10. It   must   have   an   identity   element.   The   all   zero   vector   if   you   wish.   

11. And   it   must   have   an   inverse   (or   opposite).   

12. Asides  from  these  properties  of  the  addition  operation,  we  require  four  properties  of  the                
scalar   multiplication.   

13. We  require  it  to  be  compatible  with  the  field  multiplication.  This  is  a  sort  of  associative                  
property  except  that  the  operations  involved  are  different.  One  of  them  is  a  filed                
multiplication.   The   other   is   a   scalar   multiplication.   

14. The   scalar   multiplication   must   have   an   identity   element.   

15. And   it   must   be   distributive   with   respect   to   the   vector   addition.   

16. And  with  respect  to  the  field  addition.  As  in  the  case  of  the  field  definition  all  of  this  looks                     
supercilious.  But  it  is  intended  to  be  general.  We  abstract  the  minimal  number  of                
properties  that  allows  us  to  derive  theorems  that  are  as  widely  applicable  as  possible.                
This  generality  allows  us  to  claim,  for  instance,  that  there  is  little  difference  between  the                 
linear   processing   of   vectors,   functions,   and   sequences.   

Slide   4:   Associative   Algebras   

1. The  final  definition  we  introduce  is  the  notion  of  an  Associative  Algebra.  For  this  one  we                  
don’t   need   an   informal   definition,   because   the   formal   definition   is   sufficiently   simple.     

2. An   associative   algebra   A   is   a   vector   space.   

3. In   which   we   also   define   a   bilinear   map   that   we   denote   as   a   product   with   an   asterisk.     

4. The   only   condition   we   impose   in   this   product   is   that   the   product   be   associative.     

5. If   the   algebra   also   has   an   identity   element   we   say   the   algebra   is   an   algebra   with   unity.   
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6. And  if  the  algebra  is  such  that  the  order  of  the  products  is  not  important,  we  say  the                    
algebra  is  commutative.  We  will  work  with  associative  algebras  with  unity.  And,  for  the                
most   part,   with   algebras   that   are   commutative.   

7. What  the  algebra  has  added  to  a  vector  space  is  a  fifth  operation.  On  top  of  the  two                    
fields  operations  and  the  two  vector  space  operations.  This  operation  is  intended  to               
represent  the  linear  transformation  of  a  signal.  To  explain  this  we  need  to  introduce  the                 
space   of   endomorphisms   of   a   vector   space.   

Slide   5:   Signals   

1. Before  we  do  that,  let’s  recap  the  important  aspects  of  a  vector  space  as  they  pertain  to                   
the   linear   processing   of   signals.     

2. Signals,  are  the  entities  that  we  want  to  process.  And  in  order  to  be  able  to  process                   
them,  we  require  them  to  be  elements  x  of  a  vector  space  M.  Why  do  we  want  to  make                     
this   request?   

3. Because,   at   the   very   least,   we   want   to   be   able   to   add   two   signals.   

4. And  we  want  to  be  able  to  scale  signals  with  the  elements  of  a  field.  The  idea  of  defining                     
a  vector  space  formally  is  to  isolate  the  properties  that  give  meaning  to  these  two                 
operations.     

5. In  keeping  the  definition  general  we  allow  for  the  processing  of  vectors  with  n                
components.  This  means  the  use  of  R-n  as  the  vector  space  n.  Which  is  what  we  do  to                    
process   graph   signals.   Or   discrete   signals.   

6. But  we  can  also  refer  to  the  processing  of  functions  defined  in  the  interval  0-1  with  finite                   
energy.   This   is   the   vector   space   of   graphon   signals.   

7. There  are  many  more  sets  of  signals  that  are  vector  spaces.  The  most  common  are                 
sequences,  functions  in  R.  And  sequences  with  two  indexes.  These  are  models  of               
discrete   time,   continuous   time,   and   images,   respectively.   

Slide   6:   Endomorphisms   
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1. The  important  operation  that  is  missing  from  a  vector  space  is  the  notion  of  a  linear                 
transformation.  This  is  where  algebras  in  general  and  endomorphisms  in  particular  come              
into   the   picture.     

2. An   endomorphism   e   is   simply   a   linear   map   from   the   vector   space   M   into   itself.     

3. That  the  map  e  is  linear  means  what  you  expect  it  to  mean.  Namely,  that  applying  e  to  a                     
linear   combination   of   elements   x_1   and   x_2   of   the   vector   space.     

4. Results   in   the   respective   linear   combination   of   the   results   of   applying   e   to   x_1   and   x_2.   

5. If  we  consider  the  vector  space  M  equals  R-n.  The  transformation  e  is  a  matrix                 
multiplication.   

6. If  the  vector  space  is  the  set  of  functions  of  finite  energy  supported  on  0-1,  the                  
endomorphism  e  is  the  linear  functional  we  encountered  when  we  studied  graphon              
signals.     

7. The  object  of  interest  that  arises  is  the  collection  of  all  endomorphisms.  This  is  a  space                  
we  denote  as  End-of-M.  If  this  sounds  complicated  it  is  because  we  are  trying  to  be                  
abstract   and   general   (not   supercilious!).     

8. We  are  just  referring  to  things  like  the  space  of  all  matrices.  Or  the  space  of  all  linear                    
functionals.   

Slide   7:   The   Set   of   Endomorphisms   is   a   Vector   Space   

1. We  now  need  to  make  an  extra  abstraction  step  and  observe  that  the  set  End-of-M  is                  
also  a  vector  space.  This  is  the  vector  space  of  endomorphisms  of  M.  Its  definition                 
requires  that  we  define  the  elements  of  the  vector  space  along  with  the  sum  and  the                  
scalar  product  operations.  The  elements  of  the  set  are  the  endomorphisms  of  M.  All  the                 
linear   maps   from   M   onto   itself.   

2. The  sum  operation  is  the  endomorphism  e,  which,  when  applied  to  x,  yields  the  sum  of                  
the   results   of   applying   e_1   to   x   and   e_2   to   x.     

3. And  the  scalar  multiplication  operator  yields  the  endomorphism  e-prime,  which,  when             
applied  to  x,  yields  the  scaling  of  the  result  of  applying  e  to  x.  Observe  how  in  both                    
cases  we  define  operations  in  the  vector  space  of  endomorphisms  in  terms  of  operations                
in  the  vector  space  M.  The  sum  of  two  endomorphisms  is  defined  in  terms  of  the  sum  of                    
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two  vectors.  And  the  scalar  multiplication  of  an  endomorphism  is  defined  in  terms  of  the                 
scalar   multiplication   of   a   vector.     

4. It  is  important  to  remark  that  the  vector  space  of  endomorphisms  is  not  the  same  as  the                   
vector  space  M.  In  the  case  of  signals  in  R-n,  the  space  of  endomorphisms  is  the  set  of                    
square  matrices  with  n  rows  and  n  columns.  In  the  case  of  finite  energy  signals  in  0-1,                   
the  space  endomorphisms  is  a  space  of  linear  functionals.  Like  all  bounded  functions  in                
0-1-squared.   

Slide   8:   The   Set   of   Endomorphisms   is   an   Algebra   

1. The  set  of  endomorphisms  is  not  only  different  from  the  space  M.  It  is  also  a  set  that  has                     
more  structure.  End-of-M  is  not  just  a  vector  space  but  it  is  also  an  associative  algebra                  
with   unity.   We   signify   that   in   the   figure   by   changing   its   color.     

2. To  make  End-of-M  an  algebra  we  need  to  endow  it  with  a  product.  To  do  so  we  define                    
the  endomorphism  e  as  the  product  of  endomorphisms  e_1  and  e_2  if  e  is  the                 
composition   of   e_1   and   e_2.   The   results   of   applying   the   two   linear   maps   in   tandem.     

3. In   the   case   of   R-n,   this   is   just   the   product   of   two   matrices.   

4. In  the  case  of  functions  in  0-1  with  finite  energy,  this  is  the  composed  functional  given  by                   
a   double   integral.     

5. Linear  algebra  is  the  processing  of  signals  through  the  composition  of  linear  maps.  The                
study   of   the   endomorphisms   of   vector   spaces.   

Slide   9:   Signal   Processing   in   the   Algebra   of   Endomorphisms   

1. Linear  algebra  is  a  form  of  signal  processing.  It  is  a  form  of  processing  in  which  any  out                    
of   the   set   of   all   possible   linear   transformations   is   applied   to   input   signals.     

2. That  we  can  apply   any  linear  transformation,  means  there  is  no  structure  in  the  space  of                  
endomorphisms.  This  sentence  can  be  a  little  vague,  so  let  us  be  precise  that  what  we                 
mean   here   is   that   we   were   to   learn   in   the   space   End-of-M,   learning   would   not   scale.     

3. Introducing  structure  entails  introducing  a  restriction  in  the  set  of  allowable             
endomorphisms.     
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4. We  know  from  experience  that  to  accomplish  this  we  have  to  introduce  convolutional               
signal  processing.  We  will  do  that  with  the  introduction  of  algebras  and  representations               
in   the   following   videos.     

12.2     Algebraic   Signal   Processing   

Slide   10:   Algebra   Signal   Processing   -   Title   Page   

1. In  the  previous  video  we  saw  that  the  linear  processing  of  a  signal  can  be  expressed  as                   
the  application  of  an  endomorphism  on  a  vector  space.  We  also  highlighted  that  the                
space  of  all  endomorphisms  of  a  vector  space  is  an  algebra.  One  however  that  does  not                  
allow   for   the   exploitation   of   signal   structure.  

2. We  know  that  the  introduction  of  convolutional  filters  is  necessary  to  leverage  structure.               
In  this  video  we  explain  the  use  of  algebras  and  homomorphisms  to  restrict  the  set  of                  
allowable   linear   transformations   that   can   be   applied   to   a   signal.   

Slide   11:   From   Linear   Algebra   to   Signal   Processing   

1. The  signals  we  want  to  process  are  elements  of  a  vector  space  M.  Objects  like  vectors,                  
sequences   or   functions.     

2. The  linear  processing  of  signals  in  M  is  undertaken  by  elements  e  End-of-M.  The                
algebra   of   endomorphisms   of   M.     

3. This  is  too  general  as  a  means  of  signal  processing.  We  therefore  want  to  restrict  the  set                   
of   allowable   operations.   

4. We  will  do  that  by  restricting  the  endomorphisms   e  to  the  those  that  represent  another,                 
more   restrictive,   algebra.     

5. That  is,  we  introduce  an  algebra  that  defines  the  structure  of  the  filters  we  want  to  apply                   
to   our   signals   x.   

6. Filters   are   elements   a   of   this   algebra.   
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7. Which  we  map  into  the  algebra  of  endomorphisms  with  the  application  of  a               
homomorphism   rho.     

8. For  this  block  diagram  to  make  sense,  we  need  to  introduce  and  explain  the  notion  of                  
homomorphism   and   representation   of   an   algebra.   

Slide   12:   Homomorphism   Between   Algebras   

1. We   begin   with   the   definition   of   homomorphisms   between   algebras.     

2. Consider   then,   algebras   A   and   A’.  

3. A  homomorphism  from  A   to   A’  is  a  map  rho  from  A  to  A’  that  preserves  the  operations  of                     
A.   

4. Namely   for   all   elements   a   and   b   in   the   Algebra   a:     

5. The  homomorphism  preserves  the  sum.  In  the  sense  that  applying  rho  to  the  sum  of  a                  
and  b  is  the  same  as  summing  rho-of-a  and  rho-of-b.  Notice  how  the  sums  here  are                  
different.  The  sum  of  the  algebra  A  is  used  on  the  left  hand  side.  The  sum  of  the  algebra                    
A’   is   used   in   the   right   hand   side.   

6. The  analogous  is  true  of  the  product.  Namely,  multiplying  a  and  b  in  the  algebra  A  and                   
applying  rho  is  the  same  as  applying  rho  to  a  and  b  separately  and  multiplying  them  in                   
the   algebra   A’.   

7. The   scalar   product,   is   also   preserved   by   the   homomorphism.     

8. The  conditions  in  the  definition  of  a  homomorphism  are  such  that  carrying  operations  in                
the  Algebra  A  is  the  same  as  carrying  operations  in  the  algebra  A’.  This  is  useful  if,  for                    
example,  the  operations  in  A’  are  easier  in  some  way.  It  is  also  useful  if  you  are  given  an                     
Algebra   A   and   you   want   to   process   signals   in   a   vector   space   M.     

9. Do  notice  that  converse  need  not  be  true.  Operations  in  A  and  A’  are  not  equivalent.  We                   
can  move  from  A  to  A’  but  it  is  not  necessarily  true  that  operations  in  A’  can  be  mapped                     
to   operations   in   A.   This   could   happen   because   A’   has   more   elements   than   A.   

Slide   13:   Representations   and   Filters   
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1. From   the   definition   of   homomorphism,   flows   the   concept   of   a   representation.     

2. Given  an  associative  Algebra  A  and  a  vector  space  M,  we  consider  a  homomorphism                
rho  from  A  to  End(M).  That  is,  an  operation-preserving  map  from  the  algebra  A  to  the                  
space   of   endomorphisms   of   M.     

3. The  pair  M-rho,  made  up  of  the  vector  space  M  and  the  homomorphism  rho  is  said  to  be                    
a   representation   of   the   associative   algebra   A.   

4. The  representation  ties  the  abstract  algebra  A  to  concrete  operations  on  signals  that  live                
in   the   vector   space   M.   

5. For  this  reason  we  henceforth  say  that  elements  a  of  A  are  filters.  The  action  of  the  filter                    
a  on  the  signal  x  produces  the  filtered  signals  rho-of-a  times  x.  That  is  the  action  of  the                    
filter   a   on   a   signal   x   is   the   application   of   the   endomorphism   rho-of-a.     

Slide   14:   Algebra   of   Polynomials   of   a   Single   Variable   

1. All  of  this  looks  very  complicated  because  it  is  very  abstract.  But  it  is  actually  quite                  
simple.  To  illustrate  concepts  we  consider  the  algebra  of  polynomials  and  explain  how               
graph   signal   processing   is   recovered   as   a   particular   case   of   algebraic   signal   processing.     

2. A  polynomial  over  a  field  F  is  an   expression  having  the  familiar  look  of  a  polynomial.                  
We   have   a   sum   of   powers   of   t   modulated   by   coefficients   a_k.   

3. But  the  interpretation  of  this  familiar  expression  is  a  little  different.  The  coefficients  here                
are  elements  of  a  field.  This  is  as  usual.  But  the  sum  and  the  powers  of  t  are  just                     
symbols.  They  do  not  represent  an  actual  sum  or  an  actual  power  of  a  variable.  They  are                   
just   scribbles   in   a   piece   of   paper.     

4. The  algebra  of  polynomials  over  F  is  the  the  set  of  all  the  polynomials  taking  coefficients                  
in   F   along   with   the   following   operations:   

5. The  scalar  multiplication  of  a  by  alpha  is   defined  as  the  multiplication  of  the  polynomial                 
coefficients  a_k.  This  multiplication  is   not  just  a  symbol .  It  amounts  to  the  product  of                 
two  elements  of  the  field.  This  is  a  product  of  real  numbers  if  we  are  considering  the                   
algebra   of   polynomials   over   the   reals.   

6. The  vector  sum  of  two  polynomials  is  defined  as  the  polynomial  whose  coefficients  are                
the  sum  of  the  given  polynomial  coefficients.  Again,  the  sum  highlighted  in  blue  here  is                 
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an  actual  sum.  The  sum  of  elements  of  the  field.  The  sum  of  two  real  numbers,  for                   
instance.     

7. Finally,  the  algebra  product  is  defined  as  a  polynomial  in  which  the  coefficient  multiplying                
t-k  is  the  sum  of  the  products  of  coefficients  a_j  and  b_k-minus-j.  In  each  of  these                  
products  the  sum  of  the  a-subindex  and  the  b-subindex  is  k.  Again,  the  operations                
highlighted  in  blue  are  operations  in  the  field.  The  interpretation  of  this  algebra  is  that  we                  
have  abstract  symbols  we  call  polynomials.  These  abstract  symbols  can  be  manipulated              
with  these  three  operations.  And  these  three  operations  satisfy  the  conditions  stated  in               
the   definition   of   an   algebra.     

Slide   15:Graph   Signal   Processing   

1. Our  interest  in  the  algebra  of  polynomials  is  that  we  can  use  it  to  generate  several                  
known  instances  of  signal  processing.  We  can,  in  particular,  use  it  to  generate  graph                
signal   processing.     

2. To  see  how  this  is  done,  consider  signals  x  that  live  in  the  vector  space  R-n.  The  space                    
of  endomorphisms  to  process  these  signals  is  made  up  of  all  the  square  matrices  E  with                  
n   rows   and   n   columns.   

3. The  challenge  is  that  processing  x  with  an  arbitrary  E  in  this  space  of  endomorphisms  is                  
too  general.  We  need  some  extra  structure  that  we  can  exploit.  One  possibility  is  to                 
assume   that   the   signal   x   is   supported   on   a   graph   with   shift   operator   S.   

4. To  leverage  this  information  we  define  the  homomorphism  rho  that  maps  the  polynomial               
a  to  the  polynomial  rho-of-a  in  which  the   symbol  t  to  the  power  of  k  is  replaced  by  the                     
matrix   S  to  the  power  of  k.  These  two  polynomials  look  similar  but  they  are  objects  of  a                    
different  nature.  The  polynomial  on  the  left  is  just  a  symbolic  expression.  The  polynomial                
on  the  right  is  a  matrix  in  End-of-M.  We  use  the  operations  of  the  algebra  of                  
endomorphisms  to  sum  powers  of  S  modulated  by  coefficients  h_k.  Being  a  concrete               
matrix,  we  can  apply  it  to  a  given  signal  x.  We  have   instantiated  the  abstract  filter   a  into                    
a   concrete   representation   that   we   can   apply   to   our   signals   of   interest.   

5. The  polynomial  rho-of-a  is  the  definition  of  a  graph  filter.  We  can  therefore  say  that  the                  
combination  of  the  algebra  of  polynomials  with  the  homomorphism  rho  we  defined  here               
yields  graph  signal  processing  on  the  graph  shift  operator  S.  The  value  of  the  abstract                 
algebraic  formulations  is  that  several  other  versions  of  signal  processing  can  be              
recovered   from   different   choices   of   algebras   and   homomorphisms.     
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Slide   16:   Algebraic   Signal   Processing   (ASP)   

1. We  can  now  reintroduce  our  block  diagram  defining  algebraic  signal  processing  models.              
An   ASP   model   is   a   triplet   A-comma-M-comma-rho.     

2. In   the   ASP   model   A   is   an   algebra   with   unity   where   filters   h   are   defined.   

3. The  algebra  defines  the   rules   of  convolutional  signal  processing.  It  is  defined  in  the                
abstract.   At   the   symbolic   level   of   squiggles   in   a   piece   of   paper.   

4. The   second   component   of   the   ASP   model   is   a   vector   space   M.     

5. This  is  the  vector  space  containing  the  signals  that  we  want  to  process.  This  is,  typically,                  
a  vector  space  where  we  can  write  objects  made  up  of  numbers  that  we  can  add  and                   
multiply   according   to   some   rules.   

6. And  the  third  component,  rho,  is  a  homomorphism  from  the  abstract  algebra  A  to  the                 
algebra   of   endomorphisms   of   M.   

7. It  instantiates  the  abstract  filter  h  in  the  space  End(M).  It  makes  the  filter  into  a  linear                   
transformation   that   we   can   apply   to   the   signals   x   that   are   given   to   us.     

8. Any  filter  h  in  the  algebra  A  is  a  filter  that  can  operate  on  the  signals  x  as  dictated  by  the                       
homomorphism.  The  result  of  applying  h  to  a  signal  x  is  the  linear  transformation                
rho-of-a  applied  to  the  signal  x.  We  have  seen  that   graph   SP  is  a  particular  case  of                   
algebraic  SP.  We  will  see  that  several  other   whatever- SPs  are  also  possible.  The  value                
of   algebraic  SP  is  that  it  provides  a  common  framework  for  joint  investigation  of  their                 
shared   fundamental   properties.   

12.3     Polynomials   in   an   Algebra   and   Polynomial   Functions     

Slide   17:   Polynomials   in   an   Algebra   and   Polynomial   Functions   -   Title   Page   

1. Polynomials  and  Polynomial  functions  play  a  central  role  in  algebraic  signal  processing.              
This   section   is   a   short   aside   to   introduce   definitions   that   we   will   use   later   on.   
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Slide   18:   Polynomials   in   an   Algebra   

1. Things  are  about  to  get  insidious  We  are  going  to  have  several  different  objects,  all  of                  
which  are  called  polynomials.  But  their  subtle  differences  are  precisely  what  is  important               
to   be   able   to   understand   the   foundational   concepts   of   algebraic   signal   processing.   

2. Our  first  polynomial  is  a  polynomial  in  an  algebra.  Given  an  element  a  of  A  and  a  set  of                     
coefficients   h_k   in   the   field   F,   a   polynomial   is   another    element    of   the   algebra.     

3. We  denote  this  element  as  p_A-of-a  and  define  it  through  the  use  of  the  usual                 
polynomial   expression.     

4. This  involves  several  terms  in  each  of  which  have  the  algebra  element   a  multiplied  by                 
itself   k   times.   

5.   And   the   result   further   multiplied   by   the   coefficient   h_k.     

6. These  different  terms  are  then  added  together.  This  is  what  you  should  had  expected  for                 
an   expression   that   is   called   a   polynomial.   There   is   nothing   new   here.     

7. Nevertheless,  there  are  two  important  points  to  emphasize  about  this  polynomial.  The              
first  is  that  p_A-of-a  is  an  element  of  the  algebra  A.  We  know  that  this  is  true  because                    
p_A-of-a   is   constructed   from   a   by   using   the   operations   of   the   algebra.     

8. The  second  point  is  precisely  this.  That  p_A-of-a  is  generated  using  the  operations  of  the                 
algebra.  The  polynomial  is   not  just  a  symbol,  as  was  the  case  when  we  defined  the                  
algebra  of  polynomials.  It  is  a   concrete  representation  of  a   concrete  set  of  operations.                
This  distinction,  already  subtle,  is  made  even  more  subtle  because  the  operations  that               
generate  p_A-of-a  can  be  symbolic.  In  any  event,  symbolic  or  not,  the  polynomial               
p_A-of-a  is  an  element  of  the  algebra  A  that  we  obtain  through  a  concrete  set  of                  
operations   that   we   perform   on   the   algebra   element   a.   

Slide   19:    Polynomials   in   a   Different   Algebra   

1. The  reason  we  want  to  emphasize  the  use  of  the  algebra’s  operations  is  that  we  are                  
going  to  be  interested  in  writing  polynomials  on  different  algebras.  When  we  change  the                
algebra,  it  is  possible  that  we  use  the  same  coefficients.  But,  although  this  may  result  in                  
two   polynomials   that    look   the   same,    the   polynomials   are   actually   different.   
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2. To  drive  this  point  suppose  that  we  consider  an  element  a-prime  of  a  different  algebra                 
A-prime.  Even  if  we  retain  the  same  coefficients  h_k  the  polynomial             
p_A-prime-of-a-prime   is   a   different   element.     

3. This  is  not  only  because  a  and  a-prime  are  different.  But  also  because  we  are  using  a                   
different   set   of   operations.   We   are   now   using   the   operations   of   the   algebra   A’.   

4. Notice  that  this  can  get  obscured  with  the  usual  notation  because  it  is  implicit  that  the                  
operations  are  performed  in  the  right  algebra.  The  important  point  to  keep  in  mind  is  that                  
polynomial  expressions  that  look  the  same,  can  represent  different  operations.  Like             
operations  on  an  algebra  A.  And  operations  on  a  space  of  endomorphisms  of  a  vector                 
space.   As   you   may   foresee.   

Slide   20:    Polynomial   Functions   over   a   Field   

1. As  if  we  didn't  have  enough  polynomials  already,  we  have  to  introduce  yet  another                
concept.  This  is  that  of  a  polynomial  function  over  a  field.  This  is  notoriously  different                 
from   the   others   in   that   it   does   not   involve   an   algebra.   

2. We  consider  coefficients  over  a  field  along  with  a  variable  lambda  that  takes  values  on                 
the   same   field.     

3. The  polynomial  function  p_F,  is  the  function  that  maps  lambda  to  the  value               
p_F-of-lambda   defined   by   an   expression   with   the   usual   polynomial   terms.   

4. In   each   of   these   terms   we   have   lambda   multiplied   by   itself   k   times.   

5.   With   the   result   being   further   multiplied   by   the   coefficient   h_k.     

6. And   the   different   terms   added   together   to   obtain   the   polynomial’s   evaluation.   

7. This  polynomial  is  the  one  that  should  be  most  familiar.  It  is  just  a  function  of  lambda.                   
Mapping  values  on  the  field  to  other  values  on  the  field.  It  is,  we  must  repeat,  a  function                    
that   is   defined   in   terms   of   the   operations   of   the   field.   There   is   no   algebra   involved   here.     

8. By  the  way,  if  you  notice  a  resemblance  to  frequency  responses,  this  is  not  coincidental.                 
In   fact,   it   is   rather   the   point.   But   this   is   just   an   aside   comment   at   this   point.   

Slide   21:   Polynomials   with   Multiple   Elements   in   a   Commutative   Algebra   
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1. In  our  discussions  so  far  we  have  considered  polynomials  of  a  single  variable.               
Generalizations  to  polynomials  with  multiple  elements  are  ready.  If  we  consider  a  set               
calligraphic   A   made   up   of   r   element   of   the   algebra   A,   we   define   the   polynomial   p_A-of-A:   

2. As   the   summation   of   different   terms.   

3. Each   of   which   has   the   different   elements   of   calligraphic   A   raised   to   different   powers.   

4. And   scaled   by   corresponding   coefficients.   

5. This  polynomial  is  associated  with  coefficients  h-sub-k_1-through-k_r  that  are  drawn            
from  the  field  F.  This  polynomial  represent  a  concrete  set  of  operations  performed  on  the                 
elements  of  the  set  calligraphic  A  to  obtain  another  element  of  the  algebra.  The                
polynomial  p_A-of-A.  We  point  out  that  in  this  definition  the  algebra  is  assumed  to  be                 
commutative.  If  the  algebra  is   not  commutative,  the  order  of  the  products  matters  and                
the  polynomial  takes  on  a  different  form.  This  is  not  unimportant.  There  are  interesting                
algebras   that   are   not   commutative.   But   the   extension   is   straightforward.     

6. Likewise,  we  can  define  the  corresponding  polynomial  function  with  multiple  variables             
lambda_1  through  lambda_r.  If  we  use  the  same  set  of  coefficients,  this  polynomial              
function  is  the  same  expression  as  before  in  which  the  different  algebra  elements  a_i  are                 
replaced   by   variables   lambda_i.   

7. Nevertheless,  the  similarity  of  the  expressions  should  not  distract  from  the  fact  that  the                
objects   they   represent   are   very   different.     

8. This  second  expression  is  a  function  of  the  variables  lambda_i.  It  takes  different  values                
when  we  instantiate  different  variables.  It  is  also  an  expression  that  uses  different               
operations.  The  polynomial  on  a_i  uses  the  operations  of  the  algebra  A.  The  polynomial                
on   lambda_i   uses   the   operations   of   the   field.     

12.4     Generators,   Shift   Operators,   &   Frequency   Representations   

Slide   22:   Generators,   Shift   Operators,   and   Frequency   Representations   -   Title   Page   
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1. Different  forms  of  convolutional  signal  processing  can  be  recast  into  the  common              
abstract  framework  of  algebraic  signal  processing.  We  use  algebras  and            
homomorphisms   to   define   different   types   of   convolutional   filters.   

2. In  the  analysis  of  these  filters  there  are  three  central  components  that  appear:               
Generators,  Shift  Operators,  and  Frequency  Representations.  We  cover  these  three            
concepts   in   this   section   

Slide   23:   Generators   of   an   Algebra   

1. Generators,  shift  operators  and  frequency  response  are  intimately  related  to            
polynomials.  The  first  appearance  of  polynomials  is  in  the  definition  of  generators  and               
generator   sets.   

2. Indeed,  we  say  that  the  set  G  generates  the  algebra  A  if  all  the  elements  h  of  A  can  be                      
represented   as   polynomials   on   the   elements   of   G.   

3. That   is,   any   H   in   A   can   be   written,   

4. As  a  sum  of  terms  involving  different  powers  of  the  generators  g  modulated  by  certain                 
coefficients.     

5. We  use  p_A-of-G  to  denote  the  polynomial  that  generates  h  from  g.  As  per  the  definition                  
this  polynomial  is  just  the  algebra  element  h.  The  notation  p_A-of-G  is  just  meant  to                 
emphasize   that   it   is   a   polynomial.    

6. We  will  say  that  the  elements  g  of  G  are  generators  of  A  and  we  will  say  that  p_A-of-G                     
is   the   polynomial   that   generates   h.   

7. The  meaning  of  this  definition  is  that  filters  h  can  be  build  from  the  generating  set  using                   
the   operations   of   the   algebra.     

8. When  this  is  possible,  we  end  up  with  a  remarkable  property:  When  given  the  algebra,                 
the  generators  are  given.  Thus,  a  filter  h  is  completely  specified  by  its  coefficients.  If  we                  
want  to  understand  the  effect  of  a  filter,  we  don’t  necessarily  have  to  look  at  the  filter                   
itself.   It   may   suffice   to   look   at   its   coefficients.     

Slide   24:   Generators   of   the   Algebras   of   Polynomials     
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1. One  may  wonder  if  interesting  generator  sets  exist  at  all.  They  do  in  a  variety  of                  
algebras.  One  particular  case  where  this  is  rather  obvious  is  the  algebra  of  polynomials                
of   a   single   variable.   This   algebra   can   be   generated   by   the   polynomial   g   equals   t.  

2. To  see  that  this  is  true  recall  that  algebra  elements  are  symbolic  expressions  where  we                 
write   sums   of   powers   of   t   modulated   by   coefficients   h_k.     

3. These  symbolic  expressions  can  be  generated  from  g  equals  t  with  a  polynomial  where                
we   write   sums   of   powers   of   t   modulated   by   coefficients   h_k.     

4. OK.   Let’s   rewind.   The   difference   here   is   difficult   to   see.     

5. In  this  expression  the  sum,  the  letter  t  and  the  powers  of  k  are  just  symbols.  They  are                    
not  representing  actual  operations.  They  are  just  squiggles  in  a  piece  of  paper  that  we                 
use   to   represent   an   element   of   the   algebra   of   polynomials.  

6. In  this  other  expression,  t  is  denoting  a  particular  element  of  the  algebra  of  polynomials.                 
And  the  powers  of  k  and  the  sum  are  representing  actual  operations:  The  operations  of                 
the   algebra   of   polynomials.     

7. If  we  apply  the  operations  symbolized  here  to  the  polynomial  g  equals  t,  we  generate  the                  
filter  h.  Since  this  is  possible  for  all  filters,  it  follows  that  the  element  t  generates  the                   
algebra   of   polynomials.     

8. A  similar  generation  is  possible  if  we  consider  the  algebra  of  polynomials  of  two                
variables  x  and  y.  This  algebra  is  one  that  we  can  generate  with  the  polynomials                 
g_1-equals-x   and   g_2-equals-y.   

9. That  this  is  true  follows  because  the  algebra  of  polynomials  of  two  variables  is  defined                 
by   the   expected   polynomial   expression.   

10. Which  we  can  alternatively  rewrite  using  the  operations  of  the  algebra  on  the               
polynomials   g_1-equals-x   and   g_2-equals-y.   

11. As   in   the   case   of   single   variable   polynomials   we   need   to   rewind   here.   

12. This  is  just  an  expression.  There  are  no  actual  operations  being  performed  when  we                
encounter   sums   products   and   powers   

13. This  is  a  representation  of  operations.  We  are  applying  the  operations  of  the  algebra  of                 
polynomials  of  two  variables  to  the  polynomials  x  and  y.  By  the  way,  we  have  not                  
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formally  defined  what  these  operations  are.  But  they  are  straightforward  extensions  of             
the   definitions   we   gave   for   single   variable   polynomials.     

14. (Empty)   

Slide   25:   Shift   Operators     

1. When   given   generators   along   with   a   representation,   we   define   shift   operators.   

2. Formally,   let   M-comma-rho   be   a   representation   of   an   Algebra   A.   

3. And   calligraphic   G   be   a   generator   set   of   the   algebra   A.   

4. We   say   that   S   is   a   shift   operator.   

5. If  we  can  write  S  as  rho-of-g  for  some  element  of  the  generator  set.  The  shift  operators                   
are   the   images   of   the   generators   when   applying   the   homomorphism   rho.   

6. The  collection  of  all  shift  operators  is  the  set  calligraphic  S.  This  is  the  set  of  shift                   
operators  of  the   representation   M-rho  of  the   algebra  A.  Both,  the  representation  and               
the   algebra   determine   the   elements   of   the   set   of   shift   operators.   

7. Recall  that  the  homomorphism  is  a  map  from  the  algebra  to  the  space  of                
endomorphisms  of  the  vector  space  M.  Thus,  the  generators  g  of  the  algebra  are                
mapped  to  the  shift  operators  S  in  the  space  End-of-M.  The  abstract  generator  is                
mapped   to   a   a   concrete   linear   transformation   that   we   can   apply   to   a   signal   x.   

Slide   26:   Polynomials   on   Shift   Operators   

1. The  introduction  of  shift  operators  brings  us  to  the  second  polynomial  of  the  section.  This                 
one  appears  in  the  form  of  a  theorem  stating  that  filters  h  can  be  represented  in  the                   
space   of   endomorphisms   as   polynomials   on   the   shift   operators.   

2. Formally   and   more   precisely,   let   M-rho   be   a   representation   of   the   Algebra   A.   

3. And   further   consider   a   set   of   generators   g_i.   

4. Along   with   a   set   of   shift   operators   S_i.   
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5. We  then  claim  that  the  representation  rho-of-h  of  the  filter  h  is  a  polynomial  on  the  shift                   
operator   set.   

6. That   is,   if   we   write   the   filter   h   as   a   polynomial   p_A-of-G   

7. We   can   write   the   homomorphism   image   rho-of-h   as   a   polynomial   p_M-of-S.     

8. Both   of   these   polynomials   have   the   same   coefficients.   But   they   use   different   variables.   

9. The   polynomial    p_A-of-G   that   defines   the   filter,   uses   the   generators   as   variables.   

10. The  polynomial  p_A-of-M  that  instantiates  the  filter  in  the  space  of  endomorphisms  uses               
the   shift   operators   as   variables.   

11. These  polynomials  also  differ  in  that  the  operations  involved  are  different.  The              
polynomial  p_A-of-G  that  defines  the  filter  uses  the  operations  of  the  algebra  A.  The                
polynomial  p_A-of-M  that  instantiates  the  filter  in  the  space  of  endomorphisms  uses  the               
operations   in   the   space   of   endomorphisms   of   M.   

12. (Empty)   

13. To  prove  the  theorem  we  simply  recall  that  the  homomorphism  preserves  the  operations               
of   the   algebra.     

14. Indeed   begin   by   writing   the   image   rho-of-h     

15. As   the   application   of   rho   to   the   polynomial   p_A-of-G.     

16. But  since  operations  are  preserved  by  the  homomorphism,  it  doesn't  matter  if  we  apply                
the   operations   before   or   after   the   application   of   the   homomorphism.     

17. Noticing   that   rho-of-g_i   equals   S_i   concludes   the   proof   of   the   theorem.   

Slide   27:   Algebraic   Signal   Processing   (ASP)   

1. Generators  and  shift  operators  look  interesting.  But  are  they  useful?  They  are   very               
useful.   The   theory   of   algebraic   signal   processing   involves   the   specification   of:   

2. A   vector   space   of   signals.   
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3. Which  comes  with  an  associated  algebra  of  endomorphisms.  A  set  that  contains  all  the                
linear   transformations   we   can   apply   to   a   signal   x.   

4. Separate  from  the  space  of  signals.  And  it  is  important  to  remark  that  this  is   completely                  
separate  from  the  space  of  signals.  We  have  an  algebra  A  that  specifies  the  filters  of                  
interest.     

5. Allowable   filters   are   elements   h   of   the   algebra   A,   

6. To  tie  filters  and  signals  we  have  the  homomorphism  rho.  This  is  the  instantiation  of  the                  
filter  in  the  space  of  endomorphisms  of  M.  It  makes  the  abstract  filter  into  a  linear                  
operator   rho-of-h.   

7. This  is  a  linear  operator  that  we  can  apply  to  the  signal  x  to  produce  the  filtered  signal                    
rho-of-h-x.   

8. The   hitch   is   that,   in   principle,   the   homomorphism   has   to   be   specified   for   all   filters   rho.   

9. Given   filter   h_1   we   have   to   specify   the   image   rho-of-h_1   

10. Given   filter   h_2   we   have   to   specify   the   image   rho-of-h_2   

11. For  filter  h_3  the  image  rho-of-h_3.  And  so  on.  Since  all  of  these  is  an  abstract  analytical                   
tool,  this  is  not  necessarily  a  concern.  But  it  doesn’t  bode  well  for  our  ability  to  analyze                   
ASP   models.   

12. If  we  have  a  generating  set,  however,  it  suffices  for  us  to  specify  the  homomorphism  rho                  
for   the   elements   of   the   generator   set.     

13. Given   g_1   we   specify   the   image   rho-of-g_1.     

14. Given   g_2   we   specify   the   image   rho   of   g_2.   If   we   have   two   generators,   this   is   it.   

15. Because   all   other   filters   can   be   written   as   polynomials   on   the   generators.   

16. Which  we  know  instantiate  to  polynomials  on  the  shift  operators.  The  polynomials  on  g_i                
and  S_i  are  the  same  in  that  they  use  the  same  coefficients.  They  are  different  in  that                   
they  rely  on  different  operations.  Most  importantly,  they  are  homomorphic.  The  map  rho               
applied   to   the   polynomial   p_A-of-G   yields   the   polynomial   p_M-of-S.   
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Slide   28:   Graph   Signal   Processing   

1. To  illustrate  this  simplification  we  can  consider  graph  signal  processing,  We  have  already               
seen  that  we  can  recover  GSP  from  ASP  if  we  consider  signals  in  R-n.  Along  with  the                   
algebra  of  polynomials.  ANd  a  homomorphism  rho  in  which  the  polynomial  h  on  the                
abstract   symbol   t   is   mapped   to   a   polynomial   on   the   shift   operator   S.     

2. This  specification  of  the  homomorphism  is  equivalent  to  the  much  simpler  specification              
in   which   we   map   rho-of-t   to   S.   

3. These  specifications  are  equivalent  because  we  know  that  the  algebra  of  polynomials  is               
generated   by   g-equals-t.   

Slide   29:   Frequency   Representation   of   an   Algebraic   Filter   

1. The  third  and  final  polynomial  of  the  section  is  the  frequency  representation  of  an                
algebraic   filter.     

2. To  define  this  formally  we  consider  an  algebra  A  with  generators  g_i.  In  this  algebra  we                  
are   given   a   filter   h   expressed   in   its   polynomial   form   p_A-of-G.     

3. The  frequency  representation  of  the  filter  h  over  the  field  F  is  the  polynomial  function                 
p_F-of-L  with  variables  lambda_i.  The  polynomials  p_A-of-G  and  p_F-of-L  use  the  same              
set  of  coefficients.  The  expressions  differ  in  that  p_A-of-G  involves  powers  of  the               
generators    g_i   whereas   p_F-of-L   involves   powers   of   the    variables    lambda_i.   

4. We  do  remark  that  the  similarity  of  the  expressions  should  not  obscure  the  fact  that                 
these  two  polynomials  are  creatures  of  very  different  natures.  The  polynomial  p_A-of-G              
uses  the  operations  of  the  algebra  to  build  a  filter  h.  The  polynomial  is  itself  an  element                   
of  the  algebra.  The  frequency  representation  is  a  function  that  relies  on  the  operations  of                 
the   field.   Often,   the   frequency   representation   is   a   simpler   object   

Slide   30:   Three   Polynomials   (or   More)   

1. We  have  seen  the  introduction  of  the  three  central  components  of  ASP  models.  The                
three   of   them   are   polynomials:     

2. The   filter   
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3. The   instantiation   of   the   filter   in   the   space   of   endomorphisms.   

4. And   the   frequency   response.     

5. These  three  polynomials  are  insidiously  similar  because  they  have  the  same             
coefficients.  Their  expressions  look  about  the  same.  Yet,  although  they  are  related.              
They   are   also   quite   different.   

6. They  are  objects  of  different  natures.  They  live  in  different  spaces.  They  utilize  different                
operations.   And   they   have   different   meanings.   Let   us   review   these   differences.   

Slide   31:   Polynomial   1:   The   Filter   

1. Polynomial   number   1   is   the   filter.     

2. This  is  the  polynomial  p_A-of-G.  It  is  a  polynomial  on  the  algebra  elements  g_i.  Which                 
are   the   generator   elements   of   the   algebra   A.     

3. In  the  definition  of  this  polynomial  we  use  the  operations  of  the  algebra.  The  sum,  the                  
product,   and   the   scalar   product   of   the   algebra.     

4. This  polynomial  is  an  abstract  definition  of  a  filter.  It  is   untethered  to  any  specific  signal                  
model.     

Slide   32:   Polynomial   2   (or   More):   The   Instantiation   of   the   Filter   

1. Polynomial  number  2  is  the  instantiation  of  the  filter  in  the  space  of  endomorphisms  of                 
the   vector   space   M   where   the   signals   x   live.     

2. This  is  the  polynomial  p_M-of-S.  It  is  a  polynomial  on  the  shift  operators  S_i.  Which  are                  
the   images   of   the   generator   elements   of   the   algebra   A.     

3. In  the  definition  of  this  polynomial  we  use  the  operations  of  the  algebra  of                
endomorphisms.   The   sum,   the   product,   and   the   scalar   product   of   the   algebra   End-of-M.     

4. This  polynomial  is  a  concrete  instantiation  of  the  abstract  filter.  It  determines  the               
concrete  effect  that  a  filter  has  on  a  signal  x.  The  instantiation  of  the  filter  is   tethered  to                    
a   specific   signal   model     
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5. This  is  also  where  the  mysterious  “or  more”  of  the  last  few  slides  can  be  explained.  The                   
same  abstract  filter  can  be  instantiated  in  multiple  signal  models.  This  is  a  powerful               
realization.   It   has   been   at   the   core   of   our   stability   and   transferability   analyses.   

Slide   33:    Polynomial   3:   The   Frequency   Response   

1. Polynomial   number   3   is   the   frequency   response.   

2. This  is  the  polynomial  p_F-of-L.  It  is  a  polynomial   function  with  variables  lambda.  We                
have   as   many   lambda   variables   as   generators   the   algebra   has.     

3. In  the  definition  of  this  polynomial  we  use  the  operations  of  the  field.  There  are  no  three                   
operations  as  in  the  other  two  polynomials.  Only  two.  The  field  product  and  the  field                 
sum.  This  is  also  not  the  processing  of  an  element  of  an  algebra  to  produce  another                  
element  of  the  algebra.  This  is  a  function  that  takes  as  input  elements  of  the  field  and                   
produces  a  different  element  of  the  field.  This  is  something  like  a  polynomial  with  real                 
variables.     

4. In  that  sense,  this  is  a  simpler  representation  of  a  filter.  It  is  a  representation  that  is  also                    
untethered  to  a  specific  signal  model.  Except  for  the  field.  Which  has  to  be  the  field  over                   
which   the   vector   space   M   is   defined.   

5. The  frequency  response  is  the  tool  we  use  to  analyze  filters.  The  one  we  have  used  in                   
GSP  to  explain  discriminability,  stability,  and  transferability.  The  one  on  which  we  are               
going   to   derive   more   general   results.     

Slide   34:   The   Three   (or   More)   Polynomials   in   GSP   

1. In  the  concrete  case  of  GSP  the  abstract  filter  is  an  element  of  the  algebra  of                  
polynomials  of  a  single  variable.  This  is  an  abstract  definition  of  a  graph  filter.  It  is                  
untethered   to   any   specific   graph.   

2. The  filter  instantiation  entails  mapping  the  generator  t  of  the  algebra  of  polynomials  to                
the  shift  operator  S  of  the  graph.  We  therefore  instantiate  the  abstract  polynomial  into  a                 
polynomial  on  the  shift  operator  S.  This  is  what  we  have  called  a  graph  filter.  It  is                   
tethered   to   a   specific   graph.   
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3. A  very  interesting  point  to  note  is  that  the  abstract  graph  filter  can  be  tethered  to  a                   
different  graph.  To  do  that,  we  just  need  to  map  the  generator  t  of  the  algebra  of                   
polynomials   to   the   shift   operator   S-hat   of   this   other   graph.   

4. We  don’t  even  need  to  stay  within  the  space  of  graphs.  We  can  tether  the  filter  to  a                    
graphon.  We  do  that  by  mapping  the  generator  t  of  the  algebra  of  polynomials  to  the                  
graphon   shift   operator   W.   

5. The  frequency  response  in  this  case  is  a  polynomial  on  a  single  real  variable.  This,  as  it                   
should,  coincides  with  our  earlier  definition  of  the  frequency  response  of  a  graph  filter.                
An  important  property  that  it  has,  is  that  the  frequency  response  is  a  property  of  the                  
abstract  filter  h.  The  frequency  response  is  not  tethered  to  a  specific  instantiation  of  the                 
filter.   It   is   the   same   for   all   graphs   or   graphons.     

12.5     Convolutional   Information   Processing   

Slide   35:   Convolutional   Information   Processing   -   Title   Page   

1. Algebraic  filters  provide  a  generic  framework  out  of  which  we  can  extract  the               
commonalities   of   different   forms   of   convolutional   information   processing.     

2. To  substantiate  this  claim  we  have  to  show  that,  indeed,  it  is  possible  to  express  familiar                  
convolutional  filters  in  the  language  of  algebraic  filters.  Doing  so  requires  the              
specification  of  vector  spaces,  algebras,  and  homomorphisms.  Which  we  do  in  this              
section   for   graph,   time,   and   image   processing.     

Slide   36:   Specification   of   ASP   Models   

1. In   order   to   specify   a   concrete   ASP   model,   we   need   to   prescribe   three   objects:   

2. A   vector   space   M   where   signals   x   live.   

3. The  prescription  of  this  vector  space  implicitly  prescribes  a  space  of  endomorphisms.              
Which   is   the   set   of   linear   transformations   that   can   be   applied   to   signal   x.   

  



/

Page   24   of   41   

4. Separate  from  the  vector  space  M,  we  prescribe  and  Algebra  A  where  filters  h  live.  This                  
algebra   defines   the   rules   of   convolutional   processing   in   an   abstract   sense.     

5. The  third  element  we  prescribe  is  a  homomorphism  rho  that  maps  filters  to  linear                
transformations  we  can  apply  to  signals  x.  The  homomorphism  translates  the  abstract              
filter   h   to   a   concrete   filter   rho-of-h   we   can   apply   to   signals.     

6. Very  importantly,  the  specification  of  the  homomorphism  can  be  reduced  to  the              
specification  of  shift  operators.  These  are  the  images  rho-of-g  of  the  algebra  generators               
g   

7. If  we  specify  the  mapping  of  the  generators,  the  homomorphism  gets  defined  for  any                
other  filter.  This  is  because  filters  h  are  polynomials  on  the  generators  g  which  are                 
mapped   to   polynomials   on   the   shift   operators   S   with   the   same   coefficients.     

8. The  prescription  of  M,  A,  and  rho  determines  the  convolutional  processing  of  signals  x                
as  the  application  of  the  endomorphism  rho-of-h.  This  allows  the  use  of  algebraic  models                
to  solve  a  variety  of  signal  processing  tasks.  Including  Graph,  Graphon  Time,  and  Image                
processing   as   we   describe   next   

Slide   37:   Graph   Signal   Processing   (GSP)   

1. We  begin  by  reviewing  graph  convolutions.  Which  we  have  already  seen  can  be               
expressed  as  particular  forms  of  algebraic  convolutions.  More  to  the  point,  we  begin  by                
tackling  a  graph  signal  processing  task  where  our  goal  is  to  process  a  signal  x  that  is                   
supported  in  a  graph.  The  graph  has  n  nodes  supporting  each  of  the  n  entries  of  the                   
signal   x.   And   the   graph   is   described   by   a   shift   operator   S.   

Slide   38:   Graph   Signal   Processing   (GSP)   

1. GSP   in   the   graph   with   shift   operator   S   is   a   particular   case   of   ASP   in   which:   

2. The   vector   space   where   signals   live   is   R-n   

3.   The   associated   space   of   endomorphisms   is   the   space   of   square   matrices   

4. The  algebra  is  the  algebra  of  polynomials  of  a  single  variable.  In  which  filters  are  written                  
as   symbolic   polynomials   
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5. The  mapping  to  the  space  of  endomorphisms  is  accomplished  by  mapping  the  generator               
t   of   the   algebra   of   polynomials   to   the   shift   operator   S   of   the   graph.   

6. This  results  in  filters  expressed  as  polynomials  in  the  shift  operator  S.  Which  is,  indeed,                 
the   object   we   have   called   a   graph   fitler.     

7. The  result  of  applying  this  filter  to  a  signal  x  is  simply  the  multiplication  of  the  polynomial                   
on   S   with   the   signal   x.   

Slide   39:   Graphon   Signal   Processing   (WSP)  

1. Another  task  we  can  solve  with  algebraic  filters  is  the  processing  of  signals  on  graphons.                 
The  signals  that  we  are  given  are  supported  on  the  interval  zero-one  and  have  finite                 
energy.  They  belong  to  the  space  L_2  of  0-1.  Which  contains  the  functions  that  are                 
square   integrable   in   this   interval.   

Slide   40:   Graphon   Signal   Processing   (WSP)  

1. To   process   signals   on   graphons   we   particularize   ASP   so   that:   

2. The  vector  space  where  signals  live  is  L_2  of  0-1.  The  space  of  functions  that  are  square                   
integrable   in   0-1.   

3. We  still  stick  to  using  the  algebra  of  polynomials  of  a  single  variable.  Filters,  in  the                  
abstract,   are   the   same   as   the   filters   we   use   in    graph    signal   processing.   

4. What  changes  is  the  definition  of  the  homomorphism.  In  the  case  of   graphon  signal                
processing  we  map  the  generator  of  the  polynomial  algebra  to  the  operator  T_W.  This  is                 
the  integral  function  operator  that  applies  the  graphon  W-of-u-v  to  the  graphon  signal               
x-of-v.   

5. This  mapping  completely  defines  the  homomorphism  and  results  in  filters  that  are  given               
as  polynomials  on  the  operator  T_w.  Where  powers  of  the  operator  T_W  represent               
successive   applications   of   the   operator.   

6. The  application  of  a  graphon  filter  to  a  signal  x  is  the  application  of  this  polynomial                  
operator   to   input   signals.   Which   is,   indeed,   the   structure   we   have   called   a   graphon   filter.   
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Slide   41:   Discrete   Time   Signal   Processing   (DTSP)   

1. We  can  now  move  on  to  consider  the  processing  of  discrete  time  signals.  These  are                 
sequences  X  defined  over  the  integers.  They  extend  from  minus  to  plus  infinity.  The                
sequences  are  required  to  have  finite  energy.  They  are  square  summable.  We  say  they                
live   in   L_2-of-Z.   

Slide   42:   Discrete   Time   Signal   Processing   (DTSP)   

1. Discrete  time  signal  processing  is  also  a  particular  case  of  ASP.  In  this  case  we  have                  
that   

2. The  vector  space  where  signals  live  is  L_2-of-Z.  The  space  of  square  summable               
sequences.   

3. The  algebra  is,  again,  the  algebra  of  polynomials  of  a  single  variable.  Same  as  in  graph                  
and   graphon   signal   processing.     

4. What  changes  is,  again,  the  homomorphism.  We  produce  a  homomorphism  in  which  the               
polynomial  t  that  generates  the  polynomial  algebra  is  mapped  to  the   time   shift  operator                
S.  The  time  shift  operator  is  a  linear  operator  that,  when  applied  to  the  sequence  X,  it                   
shifts  the  time  indexes  one  unit  up.  The  new  sequence  has  the  same  values.  But  the                  
value  at  index  n  after  application  of  the  operator,  is  the  one  associated  with  the  index  n-1                   
in   the   sequence   to   which   the   operator   is   applied.   

5. This  mapping  of  the  generator  t,  yields  filter  instantiations  in  the  form  of  polynomials  on                 
the    time    shift   operator.   

6. When  we  apply  this  filter  we  produce  an  expression  that  is  not  unlike  the  ones  we’ve                 
seen  before.  Except  that  the  shift  operator  S  is  now  a   time   shift  operator.  Not  a  graph  or                    
graphon  shift  operator.  An  extra  level  of  simplification  is  possible  if  we  isolate  the  n-th                 
component  of  the  output.  This  can  be  written  as  the  sum  over  k  of  h_k  times                  
X-sub-n-minus-k.   Which   is   the   familiar   expression   for   the   convolution   of   time   signals.   

Slide   43:   Image   Processing   (IP)   

1. Yet  another  example  of  a  task  that  we  can  solve  with   algebraic  SP  is  the  processing  of                   
images.  An  image  is  mathematically  represented  as  a  sequence  with  two  integer              
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indexes.  The  sequence  is  required  to  have  finite  energy,  as  usual.  We  say  that  it  belongs                 
to   L_2-of-Z-square.   

Slide   44:   Image   Processing   (IP)   

1. To  recover  image  processing  as  a  particular  case  of  algebraic  signal  processing  we               
define:   

2. M  as  the  vector  space  of  square  summable  sequences  with  two  indexes.  The  space                
L_2-of-Z-square.     

3. In  this  case  we  need  to  use  a  different  algebra:  The  algebra  of  polynomials  of  two                  
variables.   Made   up   of   abstract   expressions   we   can   write   as   polynomials   with   two   letters.   

4. This  is  an  algebra  that  has  two  generators.  The  polynomial  x  and  the  polynomial  y.  We                  
map  the  polynomial  x  to  the  shift  operator  S_x.  This  is  an  operator  that  shifts  the   first                   
coordinate  of  the  two-index  sequence.  We  map  the  polynomial  y  to  the  shift  operator                
S_y.   This   is   an   operator   that   shifts   the    second    coordinate   of   the   two-index   sequence.     

5. This  choice  of  mapping  of  the  generators  x  and  y  yields  filters  that  are  expressed  as                  
polynomials   that   signify   repeated   applications   of   the   shift   operators   S_x   and   S_y.   

6. Applying  these  polynomial  operators  to  the  processing  of  an  image  X  produces  an               
expression  that  is  equivalent  to  the  usual  definition  of  the  2-dimensional  convolution  that               
is   used   in   image   processing.   

Slide   45:   ASP   is   a   Generic   Analysis   Tool   

1. Algebraic  convolutional  filters  encompass  graph,  graphon,  time,  and  image  convolutional            
filters   as   particular   cases.   

2. There  are  other  particular  cases  that  can  be  obtained/.  Notably,  group  convolutional              
filters.     

3. The  value  of  having  built  this  abstraction  is  that  it  provides  a  framework  for  analyses  that                  
hold  for  all  kinds  of  convolutional  filters.  Our  particular  interest  will  be  in  constructing  an                 
abstract  framework  for  algebraic  convolutional  neural  networks.  Out  of  these  framework             
we  expect  to  find  abstract  stability  properties  that  hold  for  all  particular  cases.  Namely,                
graph,   graphon,   time,   image   and   group   convolutional   neural   networks.     
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12.6     Algebraic   Neural   Networks   

Slide   1:   Algebraic   Neural   Networks   

1. With  the  concept  of  algebraic  filtering  in  place,  we  will  introduce  the  algebraic  neural                
network   architecture   in   this   video.   

Slide   2:   Algebraic   Neural   Networks   

1. Algebraic   neural   networks   (AlgNNs)   are   defined   as   a   stacked   layered   structure.   

2. Each  layer  consists  of  the  algebraic  signal  model  (A_l,  M_l  ,  rho_l)  and  the  map  sigma_l                  
that  is  a  composition  of  a  nonlinearity  operator  and  a  pooling  operator.  Like  in  any  ASP                  
model  the  pair  M_l  and  rho_l  is  a  representation  of  A_l.  The  mapping  between  layers  is                  
performed   by   sigma_l.   

3. At  layer  l,  the  input  x_(l  minus  1)  is  first  processed  by  the  filter  rho_l  of  a_l  for  the                     
intermediate   feature   

4. Then,  the  intermediate  feature  passes  through  the  nonlinearity  and  pooling  sigma_l  to              
generate   the   output   x_l.   

5. The  above  operation  can  be  represented  equivalently  as  a  nonlinear  map  Phi  of  x_(l                
minus   1),calligraphic   P_l   ,   calligraphy   S_l   

6. Where  calligraphic  P_l  is  contained  in  A_l  and  highlights  the  properties  of  the  filters  and                 
calligraphic   S_l   is   the   set   of   shifts   associated   to   the   representation   pair   M_l   and   rho_l    

Slide   3:   Algebraic   Neural   Networks   

1. This  figure  shows  the  architecture  of  the  Algebraic  Neural  Network  with  three  layers.  At                
each  layer,  there  is  an  algebraic  signal  model.  We  first  process  the  input  with  the                 
algebraic  filter,  then  process  the  result  with  the  nonlinearity  and  the  pooling,  and  then                
generate   the   output   for   the   next   layer.     

Slide   4:   Convolutional   Features   
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1. In  fact,  the  processing  at  each  layer  can  be  performed  by  a  family  of  filters,  which  leads                   
to   multiple   features.   

2. To  be  more  precise,  the  F_(l  minus  1)  inputs  are  processed  by  F_l  F_(l  minus  1)  filters                   
rho_l  of  a_l^gf  to  generate  intermediate  features.  The  latter  are  first  aggregated  over  the                
input  index  g  and  then  passed  through  the  nonlinearity  and  the  pooling  sigma_l  to  output                
features   at   layer   l.   

3. Here,  a_l^gf  is  the  filter  processing  gth  feature  x_(l  minus  1)^g  and  F_l  is  the  number  of                   
feature   at   layer   l.   

4. Note  that  layers  may  use  different  and  specific  algebraic  signal  models  (A_l,  M_l,  rho_l).                
In   particular,   the   algebras   can   be   different   but   they   are   usually   chosen   as   the   same.   

5. The  trainable  parameters  are  the  filters  a_l^gf,  while  numerically,  we  directly  train  on               
rho_l   of   a_l^fg.   

Slide   5:   Pooling   

1. The  pooling  operation  is  meant  to  increase  the  computational  efficiency  and  to  improve               
the   performance.   

2. In  a  general  Algebraic  Neural  Network  this  operation  is  attributed  to  the  operator  sigma_l                
which   is   the   composition   of   the   operators   eta_l   and   P_l.   

3.    Where   eta_l   is   a   pointwise   nonlinearity   and   P_l   is   a   pooling   operator.   

4. The  only  property  assumed  from  sigma_l  is  to  be  Lipschitz  and  to  have  zero  as  a  fixed                   
point,   this   is   sigma_l   of   zero   equals   zero.   

5. It  is  also  important  to  point  out  that  the  pooling  operator  P_l  projects  elements  from  a                  
given   vector   space   M_l   into   another   M_(l   plus   1).   

Slide   6:   Example   1:   CNN   

1. We  now  provide  explicit  examples  for  the  Algebraic  Neural  Networks.  We  first  consider               
traditional  CNNs,  which  particularize  the  algebraic  signal  model  in  AlgNNs  as  the  typical               
signal   model.   
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2. Make  M  equals  C^N  and  A  the  polynomial  algebra  in  the  variable  t  and  module  t  power                   
N   minus   1.   

3. And  S  equals  C  is  the  cyclic  shift  operator  satisfying  C  power  k  equals  C  power  k  module                    
N.   

4. Substituting   above   definitions   then   yields   the   operation   of   the   traditional   CNN   layer.   

5. In  this  case,  the  pooling  operator  P_l  is  a  sampling  operator  while  the  nonlinearity  eta_l                 
is   the   ReLU.   

Slide   7:   Example   2:   GNN   

1. The  second  example  is  the  Graph  Neural  Networks,  which  particularize  the  generic              
algebraic   signal   model   to   that   one   of   graph   signal   processing   

2. Let  the  vector  space  M  equals  C^N  with  the  nth  component  x_n  of  the  signal  x  in  M                    
associated   with   the   nth   graph   node.   

3.    Let   also   A   be   the   polynomial   algebra   in   the   variable   t   

4. The   homomorphism   filter   rho   of   a   is   then   given   by   the   polynomial   in   the   shift   S.   

5. Here,  S  is  the  graph  matrix  representation,  such  as  the  adjacency  matrix,  the  Laplacian                
matrix   and   so   on.   

6. Substituting   these   definitions,   we   can   obtain   the   operation   at   each   GNN   layer.   

12.7     Perturbation   Models   

Slide   1:   Perturbation   Models   -   Title   Slide   

2. In   this   lecture   we   introduce   the   notion   of   perturbation   for   generic   algebraic   signal   models   
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Slide   2:   Representation   and   Shift   Operators  

2. In  order  to  properly  define  the  model  deformations  we  first  recall  the  notion  of  generator                 
of   an   algebra     

3. We  say  that  the  set  calligraphic  G  is  a  generator  of  A,  if  every  element  of  the  set  A  can                      
be  built  from  calligraphic  G  as  polynomials  using  the  operations  of  the  algebra.  In  other                 
words,  the  elements  of  A  can  be  generated  as  a  polynomial  of  the  elements  of  the  set                   
calligraphic   G   

4. The  Shift  operators  are  the  set  of  images  of  the  homomorphism  applied  to  the                
generators.     

5. In  short,  the  generator  set  of  A  is  the  set  with  which  we  can  reconstruct  A  by  using                    
polynomial  functions.  And  we  define  the  shift  operators  as  the  set  of  all  the  results  of                  
applying   the   homomorphism   to   the   generator   set   

6. Then,  we  represent  the  filter  \rho  of  a  as  a  polynomial  function  of  the  set  calligraphic  S,                   
which   is   the   set   of   shift   operators   

Slide   3:   Perturbations   in   Algebraic   Signal   Models   

6. We  define  perturbations  of  Algebraic  signal  models  as  perturbations  of  the  shift              
operators   

7. Then,  the  perturbed  model  is  associated  to  S  tilde  which  equals  S  plus  a  perturbation                 
function   T   of   S   

8. The  algebraic  signal  processing  model  given  by  A  coma  M  coma  rho  is  consequently                
perturbed   to   the   triplet   (A   coma   M   coma   rho   tilde)   such   that   

9. Rho  tilde  of  a  is  equal  to  P_M  of  rho  tilda  of  the  generator  g,  which  equals  the  polynomial                     
function   p_M   of   calligraphic   S   tilde   

10. That  is,  the  polynomials  that  define  filters  are  the  same.  But  they  use  the  perturbed  shift                  
operator     

11. As  an  example  let’s  think  about  graphs.  The  shift  operator  S  represents  the  graph  and                 
the  perturbed  model  S  tilde  represents  another  graph,  which  is  a  modified  version  of  the                 
graph   associated   to   the   operator   S   
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12. Or  in  the  context  of  time  signals,  if  the  shift  operator  S  represents  translation                
equivariance,  S  tilde  represents  the  quasi-translation  equivariance  property,  which  is            
obtained   as   a   perturbation   of   the   operator   S   

Slide   4:   Perturbation   Definition:   Remarks   

6. Our  definition  of  perturbation  limits  the  perturbation  of  the  homomorphism  to  the              
perturbation   of   the   shift   operator.     

7. This  is  a  somewhat  arbitrary  choice  but  one  that  is  motivated  by  practice  as  we  illustrate                  
for   graph   signals,   discrete   time   signals,   signals   on   groups,   graphon   signals   

8. The  model  is  also  arbitrary  in  that  it  perturbs  the  homomorphism  ρ  but  not  the  Algebra  A                   
or  the  signal  x.  This  is  also  justifiable.  Notice,  first  that  the  algebra  A  is  a  choice  of                    
operations   and   therefore   not   naturally   subject   to   perturbation.     

9. We   can   interpret   a   perturbation   x   tilde   of   the   signal   as   a   transformation   of   the   shift   S   

10. This  model  is  particularly  useful  as  we  can  study  the  effect  of  perturbation  T  on  signal  x                   
by   processing   the   original   signal   x   with   the   perturbed   shift   operator    S   tilde   

11. This  is,  the  effect  of  the  perturbation  T  of  x  can  be  studied  by  processing  x  with  the                    
perturbed   shift   operator   S   tilde   equals   the   composition   of   the   shift   operator   S   and   T   

Slide   5:   Perturbation   Model   (Deformations)   

6. The  model  of  perturbation  that  we  will  study  hereafter  is  the  first  order  generic  model  of  a                   
small   perturbation   for   the   shift   operator   

7. Our   model   consists   of   two   parts,   

8.   the   absolute   perturbation   T_0   

9.   and   the   relative   perturbation   T_1   acting   on   the   shift   operator   S     

10. For  the  context  of  our  analysis,  we  will  only  consider  the  operators  T_0  and  T_1  to  be                   
compact   normal,   and   we   will   impose   that   the   norm   of   both   operators   is   bounded   by   one   
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11. Notice  that  this  condition  is  not  a  strong  requirement  as  we  are  interested  in                
perturbations   T   of   S   whose   norm   is   significantly   smaller   than   one   

Slide   6:   Perturbation   of   Graph   Filters   

7. To  illustrate  the  ideas  discussed  previously,  we  discuss  the  implications  of  the              
perturbation  model  considered  for  graph  signal  processing.  In  the  case  of  graphs,  to               
consider  a  perturbation  means  to  apply  the  same  filter,  on  the  exact  same  signal.  The                 
only   thing   that   changes   will   be   the   graph   

8. If  the  original  graph  represented  by  the  shift  operator  S  is  used,  and  a  filter  with                  
coefficients   h_k   is   considered,   We   process   X   instantiated   on   S   as   H(S)   times   X.     

9. Then,  when  a  perturbed  GSP  model  is  considered,  we  use  the  same  filter  coefficients                
h_k  to  process  the  same  signal  but  instantiated  on  the  perturbed  graph  shift  operator  S                 
tilde   

10. The  perturbed  model  S  tilde  is  then  defined  by  the  additive  perturbation  matrix  T_0  plus                 
the   relative   perturbation   matrix   T_1   one   applied   to   the   graph   shift   S   

11. If  you  find  this  slide  familiar,  it  is  because  we  already  used  it.  This  slide  was  part  of                    
lecture   6.     

12.8     Stability   Theorems  

Slide   1:   Stability   Theorems   -   Title   Page   

13. In  this  part  of  the  lecture,  we  will  define  stability  in  the  context  of  algebraic  signal                  
processing   

14. And  use  this  definition  to  show  that  algebraic  filters  and  algebraic  neural  networks  are                
stable.   

Slide   2:   Stability-recalling   basic   notions   and   notation   
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15. We  recall  that  in  the  algebraic  signal  model  (A  coma  M  coma  \rho),  filters  are  defined  by                   
the   operators   acting   on   M   that   are   obtained   as   the   images   of   A   under   \rho   

16. If  A  is  generated  by  the  set  calligraphic  G,  any  element  of  the  algebra  can  be  written  as                    
a   polynomial   function   of   the   elements   in   the   generator   set   

17. Consequently,  any  filter  acting  on  the  vector  space  M  is  defined  by  operators  that  can  be                  
expressed   as   functions   of   the   shift   operators   

18. More  specifically  filters  can  be  written  as  polynomial  functions  of  the  shift  operator  S  that                 
we   denote   as   p(S)   

  

Slide   3:   Stability   

1. Recall   that   stability   is   a   property   of   an   operator.   

2. In   the   context   of   algebraic   signal   processing,   we   say   that   an   operator   p   of   S   is   stable   

3. If  there  exist  positive  constants  C  sub  0  and  C  sub  1  such  that,  if  S  is  perturbed  by  T  to                       
yield   S   tilde,   

4. The  norm  of  the  difference  between  the  operator  p  of  S  applied  to  an  algebraic  signal  x,                   
and   the   operator   p   of   S   tilde   applied   to   the   same   signal   x,   is   upper   bounded     

5. For   all   x.   

6. In  this  definition,  D  sub  T  of  S  denotes  the  Frechet  derivative  of  the  perturbation  T.  As                   
such,  we  see  that  the  norm  of  the  difference  between  the  operators  is  bounded  by  the                  
size  of  the  perturbation  in  two  ways.  First,  it  is  bounded  by  the  value  of  the  perturbation                   
T  itself,  scaled  by  C  sub  0.  Second,  it  is  bounded  by  the  rate  of  change  of  this                    
perturbation,   which   is   given   by   D   sub   T   of   S   and   scaled   by   C   sub   1.   

7. Importantly,  note  that  stability  of  algebraic  operators  is  not  a  given.  There  are  several                
examples  of  unstable  operators  in  the  processing  of  both  graph  and  time  signals.  Which                
is   why   we   analyze   the   stability   of   algebraic   filters   and   neural   networks.   

Slide   4:   Lipschitz   and   Integral   Lipschitz   Filters   
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1. Filters   are   polynomials   on   the   shift   operator.     

2. Therefore,  they  are  isomorphic  to  polynomials  with  complex  variables.  Which  allows  us              
to   define   filters   as   mappings   from   the   complex   numbers   to   the   complex   numbers.   

3. A  Lipschitz  filter  is  defined  as  a  Lipschitz  polynomial  p  of  lambda.  That  is,  given  two                  
complex  numbers  \lambda  and  \mu,  the  polynomial  p  is  such  that  the  magnitude  of  the                 
difference  between  p(\lambda)  and  p(\mu)  is  bounded  by  the  difference  between             
\lambda  and  \mu  scaled  by  some  constant  L_0.  L_0  is  called  the  Lipschitz  constant  of                 
the   filter.     

4. An  integral  Lipschitz  filter  is  defined  as  an  integral  Lipschitz  polynomial  p  of  lambda.  That                 
is,  the  norm  of  the  product  of  the  derivative  of  p  of  lambda  by  lambda  is  bounded  by                    
some  constant  L_1.  L_1  is  called  the  integral  Lipschitz  constant  of  the  filter.  In  integral                 
Lipschitz   filters   the   rate   of   variation   approaches   zero   as   lambda   grows   

5. To  make  things  simple,  in  a  first  moment  we  restrict  attention  to  algebras  with  a  single                  
generator.  Generalizations  to  algebras  with  multiple  generators  are  cumbersome  but            
easy   to   obtain.   

Slide   5:   Stability   of   Algebraic   Filters   

1. We   start   by   analyzing   the   stability   of   algebraic   filters.   

2. If   an   algebraic   filter   is   Lipschitz   and   integral   Lipschitz,   it   is   stable,   that   is   

3. The  difference  between  the  filter  outputs  on  the  shift  operator  S  and  on  the  perturbed                 
shift  operator  S  tilde  is  upper  bounded  by  the  size  of  the  perturbation  and  by  its  rate  of                    
variation.  In  the  case  of  the  algebraic  filter,  the  constants  C  sub  0  and  C  sub  1,  which                    
scale  the  norm  of  T  and  the  norm  of  its  Frechet  derivative  respectively,  are  given  by  the                   
Lipschitz  constant  L  sub  0  and  the  integral  Lipschitz  constant  L  sub  1.  The  stability                 
bound  is  further  dependent  on  the  scalar  factor  delta,  which  measures  the  non               
commutativity   between   the   operators   S   and   T   

4. This  is  good  news.  It  means  that,  under  mild  conditions,  algebraic  filters  can  be  made                 
stable   to   perturbations   

5. On  the  other  hand,  the  upper  bound  is  directly  proportional  to  the  variability  of  the  filter                  
as   measured   by   the   Lipschitz   constant   L_0   and,     
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6. more  importantly,  to  the  integral  Lipschitz  constant  L_1,  which  controls  the  length  of  the                
interval  in  which  the  filter  can  vary.  Alas,  we  encounter  the  same  stability-discriminability               
tradeoff   we   have   observed   for   graph   and   graphon   filters   

7. As  for  the  commutativity  factor,  it  affects  the  stability  constant,  but  does  not  generate                
instability.   

Slide   6:   Stability   of   Algebraic   Neural   Networks,   Single   Layer   

1. Next,   we   analyze   the   stability   of   an   algebraic   neural   network   layer.     

2. For  a  formal  statement,  let  Phi_l  of  (S,X)  and  Phi_l(S_tilde,X)  be  the  operators               
associated   with   a   layer   l   of   an   algebraic   neural   network.   

3. Then,   if   the   filters   p   are   Lipschitz   and   integral   Lipschitz,   

4. The  difference  between  the  outputs  of  the  AlgNNs  on  S  and  S_tilde  can  be  upper                 
bounded.   

5. Note  that  the  stability  bound  is  the  exact  same  bound  we  obtained  for  algebraic  filters.                 
Which  is  good  news,  because  it  means  that  algebraic  neural  networks  can  be  made                
stable   to   perturbations.  

6. However,  due  to  the  same  stability-discriminability  tradeoff  as  the  one  we  observe  in               
algebraic   filters,   individual   layers   lose   discriminability   

7. But  in  the  AlgNN,  this  is  addressed  by  the  nonlinearity,  which  mixes  the  frequency                
components   and   allows   discriminability   in   subsequent   layers  

Slide   7:   Stability   of   Algebraic   Neural   Networks,   Multiple   Layers   

1. For  AlgNNs  to  be  stable  and  discriminative,  we  know  that  they  must  have  multiple                
layers.   But   stacking   layers   change   the   stability   bound   slightly.   

2. To  see  this,  let  Phi  of  S  and  x  and  Phi  of  S  tilde  and  x  now  denote  the  operators                      
associated   with   an   algebraic   neural   network   on   L   layers.   

3. Then,   if   the   filters   p   at   each   layer   are   Lipschitz   and   integral   Lipschitz,   
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4. The  difference  between  the  outputs  of  the  AlgNNs  on  S  and  S  tilde  can  be  upper                  
bounded.   

5. This  stability  bound  is  only  a  minor  variation  of  the  stability  bound  we  derived  for  a  single                   
layer.   It   is   the   same   stability   bound,   only   scaled   by   the   number   of   layers   L.   

Slide   8:   Stability   of   Algebraic   Neural   Networks,   Multiple   Generators   

1. The  algebraic  neural  network  stability  result  can  be  readily  extended  to  the  case  in  which                 
there   are   M   generators.   

2. Formally,  let  Phi  of  S  and  x  and  Phi  of  S  tilde  and  x  now  denote  the  operators                    
associated   with   an   algebraic   neural   network   with   M   generators   on   L   layers.   

3. Then,   if   the   filters   p   at   each   layer   are   Lipschitz   and   integral   Lipschitz,   

4. The   difference   between   the   outputs   of   the   ANNs   on   S   and   S   tilde   can   be   upper   bounded.  

5. This  stability  bound  is  only  a  minor  variation  of  the  stability  bounds  we  derived  for  a                  
single  ANN  layer  and  for  the  multilayer  ANN.  It  is  the  same  stability  bound,  only  scaled                  
by   the   number   of   layers   L   and   the   number   of   generators   M.   

12.9     Spectral   Representations   

Slide   1:   Spectral   Representations-Title   page   

19. Central  to  the  analysis  of  algebraic  signal  models  is  the  notion  of  spectral  or  Fourier                 
decompositions.  In  this  lecture  we  introduce  this  notion  based  on  the  concept  of               
decompositions   in   terms   of   irreducible   subrepresentations   

Slide   2:   Recalling   basic   concepts   

20. We   start   recalling   that   an   algebraic   model   is   a   triple   A   coma   M   coma   rho     

21. Where   A   is   an   algebra,   M   is   a   vector   space   and   rho   is   a   homomorphism   
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22. And   where   the   pair   M   coma   rho   is   a   representation   of   the   algebra   A   

23. We  highlight  in  particular  that  each  representation  of  an  algebra  defines  an  algebraic               
signal   model   

24. We  point  out  that  given  two  representations  (M_1  ,  \rho_1)  and  (M_2  ,  \rho_2  )  is                  
possible  to  define  a  direct  sum  as  (M_1  \oplus  M_2  ,  \rho).  This  is  the  vector  space  in  the                     
sum   representation   is   the   direct   sum   of   M_1   and   M_2   and   there   is   a   homomorphism   rho   

25. The  action  of  \rho(a)  on  (X_1  \oplus  X_2)  equals  the  direct  sum  of  the  action  of  \rho_1(a)                   
on   X_1   and   \rho_2(a)   on   X_2   

Slide   3:   Subrepresentations   and   Irreducible   representations   

26. Before   defining   irreducibility   we   require   to   define   formally   subrepresentations   

27. Let   M   coma   rho   be   a   representation   of   the   algebra   A   

28. Then,  a  representation  U  coma  rho  of  the  same  algebra  A  is  a  subrepresentation  of  M                  
coma   rho   

29. If  the  space  U  is  contained  in  the  space  M  and  U  is  invariant  under  the  action  of  rho,  this                      
is   any   filtered   element   of   U   is   again   in   U   

30. Now   we   can   introduce   the   notion   of   irreducible   representation   

31. A  representation  M  coma  rho,  where  M  is  different  from  the  zero  vector  space,  is                 
irreducible   or   simple   

32. If   the   only   sub-representations   of   M   coma   rho   are   zero   coma   rho   or    M   coma   rho   itself   

Slide   4:   Intertwining   operators   

33. Now  we  introduce  the  notion  of  homorphism  or  intertwining  operators  between             
representations,   which   will   allow   us   to   state   comparisons   between   them   

34. Let   (M_1   ,   rho_1   )   and   (   M_2   ,   \rho_2)   be   two   representations   of   the   same   algebra   A   
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35. A  homomorphism  or  intertwining  operator  phi  acting  from  M  one  to  M  two  is  a  linear                  
operator   that   commutes   with   the   action   of   the   algebra     

36. This   is   phi   of   rho   one   of   a   on   v   equals   rho   two   of   a   on   phi   of   v   

37. Additionally  we  will  refer  to  phi  as  an  isomorphism  of  representations  if  phi  is  in  addition                  
an   isomorphism   of   vector   spaces   

38. We   indicate   that   two   representations   are   isomorphic   using   the   congruence   symbol   

Slide   5:   Fourier   Decompositions     

39. Now   we   introduce   the   main   concept   of   this   lecture,   that   one   of   Fourier   decomposition   

40. For  an  algebraic  signal  model  (A,M,rho)  we  say  that  there  is  a  spectral  or  Fourier                 
decomposition   of   the   representation   (M,rho)   if   

41. (M,rho)   is   isomorphic   to   a   direct   sum   of   irreducible   subrepresentations   (U_i,   phi_i)   

42. Where  m(U_i,M)  indicates  the  number  of  irreducible  subrepresentations  of  (M,rho)  that             
are   isomorphic   to   (U_i,phi_i)   

43. And  any  signal  X  in  M  can  be  represented  by  the  function  \Delta  that  maps  X  into  the                    
direct   sum   of   the   spaces   U_i   as   X-hat   

44. The  projection  of  X-hat  in  each  space  U_i  are  the  Fourier  components  of  X  and  are                  
represented   by   X-hat   of   i   

Slide   6:   Fourier   Decompositions   highlights   

45. Notice   that   the   Fourier   decomposition   is   defined   by   two   sums   

46. Indicated   in   blue   and   green   color   respectively   

47. The   first   sum,   in   blue,   is   performed   on   the   non   isomorphic   subrepresentations   

48. While   the   sum   in   green   is   performed   over   all   the   subrepresentations   that   are   isomorphic   
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49. Notice  also  that  the  external  sum,  in  blue,  indicates  the  frequencies  while  the  internal                
sum,   in   green,   the   components   associated   to   a   given   frequency   

50. The  operator  Delta,  who  maps  any  signal  x  into  its  Fourier  decomposition  is  an                
intertwining  operator,  which  means  it  interchanges  with  the  action  of  any  filter  a  in  the                 
algebra.  This  also  allows  one  to  write  the  action  of  a  filter  on  a  signal  using  the  action  of                     
filter   on   the   signal   in   the   spectral   domain   

Slide   7:   Fourier   Decompositions   highlights   

51. The  projection  of  a  filtered  signal  on  each  space  U_i  can  be  written  in  terms  of  the  action                    
of   a   homomorphism   phi_i   on   x-hat   of   i.   

52. And  the  collection  of  the  projections  of  the  filtered  signal  rho(a)x  on  U_i  for  all  i  defines                   
the   spectral   representation   of   the   filter   

53. It  is  worth  pointing  out  that  the  action  of  phi_i  on  x-hat  of  i  is  performed  by  means  of                     
different   operations   depending   on   the   dimension   of   the   spaces   U_i   

54. In  particular  we  can  see  that  if  the  dimension  of  U_i  equals  one,  the  operator  phi_i  of  a  is                     
a   scalar    while   if   the   dimension   of   U_i   is   greater   than   one   and   finite   phi_i   of   a   is   a   matrix   

Slide   8:   Remarks   

55. Now  we  make  some  remarks.  First  we  highlight  that  the  link  between  the  algebra  and                 
any   Fourier   decomposition   is   exclusively   given   by   the   homomorphism   phi_i   

56. And  as  a  consequence  it  is  not  possible  by  selecting  filters  in  the  algebra  to  modify  the                   
spaces   U_i   in   a   Fourier   decomposition   of   a   given   representation   

57. Then,  there  are  two  sources  of  differences  between  the  operators  rho  of  a  and  rho  tilda                  
of   a   associated   to   the   representations   M   coma   rho   and   M   coma   rho   tilda     

58. One  source  of  difference  that  can  be  modified  by  selecting  subset  of  the  algebra  and  this                  
is   something   that   is   embedded   in   the   homomorphisms   phi_i   and   phi   tilda   sub   i   

59. While  there  is  a  second  source  of  difference  associated  with  the  spaces  U_i  and  U  tilda                  
sub   i   that   cannot   be   modified,   by   any   selection   of   the   algebraic   filters   in   the   algebra.   
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Slide   9:   Examples   

60. Finally,  we  mention  a  couple  of  examples  where  we  put  more  in  concrete  the  notion  of                  
spectral  representations.  We  start  with  traditional  CNNs,  where  filtering  is  defined  by  the               
algebra   of   polynomials   modulo   t^N-1   

61. The  spectral  representation  of  the  filtering  of  a  signal  X  is  expressed  in  terms  of  the                  
maps   phi_i,   associated   to   the   irreducible   subrepresentations,   and   which   in   this   case   

62. Are   the   eigenvalues   associated   to   the   column   vectors   u_i   of   the   DFT   matrix     

63. For   GNNs   we   consider   the   polynomial   algebra   with   single   variable   t   

64. Then,  the  spectral  representation  of  the  filtering  of  a  signal  X  is  expressed  again  in  terms                  
of   the   maps   phi_i   which   in   this   case   

65. Are  the  eigenvalues  of  the  graph  matrix  S  while  the  unit  vectors  u_i  are  the  eigenvectors                  
of   the   operator   S   

  

  

  

  

  

  

  

  

  

  

  

  


