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Lecture 11 Script 

11.1   Machine Learning on Sequences 

Slide 1: Machine Learning on Sequences - Title Page 

1. Graph Neural Networks extract information from data encoded on graphs. They are able             
to exploit underlying regularities in the data structure to create architectures that are             
stable, scalable and invariant to permutations. 

2. Several applications, speech recognition and epidemic modelling being two examples,          
exhibit a time dependency in addition to the spatial structure encoded in the graph. The               
evolution of the process depends on the past values the process has taken up to this                
point. The time dependency as well as the variable lengths of data sequences motivate              
architectures specialized in dealing with sequential data.  

Slide 2: Machine Learning on Sequences 

1. A simple example to illustrate the estimation of properties of a sequence is to decide if a                 
moving particle that we are not controlling is going to enter a forbidden area. In the figure                 
we represent the forbidden region and several trajectories. 

2. This trajectory stays clear of the danger zone. 

3. And so does this trajectory. 

4. But this one does not. We want to be able to tell this trajectory apart from the other two. 

5. This is a problem that is time dependent. Suppose that we observe the trajectory at               
different points in time. Times 1 through 8 in the figure. It is clear that depending on the                  
time index we have different degrees of confidence on the category to which the              
trajectory belongs. 

6. At time 1 the three trajectories are the same. 
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7. They are still the same at time 2. 

8. At time 3 they start to diverge and we could start making a determination that the red                 
trajectory is on a collision path. But a determination is likely premature. 

9. At time 4 we can have a larger degree of confidence. 

10. And at time 5 we are but certain that the red trajectory in the middle will enter the                  
forbidden region while the other two will stay clear of it. 

11. At time 6 we are certain that the red trajectory is at fault while the other two seem safe. 

12. At time 7 the two black trajectories up and down seem to be pulling away. 

13. Something that we can ascertain with confidence at time 8. 

14. This problem is not something that we can map to a sequence of classifications, which is                
something we would know how to do.  

15. It maps to the classification of a sequence, which is not something that we know how to                 
do. Indeed, the destiny of the trajectory is not a function of the current position only. It is                  
a function of previous positions as well. Physical systems have inertia. The direction of              
movement is important.  

16. An AI that maps the current position x_t to a prediction on the trajectory’s class y_t  

17. Is less accurate than an AI that maps the history of positions x_0-t to a prediction on the                  
trajectory’s class y_t.  

18. We do not want to predict y_t from x_t.  

19. We want to predict x_t from the trajectory’s history x_0-t. 

Slide 3: Unbounded Memory Growth 

1. The challenge with making predictions on a sequence is memory growth. Predictions on             
a sequence of observations depend on the complete history of the process. As the              
iteration index t grows, the number of observations in which we base our predictions,              
also grows.  
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2. At time 1 we observe input x_1 

3. And make prediction y_1-hat. This is the problem we have studied thus far. It can be                
easy or difficult. Depending on the dimensionality and structure of x_1. 

4. At time 2 we observe input x_2. 

5. We now have to make a prediction y_2-hat. But this prediction depends not only on the                
value we observe at time 2. It also depends on the observation at time 1. The amount of                  
data we have to store doubles. More importantly, the complexity of the learning task              
squares. Remember that learning complexity grows exponentially with the number of           
input dimensions. 

6. At time 3 we observe input x_3. 

7. To make a prediction y-hat-3. This prediction has to depend on the observation x_3. But               
also on the observations x_2 and x_1. Memory has tripled. More importantly the             
complexity of the task cubes. Because the complexity of sampling a space grows             
exponentially with its dimensionality.  

8. In general. 

9. At any given time t we have a new observation x_t 

10. And make a new prediction y-hat_t. This prediction is not only a function of the current                
state. But a function of the whole past. We have linear memory growth. With a               
consequent exponential growth in the complexity of the learning task. This growth is             
unbounded. Which is untenable. 

11. Recurrent neural networks resort to the estimation of a hidden state to avoid this              
unbounded memory growth. 

Slide 4: Markov Random Process 
 

1. Before we talk about RNNs we need to talk about memory in stochastic processes. This               
will play an important role in motivating and understanding the architecture.The classical            
tool to study memory in time sequences is the Markov Random Process. We say a               
stochastic process is Markov, or memoryless, if the conditional probability of observing a             
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certain value at time t-plus-1 given that we know the complete history of the process               
from time 1 to t,  is the same conditional probability of knowing only the state at time t.  

2. More succinctly, the process is Markov if it is the same to condition on the current value                 
x of t or to condition on the whole trajectory of the process. 

3. This condition further implies that the future trajectory of the system, signified here by              
x_t-plus-one, is independent of the past, signified here by the trajectory values observed             
between times 1 and t-1. Provided that we know the present. Signified here by the state                
x_t.  

4. This further implies that when it comes to predicting the future, knowledge of the past is                
irrelevant. Put differently, if we are interested in the future trajectory of the system, it               
suffices for us to know the value at the present point in time. If we are also given                  
information about the past trajectory of the system, it doesn’t alter our prediction of the               
future. 

5. In addition to the state x_t, a Markov process may also have some outputs y_t. When                
this is the case, the outputs are assumed to be conditionally independent. The             
probability of the output taking some value y_t given only the current value of the               
stochastic process x_t is the same as the probability of y t conditioned on the entire                
trajectory of the stochastic process. An example of an output is the trajectory category.              
Whether we are entering the forbidden area or not.  

Slide 5: Learning in a Markov Process  

1. The reason for us to introduce memoryless Markov processes is that if we are given a                
Markov process, learning ​is equivalent to a sequence of learning problems. We do not              
have the challenge of learning from a sequence. We have the simpler challenge of a               
sequence of learning problems.  

2. To see that this is true, note that the evolution of the state of the process, x of t, is a                     
chain of memoryless transitions. That is, at every time step, the transition from x_t to               
x_t-plus-one depends only on the current value of the process. The past is irrelevant.  

3. Moreover, the outputs of the process, y_t, depend only on the current state of the               
process. The output y_t depends only on the state x_t. The output y_t-plus-1 depends              
only on the state x_t-plus-1. 
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4. Thus, if we want to design an AI capable of predicting the output of the process, it is                  
sufficient for the AI to learn how to mimic the conditional distribution of the observations               
y_t given the present state x_t. Since the past is irrelevant in nature, it is irrelevant for                 
the AI. This is all good, but we have already seen an example where predicting the                
future of the trajectory benefits from information about the past. The reason why this              
happens is because the process in the example is ​not Markov. ​When processes are not               
Markov, we have to resort to architectures that take the history of the sequence into               
consideration. Onse suh architecture is the recurrent neural network that we introduce in             
the next video. 

11.2   Recurrent Neural Networks 

Slide 6: Recurrent Neural Networks - Title Page 

1. Recurrent Neural Networks are the information processing architectures that we use to            
learn in processes that are not Markov. Namely, in processes where knowing the             
history of the process helps in learning. 

Slide 7: All Processes are Markov. However Disguised 

1. We reconsider here the problem of predicting whether a particle will enter a forbidden              
region. We have already seen that when predicting the future of the trajectory it is               
beneficial to know the whole past. We have also seen that the reason why this happens                
is because this process is ​not Markov. In turn, this is true because of physical inertia.                
Which is just a way of saying that the direction and speed of movement matter if we are                  
trying to predict the future path. 

2. If you need convincing, here is an example of a trajectory that enters into the forbidden                
area.  

3. At time 4, the positions x_4 observed for this new trajectory and for one of our old                 
trajectories are the same. But one of the trajectories is on a collision course with the                
forbidden area and the other one is on a safe trajectory. We can see that this is true                  
(without looking at their futures) if we compare their positions at time 3.  
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4. (Empty) 

5. The important observation for us to make now is that the process is not Markov as                
described. But if we also have access to the velocities and accelerations of the particle,               
the system becomes Markov. Having access to those unobserved states would allow us             
to predict the next position of the particle based on the current state of the particle. Now                 
made up not only of the position x_t, but also including the velocity v_t and the                
acceleration a_t. 

6. By the way, this depends a little on the model of your particle. It could be that you have                   
to go deeper into the position derivatives to have a Markov model. You may need to                
have access to the Jerk and the Snap. Or even access to the Crackle and the Pop. But                  
in any event, the important point is that all systems are Markov. This is true in a shallow                  
intuitive sense and in a deep philosophical sense. The problem, however, is that we              
often lack enough information to observe their Markov structure. In this problem, we are              
observing positions. Because this is what we can measure directly. But we don’t know              
the velocity or the acceleration. Not to mention the higher order derivatives if we need to                
go that route. The system is Markov. But on a state that remains hidden to the observer. 

Slide 8: Hidden Markov Model 

1. This fact brings us to the introduction of hidden Markov models.  

2. We say that a stochastic process x_t follows a hidden Markov model if there exists               
another, unobservable stochastic process z_t that is Markov. And, furthermore, the state            
z_t completely determines the probability distribution of the observed state x_t.  

3. Formally, the process z_t is one whose probability distribution at time t-plus-1 given the              
entire trajectory of the process is the same as its probability distribution when             
conditioning only on the current value of the process. This just means that z_t is a                
regular Markov process. 

4. The new part of the definition. 

5. Is to add the condition that the probability distribution of the observed state x_t given the                
current value of the hidden state z_t, is equal to the probability distribution of x_t given                
the entire history of the hidden process. 

6. Thus, we have that the hidden state, z_t, is a memoryless Markov stochastic process 
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7. And that the observed state x_t is conditionally independent. It depends only on the              
current value of the hidden state z_t. Not on the entire ​past ​trajectory of the hidden                
state. 

8. As before, we may have outputs of the process y_t. These are conditionally independent              
when given the ​hidden state z_t, Very importantly, this does not mean that they are               
conditionally independent when given the current ​observed state x_t. This is, ultimately,            
the reason why we can’t have a sequence of learning problems. And we instead end up                
with the problem of learning from a sequence.  

Slide 9: Machine Learning on Hidden Markov Models 

1. Indeed. In hidden Markov models, learning is not equivalent to a sequence of learning              
problems 

2. The hidden state z_t is a Markov process. It’s probability distribution is a chain of               
conditional probabilities in which the state at time t+1 depends only on the value of the                
process at time t. 

3. Given the state z_t of the hidden process, the probability distribution of the observation              
y_t is completely determined. We don’t need the history of the process if we know z_t. 

4. The probability distribution of the observable state x_t is also completely determined if             
we observed z_t. But this fact is not very important in this discussion. What matters most                
to us is that the observation y_t is conditionally independent.  

5. Because given that this is true, to predict the outputs of thel stochastic process, it is                
enough for the AI to try to mimic the conditional distribution of y_t given the hidden state                 
z_t. The AI could try to learn a mapping Phi from z_t, to the predicted output y-hat_t. 

6. Implementing this map, however, requires access to the state z_t.  

7. But this state is hidden. It is unobservable. We do not know the value that z_t has taken.                  
This is the reason why the process is ​hidden Markov. Not ​plain ​Markov. What we know                
is the observable state x_t. But this is not sufficient for us to neglect the history of the                  
process. 

8. Recurrent Neural Networks are information processing architectures to bypass this          
issue. They utilize observations of the observable state x_t to estimate the hidden state              
z_t. And from this hidden state estimate, they estimate the process’s output y_t. 
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Slide 10: Recurrent Neural Networks 

1. In order to extract information from the data sequence without running into            
dimensionality issues, a recurrent neural network makes use of two separate learning            
parameterizations. 

2. A function Phi_1. 

3. That maps the observed state x_t. 

4. And the hidden state z_t-minus-1. 

5. Into a hidden state update z_t. Thus, at every time instant, the RNN updates its internal                
hidden state based on the received observation x t, and on the previous value of the                
hidden state, z_t-minus-1. Observe that we are using z_t to denote the internal state of               
the RNN. This state is not the same as the internal state of the hidden Markov process. It                  
would be more accurate to use z-hat_t to denote the internal state of the RNN. But this                 
complicates notation unnecessarily.  

6. The second component of the RNN is the learning parameterization Phi_2.  

7. Which maps the updated hidden state z_t  

8. To a predicted output y-hat_t 

9. This architecture receives the name ​recurrent because the hidden states are fed back             
as inputs for the next time step. This recurrence of the hidden state allows the RNN to                 
encode past information it received from the data points seen so far in a manner that                
circumvents memory growth. By repeatedly updating the hidden state with each new            
data sample, the RNN creates an implicit mapping from the history of the process to the                
current hidden state. Without having to store and process all the samples it has seen so                
far. 

Slide 11: Hidden State Update AI 

1. So far we haven’t said anything about the specifics of the parameterizations Phi_1 and              
Phi_2. They could be anything, but in a recurrent ​neural network, ​they are neural              
networks. More concretely, the AI for the hidden state update is a perceptron.  
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2. The state x_t is multiplied by a matrix A. The state z_t-minus-1 is multiplied by a matrix                 
B. The results are added up and the sum is passed through a pointwise nonlinearity.  

3. The learnable parameters of an RNN are the entries of the matrices representing the              
linear combination of the data points, A, and of the hidden state, B. Note that the number                 
of learnable parameters does not depend on the time index t. That regularity prevents              
the number of learnable parameters from growing too large. And is also allows execution              
in sequences with variable length. Which is another important property that RNNs have. 

Slide 12: Output prediction AI 

1. For the output prediction AI Phi_2 we can use another perceptron.  

2. We multiply the hidden state z_t by a matrix C. And pass the output through a pointwise                 
nonlinearity. 

3. It is also possible to use a multi-layer neural network for the output AI. The theme of this                  
course is the exploitation of structure. RNNs exploit the structure of the sequence. On              
top of that, the observable state x_t, the hidden state z_t, and the observations y_t can                
also have some structure that we can exploit. If they are graph signals, we can use                
graph filters in lieu of the arbitrary matrices A, B, and C. Introducing this extra structure,                
leads to the introduction of ​graph ​recurrent neural networks. 

11.3   Time Gating 

Slide 13: Time Gating - Title Page 

1. Recurrent neural networks are trained via backpropagation through time. But          
propagating the gradients over many states --- as necessary to train recurrent neural             
networks --- can lead to vanishing or exploding gradients. 

2. Gated Recurrent Neural Networks address that issue by introducing gating mechanisms           
that create paths through time over which gradients do not vanish neither explode. Here,              
in particular, we will look into gating mechanisms in the form of long short term memory                
(LSTM) and gated recurrent units (GRU). 
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Slide 14: Vanishing / Exploding Gradients for Long Term Dependencies 

1. In some learning tasks, the recurrent neural network may have to learn how to model               
long term dependencies of length T in the data sequence 

2. That poses a challenge, however. Recurrent neural networks are trained via           
backpropagation through time, which relies on computing gradients with respect to the            
weights of the neural network and propagating them back in time. But the Jacobian of               
the hidden state z of t with respect to the corresponding weight matrix B will then depend                 
on a chain of multiplications by that weight matrix. That is, initially, it depends on B 

3. But when computing the next update, the Jacobian now depends on B squared 

4. Then B to the third power 

5. And so on, up to the length of the sequence, T 

6. What happens is that, if the eigenvalues of the weight matrix B are small, raising them to                 
the power of T will cause the gradient to vanish, thus leading to exponentially smaller               
weights 

7. If the eigenvalues of B are much larger than one, however, raising them to the power of                 
T causes the gradient to explode. Thus leading to exponentially larger weights B 

Slide 15: Vanishing / Exploding Gradients for Long Term Dependencies (Example) 

1. To see that, consider a simplified version of the RNN where we omit the pointwise               
nonlinearity sigma and the inputs x of t. That is, in this simplified model the hidden state                 
is updated simply by multiplying its current value, z t minus 1, by the weight matrix B 

2. At time T, the hidden state z T then depends on the T th power of the matrix B. That is, z                      
T is given by the product between B to the T th power and z of t minus T 

3. If the matrix B can be decomposed into its eigenvalues and eigenvectors as B equals to                
Q Lambda Q transpose, with Lambda a diagonal matrix made up by the eigenvalues of               
B and Q an orthogonal matrix made up by the eigenvectors of B, then the recurrence of                 
the hidden state can be written as z T being equal to Q times Lambda to the T th power,                    
times Q transpose, times z t minus T 
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4. Writing the recursion in this form allows us to see that eigenvalues less than one will                
vanish, while those eigenvalues that are greater than one will explode 

5. Implying that any component of z t minus T that is not aligned with the largest eigenvalue                 
will then be discarded 

 

Slide 16: Gating Mechanism 

1. To address this issue of vanishing gradients, we must add a gating mechanism to a               
recurrent neural network 

2. Gates are scalars on the unit interval that act on the current input of the neural network,                 
x t, and on the previous hidden state of the network, z t 

3. Gates control how much of the input signal and past time information encoded in the               
hidden state should be taken into account at each time instant 

4. Gates are updated at every step of the sequence 

5. They are fundamental to address the issue of vanishing or exploding gradients because             
they allow the recurrent neural network to create paths through time that have             
derivatives that neither vanish nor explode 

6. Through those gates, the RNN can then create dependency paths that allow encoding             
both short and long term dependencies of the data sequence 

 

Slide 17: Long Short-Term Memory (LSTM) 

1. The most popular gated RNN architecture is the long short-term memory model, which             
has been very successful in applications such as speech recognition and image            
captioning.  

2. LSTM recurrent neural networks maintain blocks known as LSTM cells. Each of those             
cells has a self-loop, maintaining an internal memory, in addition to the overall             
recurrence of the recurrent neural network. The self-loop of a LSTM cell is defined in               
terms of three gates: a forget gate unit f t; an input gate unit g t; and a cell output gate q t                       
[recall that gates are scalars on the unit interval]. 

3. Let then x t be the input of the LSTM cell; z t the hidden state of the overall recurrent                    
neural network; and let s t the internal memory of the LSTM cell 
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4. That internal memory s t is updated by applying the forget gate, f t, to the previous value                  
of the internal memory, s t minus 1, and by applying the input gate, g t, to the state                   
update of the RNN, which, as we recall, is given by a nonlinearity sigma on top of a                  
linear combination of the input x t and the previous value of the hidden state, z t minus 1 

5. With the new value of the internal memory, s t, the output of the LSTM cell can then be                   
updated by applying the cell output gate, q t, to a nonlinearity sigma applied to the                
updated value of the internal memory, s t 

 

Slide 18: Gated Recurrent Unit (GRU) 

1. Another popular model of gated recurrent neural network is the so-called gated recurrent             
unit, GRU 

2. GRUs are a slight variation of the LSTM model, in that now a single gate u t plays the                   
role of both input and forget gates. That is, the hidden state of the recurrent neural                
network is now updated as u t times the previous value of the hidden state, z t minus 1,                   
plus 1 - u t times the original update of the hidden state, that is, the result of applying the                    
nonlinearity sigma to a linear combination of the input x t and the previous hidden state z                 
t minus 1 

3. Note that in this the contribution of the previous hidden state, z t minus 1, to the updated                  
state is controlled by the reset gate r t 

4. Although those are arguably the two most popular architectures for gated RNNs, many             
more variants of gating mechanisms for RNNs exist.  

 

Slide 19: Gate Computation 

1. Note that, in long short-term memory cells and gated recurrent units, the gates             
themselves are calculated as the outputs of recurrent neural networks 

2. For example, the forget gate of a LSTM cell, f t, has its own state variable z t prime that                    
is updated by a recurrent neural network. That is, at each time instant, the internal state                
variable of the forget gate, z t prime, is computed by the combination of a pointwise                
nonlinearity and a linear combination of the input x t and the previous value of the                
internal state, z t minus one prime. 
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3. Given the updated internal state z t prime, the forget gate f t is then computed from the                  
input x t and the internal state z t prime as a sigmoid nonlinearity applied to a linear                  
combination of the input, x t, and the internal state, z t prime 

4. Here, U and W are both linear layers mapping the input and state features to a single                 
scalar 

5. And the sigmoid activation function ensures that the gate values, f t, remain on the unit                
interval 

11.4   Graph Recurrent Neural Networks 

Slide 20: graph Recurrent Neural Networks – Title Page 

1. We have introduced RNNs as architectures to learn features of time varying processes.             
We define now graph recurrent neural networks as particular cases in which the signals              
at each point in time are supported on a graph. 

Slide 21: From RNNs to GRNNs 

1. To be more precise consider a time varying process x_t in which each of the signals                
observed at each point in time is supported in a common graph S. In the figure we show                  
three instances of graph signals observed at times t-minus-2, t-minus-1, and t. The             
figures are variation diagrams where the edges represent changes in signal values. The             
graph that supports the signals is the same at all times. 

2. A graph recurrent neural network combines 

3. A graph neural network because the signals x_t is supported on a graph. 

4. And a recurrent neural network because x_t is a sequence 

Slide 22: A Recurrent Neural Network for Graph Signals 
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1. To define a ​G​RNN we begin by recalling the definition of an RNN. The component of an                 
RNN that is different from usual neural networks, is a hidden state z_t that is updated                
according to the perceptron sigma of A x_t plus B z_t. We present here a block diagram                 
that is more modular than the one we introduced earlier.  

2. In this diagram the observable state x_t is fed to a linear block where it is multiplied by                  
the matrix A.  

3. The hidden state z_t is fed to a separate linear block where it is multiplied by the matrix                  
B. 

4. The outputs of these two blocks are summed. 

5. And processed with a pointwise nonlinearity sigma to produce the state update z_t.  

6. This update is fed back as an input to the linear block, where it will be processed in the                   
next iteration to compute an updated hidden state z_t-minus-one. 

7. The RNN involves a second perceptron. This one processing the hidden state z_t to              
produce the output estimate y-hat-t. 

8. This perceptron composes a multiplication of the hidden state z_t with a matrix C. 

9. With a pointwise nonlinearity sigma.  

10. In this video we are interested in situations where the observed state x_t and the output                
y_t that we are trying to estimate are graph signals supported on a common shift               
operator S. 

11. We are therefore going to required that hidden state z_t also be a graph signal               
supported on the same graph shift operator S. This requirement is not necessary. But as               
it is easy to foresee, requiring the hidden state z_t to be a graph signal allows for the use                   
of graph filters and. This is likely to lead to architectures that are permutation equivariant               
and where we retain the stability and transferability properties of graph filters and             
conventional GNNs.  

Slide 23: graph recurrent Neural Networks 

1. To complete the definition of a GRNN we therefore require that the linear operations              
defined by the matrices A, B, and C be graph filters. We start by specifying the update of                  
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the hidden state as one in which the hidden state and the observed state are propagated                
through graph filters. 

2. Then, the matrix A is parametrically defined in terms of the shift operator S. And is                
furthermore given by the familiar polynomial form. The coefficients of the filter are             
denoted as a-sub-k. This is the filter that we use to process the current observed state                
x_t. 

3. The matrix B is defined analogously. It is parametric on the shift operator. More              
concretely, it is a polynomial on the shift operator. The coefficients of which are denoted               
as b-sub-k. 

4. The outputs of these two filters are added up. 

5. And the result is processed with a pointwise nonlinearity sigma. This produces the             
hidden state update z_t.  

6. The updated hidden state is fed back to become an input to the graph filter with                
coefficients a_k in the next iteration. Observe that in this architecture the blocks are all               
the same blocks that appear in the corresponding part of an RNN. The only difference is                
the use of graph filters in the blocks where a general RNN utilizes generic linear               
transformations. 

7. For future reference we write the state update as the composition of a pointwise              
nonlinearity sigma with the addition of the graph filter A-of-S applied to the observed              
state x_t and the filter B-of-S applied to the previous hidden state z_t. 

8. To estimate the output y_t the hidden state z_t is propagated through a graph filter as                
well. That is the generic linear transformation C is required to be a graph filter. This is a                  
familiar polynomial on the shift operator S modulated with coefficient that we denote with              
c_k. 

9. Thus, to estimate the output y_k, we multiply the hidden state z_t with a graph filter. 

10. And process the output with a pointwise nonlinearity. The output is our estimate y-hat-t. 

11. For future reference we write the output prediction as the composition of a pointwise              
nonlinearity sigma with the graph filter C-of-S applied to the hidden state z_t. This is a                
graph perceptron with coefficients c_k applied to the hidden state z_k. 
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Slide 24: Multiple Feature GRNNs 

1. A GRNN is then made up of a hidden state perceptron along with an output prediction                
perceptron. In our definitions we write all of the graph signals as single-feature signals,              
which are proposed with single-input-single-output filters.  

2. Each of the filters that make up the GRNN cab be replaced by a MIMO filter. Doing so                  
yields a GRNN with multiple features.  

3. This means that we end up with a hidden state update in which the matrix graph filter                 
signal capital-Z_t is the result of applying the pointwise nonlinearity sigma to the sum of               
two MIMO graph filters. One of this MIMO graph filters processes the observable state              
capital-X_t. This is a matrix graph signal. The other MIMO graph filter processes the              
hidden state capital-Z_t-minus-1. This is also a matrix graph signal. The respective filter             
coefficients are the matrices A_k and B_k. Observe that in this architecture the matrices              
B_k have to be square.  

4. We also end up with a prediction in which we estimate a matrix graph signal as an                 
output. This is the result of applying a pointwise nonlinearity to the output of a MIMO                
graph filter whose input is the hidden state Z_k and whose coefficients are the matrices               
C_k. 

5. The main advantage that follows from the use of a MIMO graph filter is that the hidden                 
state Z_t can have larger dimensionality compared to the dimensionality of the observed             
states. In the language of graph signals, the hidden state Z_t can have more features at                
each node than the observed state X_t.  

11.5   Spatial Gating 

Slide 1: Spatial Gating - Title Page 

1. We extend time gating to GRNNs to handle the problem of vanishing and exploding              
gradients 

2. We discuss long range graph dependencies and the issue of vanishing/exploding           
gradients. We then introduce spatial gating strategies -- namely node and edge gating --              
to address it 



Page 17 of 26 

Slide 2: Gating in GRNNs 

1. Similarly to RNNs, GRNNs can also experience the issue of vanishing/exploding           
gradients when encoding long term dependencies of graph processes 

2. In long term dependencies, gradients vanish when the eigenvalues of B(S), the            
state-to-state graph filter, are much smaller than one, which in turn makes the weights              
B(S) exponentially smaller. And they explode when the eigenvalues of B(S) are much             
larger than one, making the weights B(S) exponentially larger 

3. To address this issue, we do the same we did for RNNs: add a gating mechanism to                 
GRNNs. As we will see in this video, GRNNs admit three different types of gating. So we                 
define the gating mechanism in terms of generic operators Q hat of t and Q check of t. Q                   
hat of t is the input gate operator, which acts on the input. Q check of t is the forget gate                     
operator, which acts on the previous state 

4. The input gate operator controls the importance of the input X_t at time t. The forget gate                 
operator controls how much to remember, or forget, from the previous state Z_{t-1}.             
Observe that neither operator changes the dimensions of the signals to which they are              
applied 

Slide 3: Time-Gated GRNNs 

1. The simplest type of gating in GRNNs is time gating. This is just an extension of the                 
input and forget gates we discussed for RNNs 

2. In the Time-Gated GRNN, the input and forget gate operators are expressed as follows.              
The input gate operator Q hat of t is parametrized by a scalar lowercase q hat of t. The                   
forget gate operator Q check of t is parametrized by a scalar lowercase q check of t.  

3. These scalars multiply the filtered output and the filtered state respectively. And they             
both take values in the 0 1 interval. 

4. In time gating, a single scalar gate is applied to the whole graph signal, that is, the same                  
gate value is applied to the signal components at all nodes. The input gate either               
attenuates the input, or lets it all pass in the computation of the next state. Similarly, the                 
forget gate either attenuates the previous state, or lets it all pass in the computation of                
the next state. 

Slide 4: Long Range Spatial Dependencies 
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1. Even if the eigenvalues of the state-to-state graph filter are well-behaved, certain spatial             
imbalances can cause gradients to vanish in space 

2. That is, certain nodes or paths of the graph might get assigned more importance than               
others in long range exchanges important for the task at hand 

3. Examples of graphs for which this can happen are graphs with some type of community               
structure where the nodes within a community are highly connected 

4. As we know from the discussion about long term dependencies in video 2, the gradients               
of the state Z_t depend on successive products of the state-to-state graph filter B(S). But               
since B(S) is a polynomial in the graph shift operator S, the gradients of Z_t actually                
depend on successive products of S. 

5. Let T denote the duration of the graph process and consider the T th power of the shift                  
operator S. When T is large, the matrix entries associated with highly connected             
communities will get densely populated 

6. In other words, the subgraph corresponding to the community might become a complete             
graph, where all nodes are connected to all nodes. This, in turn, overshadows the local               
structure of the community, making it harder to encode processes with long range             
dependencies that are local on the graph 

Slide 5: Spatial Gating 

1. The issue of vanishing gradients in space can be solved by taking the node and edge                
structure of the graph into account in the gating mechanism.  

2. We refer to this as spatial gating.  
3. There are two strategies for spatial gating. The first is node gating. In node gating,               

separate input and forget gates are applied to each node. For instance, consider the              
graph on the left with a signal defined on the nodes 2, 3, 4 and 9.  

4. Node gates allow gating each component of the signal independently. The components            
on nodes 2 and 3 pass, while those on 4 and 9 are attenuated. 

5. The second spatial gating strategy is edge gating. In edge gating, separate input and              
forget gates are applied to each edge. On the graph on the right, we do not consider                 
graph signals defined on the edges 

6. But the edge weights between 2 and 3, 7 and 8, 7 and 12, and 9 and 10 can be                    
attenuated to limit node exchanges across these edges 

7. By taking the node and edge structures of the graph into account, spatial gating              
strategies help encode long range spatial dependencies in graph processes 

Slide 6: Node-Gated GRNNs 



Page 19 of 26 

1. We move on to formally define node-gated GRNNs. In the node-gated GRNN, the input              
and forget gate operators are expressed as follows. The input gate operator Q hat of t is                 
parametrized by a vector lowercase q hat of t. The forget gate operator Q check of t is                  
parametrized by a vector lowercase q check of t.  

2. They correspond to multiplications of the filtered input and the filtered state by diagonal              
matrices 

3. Where the diagonals are the input gate vector q hat of t and the forget gate vector q                  
check of t. Each component of these vectors takes values in the 0 1 interval 

4. Which makes it so that a different scalar gate is applied to each nodal component of the                 
signal. 

Slide 7: Edge-Gated GRNNs 

5. As for the edge-gated GRNN, the input and forget gate operators are expressed as              
follows. The input gate operator Q hat of t is parametrized by a matrix Q hat of t. The                   
forget gate operator Q check of t is parametrized by a matrix Q check of t.  

6. The gating operation corresponds to elementwise multiplication of the graph shift           
operator by the N by N gate matrices Q hat and Q check of t 

7. Whose individual entries are values in the 0 1 interval 
8. Therefore, there is a separate scalar gate for each edge. By scaling the edge weights,               

edge gates control the amount of information transmitted across edges in local            
exchanges. 

Slide 8: Gate Computation 

1. In all gating strategies, the parameters of the input and forget gate operators are              
computed as the outputs of GRNNs themselves. 

2. This means that gated GRNNs actually consist of 3 GRNNs. The first is the one used to                 
compute the main state Z_t. The other two are the GRNN used to compute the input                
gate state Z_t hat, in blue; and the GRNN used to compute the forget gate state Z_t                 
check, in green. 

3. The computation of the gating operators’ parameters from the input gate state and the              
forget state takes different forms depending on the specific type of gating. 

4. In time gating 
5. The scalar input gate q hat of t is computed by applying a fully connected layer c hat to                   

the input gate state, followed by a sigmoid. And the scalar forget gate q check of t is                  
computed by applying a fully connected layer c check to the forget gate state, also               
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followed by a sigmoid. The sigmoid activation function is necessary to ensure that these              
gates take value in the 0 1 interval. 

6. In the case of node gating 
7. The vector input gate q hat of t is computed by applying a graph filter bank calligraphic C                  

hat to the input gate state, followed by a sigmoid. And the vector forget gate q check of t                   
is computed by applying a graph filter bank calligraphic C check to the forget gate state,                
also followed by a sigmoid. Here, too, the sigmoid ensures that the values of the gates at                 
each node are between 0 and 1. 

8. In the case of edge gating, the computation of the gates is a bit more involved.  
9. A matrix C hat is applied to the input gate state to learn linear features. Then, for each                  

edge i j, we isolate the features corresponding to the endnodes i and j by multiplying the                 
feature vector by N-dimensional direct deltas centered at i and j respectively.  

10. The feature vectors corresponding to nodes i and j are then concatenated and passed              
through a fully connected layer lowercase c hat, which maps them to a scalar. Finally,               
this scalar is normalized by application of the sigmoid, to produce the edge gate              
corresponding to the edge i j. Once this process is completed for all edges i j, the input                  
gate matrix Q hat of t can be constructed by assigning the ij th edge gate to the ij th                    
matrix entry. Entries that do not correspond to edges of the graph are set to zero. The                 
forget gate matrix Q check of t is computed analogously. 

11.6   Stability of GRNNs 

Slide 1: Stability of GRNNs - Title Page 

1. In this lecture we discuss the stability of GRNNs. In particular we show that as GRNNs                
can be seen as a time extension of traditional GNNs they inherit their stability. 

Slide 2: Relative perturbation model 

1. We start recalling the notion of relative perturbations modulo permutation discussed in            
previous lectures. 

2. For two graph shift operators S and S tilda 

3.   we define the set of perturbation matrices module permutation as 
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4. As the set of matrices E that satisfy the expression indicated in equation (1) 

5. Where calligraphic P is the set of al permutation matrices 

6. We measure the distance between S and S tilda as the minimum of the norm of the                 
matrices E that relate S and S tilda in the set calligraphic E 

7. Then if S tilda is a permutation of the shift matrix S, their distance equals zero 

Slide 3: Lipschitz filters 

8. Now, we recall the definition of Integral Lipschitz filters 

9. We say that a filter A of S is integral Lipschitz if there exists a positive constant such that 

10.  The spectral representation a of lambda satisfies  

11. the condition indicated in (2). 

12. Notice that integral Lipschitz filters also satisfy that the absolute value of lambda times a               
the derivative of a of lambda is bounded by a constant 

13. This implies that the frequency response of the filter becomes flat for large values of               
lambda 

Slide 4: Assumptions 

14. We consider a GRNN with one input feature, one state feature and one output feature,               
described Z sub t and y hat sub t as indicated. Additionally, we consider the following                
assumptions 

15. The filters A, B and C are Lipschitz integral with constants C sub A, C sub B and C sub                    
C, and whose norm is unitary. 

16. The nonlinearity functions sigma and rho 

17.  are Lipschtiz with Lipscthiz constant equal to one,  

18. and they have zero as a fixed point 
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19. The initial hidden state is identically zero, this means z sub zero equal to zero.               
Additionally the norm of x sub t is lower or equal than the norm of x for all t 

Slide 5: The GRNN theorem 

20. Now we present formally the stability theorem for GRNNs 

21. Let S and S tilda the graph shift operators of the graph and the perturbed graph 

22. And let E be a matrix in the set of relative permutation perturbation matrices such that                
the distance between S and S tilde is lower or equal than epsilon 

23. Let y sub t and y tilda sub t be the outputs of the GRNNs running on S and S tilda                     
respectively 

24. And satisfying the assumptions A1 to A3. Then, 

25. The minimum norm between y sub t and the permuted version of y tilde sub t is bounded                  
as indicated in (3) 

26. Where capital C is the maximum of the Lipschtiz constants and delta indicates the              
difference between the eigenvectors of S and E 

Slide 6: Discussion 
 

27. Then, we have that GRNNs are stable to relative perturbations with constant C times              
one plus square root of N times delta times T squared plus 3 times T. 

28. Notice that C could be set at a fixed value or it can be learned from the data through the                    
filters A, B and C. This is, it is a design parameter 

29. Notice also that the term one plus delta times square root of N is a property of the graph                   
perturbation, and it cannot be controlled by design 

30. The eigenvector misalignment delta, measures the degree of commutativity of in the            
product of the matrices S and E 
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31. It is worth remarking that the stability bound depends on polynomial form from T which is                
due to the recurrence relationship in the computation of x sub t 

11.7  Application: Epidemics 

Slide 1: Title Page 

1. In this part of the lecture, we explore an application of GRNNs -- epidemic modeling --                
and compare them with GNNs and RNNs. 

Slide 2: Epidemic Modeling 

1. The epidemic modeling problem consists of modeling the spread of an infectious disease             
over a network of friends as a graph process, and using samples from this graph               
process to predict the number of infected people at a certain point in time. 

2. The underlying graph is a friendship network built from real data from a high school in                
France 

3. To model the spread of the disease we use the Susceptible-Infected-Removed or SIR             
model. At any point in time, each individual in the network is either susceptible to the                
disease, infected by it, or removed once they have contracted the disease and             
recovered. 

4. We will compare the ability of 3 architectures, a GRNN, a RNN, and a GNN, to predict                 
who will be infected in 8 days. 

Slide 3: Friendship Network 

1. To build the friendship network, we use real data corresponding to friendships reported             
by a group of 134 students from a high school in Marseille.  

2. Each node of the graph represents a student 

3. And each edge represents a friendship. All edges are unweighted and symmetric. 
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4. Isolated nodes were removed to make the graph fully connected. 

5. In order to model the propagation of the disease, we will assume that friends spend time                
with each other and thus, the disease is likely to spread from friend to friend. 

Slide 4: Susceptible-Infectious-Removed (SIR) Disease Model 

1. To model the spread of the disease, we use the SIR model. At time zero, we randomize                 
who has the disease. Each student may have it with probability 0.05. That is, roughly 1 in                 
20 students will have the disease at day 0. 

2. At any point in time, each person is either susceptible, infected, or removed. Their states               
are updated every day, and the transitions between states are according to the following              
rules 

3. A susceptible student can get the disease from an infected friend with probability 0.3.  
4. A student that gets the disease will be infectious for 4 days, after which they recover 
5. Finally, a student that is removed cannot contract the disease again nor spread it 

Slide 5: Problem Setup 

1. To keep the school safe, we need to predict who will get infected in 8 days.  
2. The input to our neural network is a graph process x_t corresponding to the SIR state of                 

each student. As such, the ith component of the signal x_t, which is associated with the                
ith student, is given by 0 for a susceptible student, 1 for an infected student and 2 for a                   
student that is removed. 

3. We are only interested in tracking the infected students. Therefore, we want to predict a               
graph process y_t where the ith element of y_t, corresponding to the ith student, is a                
binary label with value 1 if the student is infected and 0 otherwise. 

4. GIven x_t through x_t plus 7, we want to predict y_t plus 8 through y_t + 15. Since y_t of                    
i is a binary label for each student, this problem reduces to a binary node classification                
problem.  

 

Slide 6: Objective Function 

1. In the context of node classification problems, accuracy is the usually the go-to             
performance metric. However, in this particular problem, it is not a good choice. When              
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trying to maximize accuracy --- usually by minimizing the cross entropy loss --- one only               
penalizes misclassifications, without distinguishing between true positives and true         
negatives 

2. In epidemic tracking it is essential to capture all the infected people, thus true positives               
are more important than true negatives. Which is why we choose to maximize the F1               
score 

3. The F1 score is a harmonic mean of two other performance metrics --- precision and               
recall.  

4. Precision measures the proportion of students that were correctly predicted as infected            
to all of those that were predict infected. As we can see in the chart, this corresponds to                  
True Positives divided by Predicted Positives.  

5. In other words, precision is the proportion of correct positive predictions. Having a high              
precision means that we have little false positives. 

6. Recall measures the proportion of students that were correctly predicted as infected to             
all of those that are actually infected. As we can see in the chart, this corresponds to                 
True Positives divided by All Actual Positives. 

7. In other words, a high recall means the model is good at predicting infections, that is, it                 
produces little false negatives. Having a high recall means that we are not missing many               
infections. 

8. Therefore, the loss function we minimize is 1 minus the F1 score. This maximizes the F1                
score, which provides a better trade-off between false positives and false negatives than             
the cross entropy loss. 

Slide 7: Results 

5. We present the results of epidemic tracking for a GRNN, a GNN and a RNN, all with                 
roughly the same number of parameters.  

6. In the GNN, the time instants, that is, the sequence dimension, becomes input features.              
As such, the number of parameters depends on the length of the process 

7. In the RNN, the nodal components, that is, the graph dimension, becomes input             
features. As such, the number of parameters depends on the number of graph nodes 
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8. The figure shows the F1 score achieved on the test set by each architecture, averaged               
over 10 random realizations of the dataset. We see that the GRNN ouperforms both the               
GNN and the RNN. This is not surprising, as we know that GRNN exploits both the                
spatial and temporal structure of the data, unlike the GNN, which only takes the graph               
dimension into account; and unlike the RNN, which only takes the time dimension into              
account 


