
Lecture 10 Script 

10.1   Convergence of Graph Filters in the Spectral Domain 

Slide 1: Convergence of Graph Filters - Title Page 

1. We consider convergent sequences of graphs along with associated sequences of graph            
filters. We show that if the graph sequences converge towards a graphon, the graph filter               
sequence converges towards a graphon filter in the frequency domain. 

Slide 2: Graphon Filters and Sequences of Graph Filters 

1. We are given a set of filter coefficients h_k 

2. Which we use to construct a sequence of graph filters that are defined over a sequence                
of graphs. For each shift operators S_n in the graph sequence, we have a filter H-of-S_n                
in the graph filter sequence. Defined as the usual polynomial with coefficients h_k. 

3. We also use the ​same coefficients to build a graphon filter. Which is a polynomial with                
the same coefficients but one in which the variable is the graphon shift operator T_W. 

4. The question we address here is” Does the graph filter converge to the graphon filter.               
This is a good question and we are going to provide a response. But it is not the most                   
pertinent question 

5. Filters are used to process signals. Thus, filter convergence is important only inasmuch             
as it implies convergence of filter outputs. A more pertinent question is, consequently,             
whether graph filter outputs converge to graphon filter outputs. 

6. To study this question we consider a convergent sequence of graph signals G_n-x_n             
that converge towards the graphon signal W-X. 

7. The graph signal x_n is then fed as an input to the graph filter H-of-S_n to produce the                  
output graph signal y_n. We do this for all the signal-graph pairs in the sequence. 



8. Likewise, we feed the graphon signal X to the graphon filter T_H to produce the output                
graphon signal Y.  

9. Our objective here is to describe convergence results for the graph signal sequence             
G_n-y-n. This sequence can be shown to converge to the graphon signal W-Y under              
some conditions. Thus taking the limit of a graph signal sequence and applying a filter is                
the same as applying a filter and taking the limit. We can understand graph filters in the                 
limit by studying the corresponding graphon filter. 

Slide 3: Graph filters, Graphon Filters, and Their Frequency Representations  

1. Underlying this convergence analysis is the algebraic equivalency between graph filters,           
graphon filters, and their respective frequency representations. More formally, when we           
are given filter coefficients h_k, we have five different polynomials, which are all the              
same except that they are evaluated at different variables. 

2. Two of these polynomials are representations in the node domain. 

3. They are the graph filter sequence H-of-S_n which is a polynomial on variable S_n. 

4. And the graphon filter T_h which is the same polynomial defined in variable T_W. 

5. The other three polynomials are representations in the spectral domain. 

6. The most important of the three is the frequency response of the graph and graphon               
filters. This is a polynomial on the scalar variable lambda. We recall the very important               
fact that the frequency responses of the graph filter and the graphon filter are the same.                
If you care to know, this is because a graph filter and graphon fitler are the same                 
algebraic object.  

7. Evaluating the frequency response of the graph at the graph eigenvalues gives the             
frequency representation of the graph filter. 

8. And evaluating the frequency response of the graphon, which is the same response of              
the graph filter, at the graphon eigenvalues, gives the frequency representation of the             
graphon filter. 

Slide 4: Convergence of Graph Filter Sequences in the Frequency Domain 



1. Having introduced these preliminary definitions we can present a theorem that claims            
convergence of the graph filter sequences in the frequency domain.  

2. To state the theorem recall the definition of the frequency representation of the graph              
filter.  

3. As well as definition of the frequency representation of the graphon filter. We have just               
introduced these two. They are the same polynomial evaluated at different frequencies. 

4. Consider then the filter coefficients h_k as fixed and given.  

5. These coefficients generate a sequence of graph filters H-of-S_n supported on a            
sequence of graphs G_n. All of the filters use the same coefficients. But they run on                
different graphs. 

6. We use the same filter coefficients to generate the graphon filter T_H supported on the               
graphon W. 

7. If the graph sequence G_n converges to the graphon W 

8. The frequency representations of the graph filters converge to the frequency           
representation of the graphon 

Slide 5: Frequency Domain Convergence is Not Much 

1. The theorem says that the GFT representation of the graph filter sequence converges to              
the WFT representation of the graphon filter. Having convergence of frequency           
representations is neither unexpected nor strong. 

2. That the result is not unexpected is due to the fact that the frequency ​representations               
converge because the eigenvalues converge and the frequency ​responses of the graph            
and graphon filters are the same.  

3. As we grow the index n, the eigenvalues of the graph approach the eigenvalues of the                
graphon. Given that the frequency response is continuous, it is a polynomial, the             
responses converge as well. This is, literally, the proof of the theorem. 

4. That the result in not strong is due to the fact that the GFT and the WFT are                  
representations that exist in our minds. We use them for analyses. But we never              



compute them. Filters operate in the node domain. Meaningful convergence results must            
make claims on signal values. Not on their transforms. 

10.2   Convergence of Graph Filters in the Node Domain 

Slide 6: Convergence of Graph Filters - Title Page 

1. As we did in the previous section, we consider convergent sequences of graphs along              
with associated sequences of graph filters. We show that if the graph sequences             
converge towards a graphon, the graph filter sequence converges towards a graphon            
filter. But our statements are now in the ​node​ domain. Not the spectral domain 

2. This convergence result provides our first approach to the transferability of graph filters. 

Slide 6: From Frequency Representations to Node Representations 

1. But the result is not useless either because we can leverage it to prove convergence in                
the node domain. To do that, we have to go into the frequency domain and back. 

2. Namely, we begin with an input graph signal x_n and compute its GFT to represent it in                 
the GFT domain. 

3. We then process the GFT with the frequency representation of the graph filter. 

4. And come back to the node domain by applying the inverse GFT. 

5. Likewise, we get an input graphon signal X and compute its WFT to represent it in the                 
WFT domain. 

6. We then process the WFT with the frequency representation of the graphon filter. 

7. And come back to the node domain by applying the inverse WFT. 

8. This is a promising strategy because we know that the frequency representations            
converge. The highlighted blocks are the same in the limit. 



9. However, the GFT and the inverse GFT do not converge to the WFT and inverse WFT.                
This proof strategy fails in general. 

10. Except, of course, when the signals are graphon bandlitted. In this case the GFT and               
iGFT ​do​ converge to the WFT and iWFT.  

Slide 7: Graph Filter Convergence for Bandlimited Inputs 

1. We have therefore just proved a theorem claiming the convergence of graph filters when              
given bandlimited inputs.  

2. To state the theorem formally, consider a sequence of graph signals G_n-x_n. This input              
sequence generates a sequence of output graph signals G_n-y-n. In which each of the              
output signals y_n follows from application of the graph filter H-of-S_n. 

3. We also consider a graphon signals W-X. This input signal generates the output graphon              
signal W-Y. In which Y follows from application of the graphon filter T_H. 

4. The sequence of input graph signals G_n-x_n is convergent. It converges to the graphon              
signal W-X.  

5. The filters H-of-S_n and T_H are generated by the same filter coefficients h_k. 

6. It then follows that if the input signals are  c-bandlimited. 

7. The sequence of output graph signals converges to the output graphon signal. 

Slide 8: Lipschitz Graphon Filters 

1. This theorem has been ready to prove. And it is also somewhat weak. Although we               
consider signals that, technically, have an increasing number of components, the signals            
are required to admit a representation on a finite number of components. Their spectral              
representations have a finite number of nonzero entries. A stronger result is desirable.             
And, as it turns out, also possible. 

2. To do that we introduce the notion of a Lipschitz graphon filter. The definition is what you                 
would expect. A graphon filter is Lipschitz if its frequency response is Lipschitz in the               
interval [-1,1].  



3. That is, the absolute value of the difference between the filter’s frequency response             
evaluated at lambda_1 and the filter’s response evaluated at lambda_2. 

4. Is bounded by the absolute value of the difference between lambda_1 and lambda_2,             
scaled by a Lipschitz constant L.  

5. This condition must hold for any pair of variables in the [-1,1] interval. 

6. If restrict our attention to filters that have Lipschitz frequency responses, we can claim              
convergence of the filter sequence even though we lack convergence if the GFT and              
iGFT sequences. 

Slide 9: Graph Filter Convergence for Lipschitz Graphon Filters 

1. Formally. 

2. We are given a sequence of input graph signals G_n-x_n that converges to the graphon               
signal W-X.  

3. Along with filters H-of-S_n and T_H that are generated by the ​same filter coefficients              
h_k. 

4. It then follows that if the filter coefficients are associated with a frequency response that               
is Lipschitz. 

5. The sequence of output graph signals converges to the output graphon signal. 

6. The proof of this result is not cheap. You can find the proof in lecture notes that are                  
accessible through the course’s website. We point out that the theorem does not impose              
restrictions on the input signals as we did when claiming convergence for c-bandlimited             
inputs. The restriction in on the type of filters that are admissible for the theorem to hold.                 
They have to have a frequency response that is Lipschitz. 

Slide 10: Remarks on the Proof of Convergence for Lipschitz Graphon Filters 

1. The theorem is, not surprisingly, proven in the spectral domain. The first critical             
observation in the proof is that for GFT and WFT components that are associated with               
eigenvalues that are not close to zero, convergence is ready. This is actually our              
theorem for c-bandlimited inputs.  



2. The challenge arises when we focus on the components that are associated with             
eigenvalues that are not close to zero. We have seen that eigenvalues accumulate at              
zero. 

3. And that this causes complications with eigenvector convergence. It makes it impossible            
for us to claim uniform convergence.  

4. The second critical observation in the proof is to realize that the Lipschitz continuity              
hypothesis renders this problem void. 

5. Indeed, since the filter is not changing too quickly, all GFT or WFT components that are                
associated with eigenvalues close to zero, are multiplied by similar number. It doesn’t             
matter that we can’t tell them apart because the filter does not distinguish among them               
either. 

6. Look at the proof to see how these arguments play out. 

Slide 11: Remarks on the Convergence of Lipschitz Graphon Filters 

1. Asides from commenting on the proof it is also important to comment on the implications               
of the theorem. A fundamental issue that we identify is that transferability is counter to               
discriminability. 

2. If the filter converges, it must be Lipshcitz. If it is Lipchitz, its rate of variability is limited                  
by the Lipschitz constant L. But as we approach lambda equals 0 we have closer               
eigenvalues. Which means we would need thinner filters to tell components apart. But             
these thinner filters take longer to converge towards the graphon limit. Thus we either              
have wide filters that converge quickly to the graphon limit. These filters transfer well but               
are not discriminative. Or we have thin filters that take a while to converge to the                
graphon. These filters are discriminative. But they do not transfer well. The challenge is,              
not coincidentally, the same challenge we encountered in our stability analyses of graph             
filters. Also not coincidentally, the challenge is inherent to graph filters. For as long as we                
use graph filters, transferability and discriminability are incompatible. The solution to this            
conundrum is, what else, to resort to the use of graph neural networks. 

3. Before we go there, we must contend with the weakness of our characterization. The              
result we provided is just a limit.  

4. We will work on transference bounds that hold for finite n.  



10.3 Graphon Filters as Generative Models for Graph        
Filters 

Slide 1: Graphon Filters as Generative Models for Graph Filters – Title Page 

1. We saw that, for convergent graph sequences, graph filters converge asymptotically to            
graphon filters. That suggests the use of finite graph filters to approximate graphon             
filters. We now discuss the conditions under which graph filters can approximate            
graphon filters, and how good that approximation is for different values of n. 

Slide 2: Graphon Filters are Generative Models for Graph Filters 

1. In the last few lectures, we saw that, for convergent graph sequences, the eigenvalues              
of the graph converge to the eigenvalues of the graphon. Moreover, as the frequency              
response of both graph and graphon filters are polynomials instantiated on the            
eigenvalues of the graph or graphon, this implies that the frequency response of graph              
filters converge asymptotically to the frequency response of a graphon filter. 

2. As the number of nodes in the graph, n, grows, the graph filters become more and more                 
similar to the graphon filter. 

3. That suggests that we can use graph filters as approximations for the graphon filter. Not               
asymptotically, but for a graph with a finite number of nodes n. 

4. That’s precisely what we discuss in this lecture. We present conditions under which             
graph filters can approximate graphon filters. And we also quantify how good that             
approximation is for different values of n. 

Slide 3: Small Eigenvalues are Hard to Discriminate 

1. A trouble we face when approximating graphon filters with graph filters is the fact that the                
eigenvalues of a graphon accumulate around zero. 

2. That accumulation makes it hard to match graph eigenvalues to the corresponding            
graphon eigenvalues when lambda is small 

Slide 4: Small Eigenvalues are Hard to Discriminate 

1. Which in turn makes it hard to discriminate between consecutive eigenvalues in that             
range 

2. Thus, if we allow the filter to change rapidly around zero, the filter may modify the graph                 
and graphon eigenvalues differently. 



3. To obtain good approximations of a graphon filter with a graph filter, we must then               
restrict our attention to filters that do not change much around lambda = 0 

Slide 5: Low-Pass Lipschitz Filters 

1. We start with low-pass Lipschitz Filters. As graphon eigenvalues tend to zero as the              
index grows, 

2. Low-pass filters must be zero for all eigenvalues below a certain threshold c, with the               
constant c determining the filter’s band. 

3. The filter removes high-frequency components, that is, the eigenvalues of the graphon            
closer to zero. But low-frequency components are not affected. That is important            
because, on the one hand, low-frequency components are easier to match with graph             
eigenvalues. On the other hand, as zero is the only point of accumulation for graphon               
eigenvalues, the number of eigenvalues in the passing band will be finite, allowing us to               
derive bounds on how close the approximation of a graphon filter by a finite graph filter                
will be. 

Slide 6: Assumptions 

1. To derive those approximation bounds, we need to introduce a set of Lipschitz             
assumptions on the graphon, the filter and the graphon signal. 

2. First, we require the graphon to be Lipschitz with Lipschitz constant L_1. That is, for all                
pairs of arguments (u 1, v 1) and (u 2, v 2), it holds that the absolute value of the                    
difference of the graphon evaluated at (u 1, v 1) and of the graphon evaluated at (u 2, v                   
2) is bounded by the Lipschitz constant L1 times the sum of the absolute value of the                 
difference between u2 and u1, and the absolute value of the difference between v2 and               
v1. 

3. We also require the filter’s frequency response to be Lipschitz with constant L_2. That is,               
for all eigenvalues lambda 1 and lambda 2, we have that the absolute value of the                
difference of the filter’s response evaluated at lambda 2 and lambda 1 is bounded by the                
Lipschitz constant times the distance between the eigenvalues. We also require the            
filter’s frequency response to be normalized, in the sense that the absolute value of the               
frequency response at any frequency lambda is at most 1. 

4. Our third assumption is that the graphon signal X is Lipschitz with constant L_3. As               
usual, that means that, for all u1 and u2, the absolute value of the difference of the                 
graphon signal at u1 and u2 is bounded by the Lipschitz constant L3 times the distance                
between the arguments u1 and u2 



Slide 7: Definitions 

1. We will also need to introduce some definitions so that we can compare graph filters to                
graphon filters. 

2. These definitions require that we fix a bandwidth c to separate eigenvalues that are              
close to 0 from those that are not close to 0. 

3. Associated to c, we define the c-band cardinality B_n-c. This is a count of the number of                 
eigenvalues whose absolute value is larger than c. This is a number we know is finite. 

4. Also associated with c we define the c-eigenvalue margin of the graph G_n. This margin               
is the smallest gap between a graph eigenvalue lambda_ni and a graphon eigenvalue             
lambda_j with ​different index. The graph eigenvalue has to be in the c-band. But the               
graphon eigenvalue can be anywhere. Typically, this gap is the difference between the             
graph eigenvalue that is immediately above c and the graphon eigenvalue that is             
immediately below c. 

Slide 8: Graph-Graphon Filter Approximation Theorem for Low-Pass Lipschitz Filters 

1. We are now ready to state our first result. It refers to the approximation of a graphon                 
filter by a graph filter with Low-Pass Lipschitz filters 

2. Consider then a graphon Y and a graph filter y_n instantiated from Y. With definitions               
D1-D2, assumptions A1-A3 and the additional requirement that 

3. The filter is low-pass, that is, h of lambda is equal to zero for all eigenvalues with                 
absolute value below the threshold c 

4. The L2 norm of the difference between the graphon filter Y and the graph filter Yn                
induced by yn 

5. Is bounded by 

6. The square root of the graphon’s Lipschitz constant, L1 

7. Times the sum of the filter’s Lipschitz constant, L2, 

8. And the ratio between pi times the number of eigenvalues in the passing band, n c, and                 
the c-eigenvalue margin of the graph 

9. And then times n to minus ½, times the L2 norm of the graphon signal X 

10. To which we add another term that is comprised of the graphon signal’s Lipschitz              
constant, L3, divided by the square root of 3 and multiplied by n to minus ½ 



11. We do not discuss the proof here, but the proof is available on the course website. 

Slide 9: High-Pass Filters 

1. In order to see how we can deal with the graphon eigenvalues accumulated around              
zero, we now turn our attention to high-pass filters. High-pass graphon filters are those              
that have null frequency response for all eigenvalues that have absolute value above a              
certain threshold c 

2. That is, high-pass filters remove components associated to low graphon frequencies 

3. Here, we also assume that the filters have low variability around zero 

4. That low variability of the filter in high frequencies makes it easier to match graph               
eigenvalues to graphon eigenvalues around lambda = 0, thus leading to approximating            
graph filters with tighter approximation bounds 

Slide 10: Graph-Graphon Filter Approximation for High-Pass Filters 

1. We are now ready to state our next result, concerning the approximation of graphon              
filters by graph filters for high-pass filters 

2. Consider then a graphon Y and a graph filter y_n instantiated from Y. With definitions               
D1-D2, assumptions A1-A3 and the additional requirement that 

3. The filter has low variability around zero and it is high-pass, that is, h of lambda is equal                  
to zero for all eigenvalues with absolute value above the threshold c 

4. The L2 norm of the difference between the graphon filter Y and the graph filter Yn                
induced by yn 

5. Is bounded by 

6. The filter’s Lipschitz constant, L2, times the passing band threshold c, times the L2 norm               
of the graphon signal X 

7. We do not discuss the proof here, but the proof is available on the course website. 

Slide 11: Lipschitz Filters with Variable Band 

1. With those two results in hand, we are ready to stablish approximation bounds for more               
general filters. The class of filters that we consider here corresponds to those filters that               
exhibit low-variability for those eigenvalues located below a certain threshold c. That is             
precisely the region where the eigenvalues of the graphon accumulate, and where we             



may have trouble matching graph eigenvalues to the corresponding graphon          
eigenvalues 

2. For those eigenvalues located above the threshold c, we require the filter to be Lipschitz,               
but the filter doesn’t need to sacrifice variability in this region. The number of              
eigenvalues satisfying lambda greater than c is finite. And the eigenvalues do now             
accumulate in that region, making it easier to match graph and graphon eigenvalues 

3. Now, as you may have suspected, the class of filters that we are discussing in this slide                 
is nothing more than a composition of a low-pass filter 

4. And a high-pass one 

5. That construction is key to obtain our final result for the approximation of graphon filters               
by graph filters, that we present next 

Slide 12 Graphon Filter Approximation Theorem for Lipschitz Filters with Variable Band 

1. We now state our main result, that stablishes a bound for the approximation of a               
graphon filter by a graph filter 

2. Consider then a graphon Y and a graph filter y_n instantiated from Y. With definitions               
D1-D2, assumptions A1-A3 and the additional requirement that 

3. The filter exhibits low-variability for all lambda below a certain threshold c 

4. The L2 norm of the difference between the graphon filter Y and the graph filter Yn                
induced by yn 

5. Is bounded by 

6. The square root of the graphon’s Lipschitz constant, L1 

7. Times the sum of the filter’s Lipschitz constant, L2, 

8. And the ratio between pi times the number of eigenvalues in the passing band, n c, and                 
the c-eigenvalue margin of the graph 

9. And then times n to minus ½, times the L2 norm of the graphon signal X 

10. To which we add another term that is comprised of the graphon signal’s Lipschitz              
constant, L3, divided by the square root of 3 and multiplied by n to minus ½ 

11. And another term consisting of the filter’s Lipschitz constant, L2, times the passing band              
threshold c, times the L2 norm of the graphon signal X 



Slide 13: Proof 

1. As we discussed a few minutes ago, a filter with variable band can be seen as the sum                  
of a low-pass, L2-Lipschitz filter with h1 (lambda) equal to zero for all lambda less than c 

2. And a high-pass filter exhibiting low-variability for high frequency components, that is, for             
all lambda less than c, and a null frequency response for all eigenvalues outside of that                
range  

3. As our resulting filter is the sum of those two filters, we can use a triangle inequality to                  
compute the L2 norm of the difference between the graphon filter Y, and the graph               
approximation Yn. That is equal to the norm of the difference between the output of the                
graphon filter for a graphon signal X and the output of the induced graph filter. Now, as                 
the resulting filter h is the sum of two filters h1 and h2, we can use the triangle inequality                   
to break down that term between 

4. The norm of the different between the output of the graphon filter and the induced graph                
filter for the low-pass Lipschitz filter, h1 

5. And the norm of the difference between the output of the graphon filter and the induced                
graph filter for the high-pass Lipschitz filter, h2 

6. But we already know how to bound the first term on the right-hand side. That is the                 
approximation bound we obtained for low-pass Lipschitz filters 

7. Similarly, we know that the second-term on the right-hand side can be bounded by the               
approximation bound we obtained for high-pass Lipschitz filters 

8. Summing up the two bounds, we then prove our approximation theorem for Lipschitz             
filters with variable band 

Slide 14: Parse the Bound 

1. According to the theorem, 

2. The difference between the graphon filter Y and the graph filter approximation Yn is              
upper-bounded, 

3. With the approximation bound depending on the filter transferability constant, given by            
the square root of the graphon’s Lipschitz constant L1 times the sum of the filter’s               
Lipschitz constant A2 plus the ratio between the filter’s parameters n_c and delta_nc. 

4. And on the difference between the graphon signal X and the graphon signal X n induced                
by the graph signal x n 



5. The bound also depends on the graphon via the graphon’s Lipschitz constant L1. We              
could make the bound tighter by decreasing the value of L1 

6. But L1 also affects the variability of the graphon 

7. Note that the bound decreases asymptotically with n, as expected since we know graph              
filters converge asymptotically to graphon filters. Moreover, as n grows, the           
transferability constant dominates the bound. That implies that the quality of the            
approximation --- or how close we can make the graphon and the approximating graph              
filter --- depends strongly on the transferability constant. 

Slide 15: Filter Responses Determines the Approximation Bound 

1. According to the theorem, the approximation bound is dominated by the transferability            
constant as n grows 

2. The transferability constant, in turn, depends on the filter parameters: the filter’s Lipschitz             
constant L2, the number of eigenvalues in the passing band, n_c, and the c-eigenvalue              
margin of graph G_n 

3. Both the filter’s Lipschitz constant L2 and the filter’s passing band --- which corresponds              
to the interval from c to 1 --- determine the variability of the filter’s spectral response. The                 
Lipschitz constant affects the sharpness of the filter: by increasing it, we can make it the                
filter sharper, and thus more discriminative. But that in turn makes the transferability             
bound less tight. The filter’s discriminability depends also on the filter’s passing band. 

4. But the number of eigenvalues in the passing band has to be limited: we must have n_c                 
less than the square root of n 

5. This restriction on the number of eigenvalues in the passing band is necessary to assure               
that the eigenvalues of the graph converge asymptotically to those of the graphon. When              
that condition is satisfied, the c-eigenvalue margin of the graph, delta_c, is nonnull and              
converges to the minimum eigengap of the graphon for any eigenvalue in the passing              
band. Which ensures convergence of the eigenvalues, thus making the approximation           
tighter. 

Slide 16: Discriminability-Approximation Trade-Off 

1. From our discussion on bound of the approximation of a graphon filter by a graph filter,                
we identify a fundamental issue: good approximation bounds are counter to the filter’s             
discriminability 



2. To obtain tight approximation bounds, we need filters that do not change by much              
around zero 

3. But in that case the filter is unable to discriminate components associated to eigenvalues              
close to zero 

4. For larger graphs, though, that is less of an issue. Good approximation of a graphon filter                
by a graph filter requires the number of eigenvalues in the passing band, n_c, to be less                 
than the square root of n 

5. Thus, as n grows larger, we can afford a larger number of eigenvalues, n_c, in the                
passing band 

6. That ends up improving discriminability of the filter without penalizing the filter’s            
approximation bound 

10.4   Transferability of Graph Filters: Theorem 

Slide 1: Transferability of Graph Filters: Theorem - Title Page 

1. We study transferability of graph filters to show that graph filters are transferable across              
graphs that are drawn from a common graphon. 

Slide 2: Comparing Graph Filters through their Generating Graphon Filter 

1. The first point to empathize is that in the previous sections we have shown results that                
hint at transferability but we actually not proven transferability. We have, instead, proen             
that graph filters can be close to graphon filters under some conditions.  

2. Indeed, our results look at a graph G_n with n nodes sampled from a graphon W 

3. And claim that the graph filter H-of-S_n running on the graph G_n is close the graphon                
filter T_H running on the graphon W. If the filter coefficients are the same in both filters.  

4. A legitimate transferability claim requires that we compare two different graphs, possibly            
having different numbers of nodes. And that we show the corresponding filters to be              
close.  



5. Namely, we have to consider graphs G_n and G_m. Both sampled from the graphon W. 

6. And have to show that the graph filters  H-of-S_​n​ and  H-of-S_​m​ are close. 

7. It is easy to see that this is true given what we know about the similarity between both                  
graph filters to the graphon. 

8. We know that the  H-of-S_​n​ is close to the graphon filter T_H.  

9. And we also know that the graph filter H-of-S_​m ​is close to the graphon T_H. 

10. From these two facts it follows that the graph filter H-of-S_​n ​is close to the graph filter                 
H-of-S_​m.  

11. This is just the triangle inequality applied to the comparison of the filters via their relative                
comparisons to the graphon. 

Slide 3: Running the Same Filter on Different Graphs 

1. To state a formal theorem we begin with a formal problem formulation. We are              
considering the graph signal S_n-x_n along with the graph signal S_m-x_m. Both of             
these signals are sampled from the graphon signal W-X. The samplings are different as              
they contain different numbers of samples. 

2. We then consider a given set of filter coefficients h_k and process the signals on their                
respective graphs.  

3. That is, we run the filter with coefficients h_k on the graph S_n to process the signal x_n.                  
This is done with a polynomial on S_n modulated with coefficients h_k. This produces              
the signal y_n. 

4. And we also run the filter with the ​same coefficients h_k on the graph S_m to process                 
the signal x_m. This is done with the same polynomial but instantiated on the graph               
S_m. The output signal is y_m. 

5. We want to compare the output signals y_n and y_m. Since they have different numbers               
of components, we do not compare them directly. Rather, we compare the induced             
graphon signals Y_n and Y_m. 



Slide 4: Assumptions 

1. Our transferability results require the same set of assumptions we used when comparing             
graph filters to graphon filters. This is a triplet of Lipschitz assumptions that we repeat               
here for reference. 

2. We require the graphon to be Lipschitz with Lipschitz constant L_1. 

3. The filter’s frequency response to be LIpschitz with constant L_2. 

4. And the graphon signal X to be LIpschitz with constant L_3. Of these three assumptions               
it is (A2), the LIpschitz continuity of the frequency response of the filter, that is               
fundamental. The other two assumptions are necessary. But they are not conceptually            
that important. 

Slide 5: Definitions 

1. We also require the same pair of definitions we introduced when comparing graph filters              
to graphon filters. 

2. These definitions require that we fix a bandwidth c to separate eigenvalues that are              
close to 0 from those that are not close to 0. 

3. Associated to c, we define the c-band cardinality B_n-c. This is a count of the number of                 
eigenvalues whose absolute value is larger than c. This is a number we know is finite.  

4. Also associated with c we define the c-eigenvalue margin of the graph G_n. This margin               
is the smallest gap between a graph eigenvalue lambda_ni and a graphon eigenvalue             
lambda_j with ​different index. The graph eigenvalue has to be in the c-band. But the               
graphon eigenvalue can be anywhere. Typically, this gap is the difference between the             
graph eigenvalue that is immediately above c and the graphon eigenvalue that is             
immediately below c. 

Slide 6: Transferability Theorem 

1. With setup, assumptions, and definitions out of the way, we can state the graph filter               
transferability theorem.  



2. Consider then graph signals S_n-x_n and S_m-x_m sampled from the graphon signal            
W-X. 

3. Further consider the corresponding filter outputs y_n and y_m. The outputs are the result              
of processing different signals on different graphs. But they both use the same set of               
filter coefficients. 

4. If assumptions (A1)-(A3) hold. And considering definitions (D1) and (D2). 

5. The difference between the norms of the induced graphon signals Y_n and Y_m. 

6. Is bounded by the expression shown. There is a lot going on this bound. 

7. We have terms that depend on the number of nodes of the graph. They are sums of                 
inverse square roots and vanish as n and m grow. 

8. The summands are scaled  by the Lipschitz constants of the graphon. 

9. The filter’s frequency response. 

10. And the graphon signal. 

11. We also have terms that depend on the bandwidth c along with the corresponding              
c-band cardinalities and the c-eigenvalue margins of the graphs G_n and G_m. The             
bound depends on the larger of the two c-band cardinalities and the minimum of the two                
c-eigenvalue margins. We pick the worst of the two in each case. The one that makes                
the bound largest. 

12. And we also have the norm of the graphon signal X appearing in the bound. 

13. The proof of the theorem is a simple application of the triangle inequality. You can find it                 
in lecture notes that are available on the course’s website. More important than providing              
this proof, is to explore the effects of the different terms that appear in the transferability                
bound. We do this in the next section. 



10.5   Transferability of Graph Filters: Remarks 

Slide 7: Transferability of Graph Filters: Remarks - Title Page 

1. In the previous section we showed that graph filters are transferable across graphs that              
are drawn from a common graphon. There are several important remarks that follow             
from this theorem. Which we cover in this section. 

Slide 7: Thing 1, Thing 2, and Thing 3 

1. Let’s pay homage to Dr. Seuss and point out that we have three things in this bound. 

2. Thing 1 is a term that comes from the discretization of the graphon signal. It is not very                  
important. In the sense that it is something we should had expected to appear and that it                 
has the effect we should had expected it to have. Graphon signals that vary more rapidly                
are more difficult to approximate with their samples. 

3. Thing 2 is a term coming from the filter’s variability at eigenvalues with absolute value               
larger than c. This is the part of the bound that is associated with the components for                 
which convergence is “easy.” By which we mean the eigenvalues that are not             
excessively close to other eigenvalues. This is the part of the bound that is most               
interesting and whose derivation is most difficult. It gives a clear picture of what is the                
error incurred in these frequency components when we move from one graph to another.              
This is the inherent transferability error of the filter. 

4. Thing 3 is a term that comes from the filter’s variability at eigenvalues with absolute               
value smaller than c. This is the part of the bound that is associated with the components                 
for which convergence is “difficult.” By which we mean the eigenvalues that are very              
close to other eigenvalues because they are clustered at lambda=0. This is a part of the                
bound that is a sort of residual error. They are analysis leftovers coming from the               
frequency components that are difficult to tell apart. It is, nevertheless, a part of the               
bound that is fundamental. It characterizes a part of the spectral representation that is              
impossible to transfer from one graph to another.  

5. Thing 2 and Thing 3 are, therefore, inherently different. Thing 2 characterizes the error in               
the part of the spectrum that can be transferred from one graph to the other. Thing 3 is                  



the error associated with the part of the spectrum that we can’t transfer from one graph                
to another.  

6. (Empty) 

Slide 8: All Filters are Transferable in the Limit 

1. Continuing with our parsing of the transferability theorem, the next point to emphasize is              
that all filters are transferable in the limit.  

2. Indeed, as we let n and m grow most of the transferability error decreases and               
eventually vanishes. This decrease is proportional to the number of nodes in the smaller              
graph, which is the one that dominates asymptotically. There is a residual error term that               
does not vanish. This is associated with the part of the spectrum clustered around              
lambda=0. The part of the spectrum that we can’t transfer from one graph to the other. 

3. It is interesting, however, that for larger graphs we can also afford a higher c. This is                 
because larger n and m compensate for large c-band cardinalities and smaller            
c-eigenvalue margins. If we decrease the bandwidth c, the c-band cardinalities grow the             
c-eigenvalue margins decrease. But they are canceled out by the larger number of             
nodes in the graph. 

4. We can thus reduce the last term. The residual error associated with small eigenvalues.              
Because we can cancel out the resulting increase of c-band cardinalities and the             
resulting decrease of c-eigenvalue margins.  

5. It is also interesting to point out that larger number of nodes also compensates for               
increasing Lipschitz constant in the filters’ frequency responses. This allows for using            
sharper filters in larger graphs. We can transfer more discriminative filters when the             
graph grows larger. 

6. (Empty) 

Slide 9: Rates of Change of Graphons and Graphon Signals 

1. The rate of change of the graphon and the graphon signals has an effect on the bound.                 
This is captured by the Lipschitz constants of the graphon and the graphon signal. 



2. The effect is rather straightforward. Graph signals and graphons with larger variability            
make filter transference more difficult. 

3. This is because of sampling approximation errors. It is not a fundamental aspect of the               
story. 

4. We remark that this constants can be sharpened if we introduce Lipschitz constants             
modulo permutation. But since this part of the error is not fundamental. The exercise is               
rather pointless.  

5. (Empty) 

Slide 10: Filter Discriminability 

1. The most important feature of the transferability bound is the effect of filter             
discriminability. 

2. This is captured by the Lipschitz constant of the filter’s frequency response. Whose             
growth produces a concomitant linear rise on the value of the transferability bound.             
Thus, filters that are more discriminative, are more difficult to transfer. 

3. It is interesting to point out that this is true in the part of the bound related to the                   
components that can be transferred. Those that are associated with eigenvalues that            
have absolute value larger than c. 

4. And it is also true of the part of the bound that corresponds to components that cannot                 
be transferred. Those that are associated with eigenvalues that have absolute value            
smaller than c.  

5. A reduction on the Lipschitz constant L_2 reduces both of these terms. The error in the                
part of the filter that can be transferred decreases. And the error in the part of the filter                  
that cannot be transferred decreases as well. 

6. (Empty) 

Slide 11: Spectral Properties of the Graphon 

1. A feature of the transferability bound that is a close second in terms of importance, is the                 
effect of the spectral properties of the graphon. 



2. A first important point to make is that the bound is parametric on the bandwidth c.                
Different choices of c result in different values for the bound. There is a value of c that                  
makes this bound smallest. This is because the term L_2-c decreases with c. But the               
ratio of the band cardinality and the eigenvalue margin increases with c 

3. The second important point is that increases in the c-band cardinality or decreases in the               
c-eigenvalue margin result in more challenging transferability. This is something that           
should be expected. When the c-band cardinality increases there are more components            
to transfer. When the eigenvalue margin decreases, the eigenvectors are more difficult            
to separate. 

4. A final point to make is that although we write the c-band cardinalityand the c-eigenvalue               
margin as properties of the graphs, they are properties of the grpahon in the limit. This is                 
because the graph eigenvalues converge to the graphon eigenvalues as we grow the             
size of the graphs. 

5. The reason why this effect is second in importance is that it is not under our control. The                  
graphon is what it is and its spectral properties are what they are. This is different from                 
the effect of the filter’s discriminability. Which is something that we can control. 

Slide 12: Transferability vs Discriminability Non-Tradeoff 

1. It is gratifying to see our discriminability analyses bringing us to a familiar point: The               
emergence of a Non-Tradeoff.  

2. Indeed, if we fix n and m in the transferability bound we see that transferability and                
discriminability are incompatible. 

3. For us to be able to discriminate frequency components around lambda=0 we need to              
have a large Lipschitz constant L_2. This is because eigenvalues cluster around            
lambda=0. We need sharp filters. But making L_2 large renders the transferability bound             
useless. We can’t claim transferability if the Lipschitz constant of the filter’s frequency             
response is large. 

4. The solution of this dilemma, also brings us to a familiar place: The introduction of graph                
neural networks. 



10.6   Graphon Neural Networks and GNN Transferability 

Slide 1: Title Page 

1. In this part of the lecture, we define graphon neural networks and discuss their              
interpretation as generative models for graph neural networks. 

2. We then use graphon neural networks to show that GNNs inherit the transferability             
properties of graph filters. 

Slide 2: Graphon Neural Networks 

1. In this lecture, we have already seen that graph filters are transferable between             
weighted graphs associated with a given graphon. As such, in the same way that GNNs               
inherit the invariance and stability properties of graph filters, we can expect them to              
inherit transferability. 

2. In order to study whether GNNs are transferable, we will once again turn our attention to                
graphons and graphon signals. In particular, we will use graphon signal processing to             
define graphon neural networks or WNNs. 

3. The WNN can be defined as a layered architecture where each layer composes a              
graphon convolution with parameters h and a nonlinearity sigma.  

4. The equation on the slide describes the ell th layer of a WNN with L layers and F_l                  
output features. The h_kl^fg are its learnable weights. Recall that T_w^k is the graphon              
diffusion sequence of length k, defined by successive applications of the integral            
operator with kernel W, or graphon shift operator. The WNN input, X_0, is the graphon               
signal X. The WNN output, Y, is X uppercase L, the output signal at the last layer of the                   
WNN.  

5. Just like a GNN, the graphon neural network can be represented succinctly as a map               
Phi. This map maps the graphon signal X to the graphon signal Y, and it is parametrized                 
by the graphon W and the set calligraphic H, which groups the learnable parameters              
h_kl^fg for all layers and all features of the WNN. 

Slide 3: WNNs as Generative Models for GNNs 



1. Consider a graph signal lowercase x on a graph G with shift operator S, and let Phi be a                   
GNN applied to this graph signal and parametrized by the coefficient set H and the               
graph shift operator S. In this GNN, we know that the coefficient set H does not depend                 
on the graph G. Likewise, consider a graphon signal uppercase X on the graphon W.               
The WNN map Phi applied to this graphon signal and parametrized by the coefficient set               
H and the graphon W does not depend on the graphon either. 

2. Therefore, GNNs and WNNs can share their learnable coefficients H, as shown in the              
diagram on the slide. Meaning that we can use WNNs to instantiate GNNs. 

3. In other words, the WNN acts as a generative model for GNNs. In the same way that                 
graphons and graphon signals are generative models for graphs and graph signals. 

4. In particular, in our transferability analysis we will consider GNNs Phi on weighted             
graphs G_n and graph signals x_n instantiated from the WNN Phi on the graphon W and                
graphon signal X. To instantiate a GNN from a WNN, it suffices to instantiate the graph                
shift operator S_n and the graph signal x_n from the graphon W and graphon signal X.                
The parameter set H is shared. Recall that, to instantiate the graph S_n and the graph                
signal x_n, we first construct a regular n-partition of the unit interval; then, we evaluate               
the graphon and the graphon signal at the endpoints u_i of each interval of this partition. 

Slide 4: Sampling a GNN from the WNN 

1. Consider a graph signal S_n, x_n sampled from the graphon signal W, X 

2. And let calligraphic H be the set of coefficients of a graphon neural network with L layers                 
and F features per layer, except for the input features F_0 and output features F               
uppercase L, which are equal to 1 

3. Then, run a WNN Y with coefficients H on the graphon W to process the graphon signal                 
X 

4. And, from this WNN, instantiate a GNN y_n with coefficients H on the graph S_n to                
process the graph signal x_n 

5. Now, we want to compare Y and y_n. But this is not possible, because the graphon                
signal X is a function and the graph signal x_n is a vector. To solve this problem, we                  
consider the graphon signal uppercase Y_n, which is the graphon signal induced by the              
graph signal lowercase y_n. 



Slide 5: Assumptions 

6. Our transferability results require the same set of assumptions we used when comparing             
graph filters to graphon filters. This is a triplet of Lipschitz assumptions that we repeat               
here for reference. 

7. We require the graphon to be Lipschitz with Lipschitz constant L_1. 

8. The filter’s frequency response to be LIpschitz with constant L_2. 

9. And the graphon signal X to be Lipschitz with constant L_3. Of these three assumptions               
it is (A2), the LIpschitz continuity of the frequency response of the filter, that is               
fundamental. The other two assumptions are necessary. But they are not conceptually            
that important. 

10. In the case of WNNs and GNNs, we also need a fourth assumption regarding the               
nonlinearities sigma. The first requirement is that sigma be normalized Lipschitz, which            
is what we call Lipschitz continuous functions with constant 1. In other words, the              
absolute value of sigma of x minus sigma of y should never exceed the absolute values                
of the difference between x and y. The second requirement is that sigma be null at zero.                 
Neither of these requirements are very restrictive, as they are satisfied by most             
conventional activation functions, such as the ReLU, the sigmoid and the hyperbolic            
tangent. 

Slide 6: Definitions 

1. We also require the same pair of definitions we introduced when comparing graph filters              
to graphon filters. 

2. These definitions require that we fix a bandwidth c to separate eigenvalues that are              
close to 0 from those that are not close to 0. 

3. Associated to c, we define the c-band cardinality B_n-c. This is a count of the number of                 
eigenvalues whose absolute value is larger than c. This is a number we know is finite.  

4. Also associated with c we define the c-eigenvalue margin of the graph G_n. This margin               
is the smallest gap between a graph eigenvalue lambda_ni and a graphon eigenvalue             
lambda_j with ​different index. The graph eigenvalue has to be in the c-band. But the               
graphon eigenvalue can be anywhere. Typically, this gap is the difference between the             



graph eigenvalue that is immediately above c and the graphon eigenvalue that is             
immediately below c. 

 

Slide 7: GNN-WNN Approximation 

1. With the setup, assumptions, and definitions in place, we can state the GNN-WNN             
approximation theorem.  

2. Consider the graph signal S_n-x_n sampled from the graphon signal W-X. 

3. Further consider the corresponding GNN and WNN outputs y_n and Y. The outputs are              
the result of processing these signals on the graph and on the graphon. But they both                
use the same set of filter coefficients. 

4. If assumptions (A1)-(A4) hold.  

5. And considering definitions (D1) and (D2). 

6. The difference between the norms of the induced graphon signal Y_n and the graphon              
signal Y. 

7. Is bounded by the expression shown on the slide. There is a lot going on in this bound. 

8. We have terms that depend on the number of nodes of the graph. They are sums of                 
inverse square roots and vanish as n and m grow. 

9. The summands are scaled by the Lipschitz constants of the graphon 

10. The filter’s frequency response. 

11. And the graphon signal. 

12. We also have terms that depend on the bandwidth c along with the corresponding              
c-band cardinality and the c-eigenvalue margin of the graph G_n.  

13. Finally, the bound also depends on the WNN depth L and the width F. 

14. And we also have the norm of the graphon signal X appearing in the bound. 



15. The proof of the theorem is an extrapolation of the graph-graphon filter approximation             
theorem for multiple layers and features. You can find it in lecture notes that are               
available on the course’s website. 

Slide 8: From WNNs to GNN Transferability 

1. The GNN-WNN approximation theorem tells us that the error incurred when using a             
GNN to approximate a WNN can be upper bounded. 

2. And the approximation bound is practically the same as the one we obtain when              
approximating graphon filters with graph filters 

3. With an additional dependence on the GNN depth L and width F. Meaning that deeper               
and wider WNNs are harder to approximate. 

4. The GNN-WNN approximation theorem is important because it is the stepping stone to             
proving transferability of GNNs. This is because the distance between GNNs and a WNN              
can be combined to bound the distance between GNNs supported on weighted graphs             
with different number of nodes instantiated from a graphon 

5. Consider the WNNs Y_n, induced by the GNN on the n-node graph G_n, and Y_m,               
induced by the GNN on the m-node graph G_m. The distance between Y_n and Y_m 

6. Can be bounded by adding and subtracting the graphon signal Y 
7. And splitting the sum between the error incurred when approximating the WNN with the              

GNN on n nodes, and the error incurred when approximating the WNN with the GNN on                
m nodes 

8. The sum can be split in two by the triangle inequality. 
9. Because the two error terms on the left hand side are bounded, we have proved GNN                 

transferability from G_n to G_m 
 

Slide 9: Running the Same GNN on Different Graphs 

11. Let us formally set up the transferability problem for GNNs. Consider the graph signals              
S_n, x_n and S_m, x_m sampled from the graphon signal W, X 

12. And let calligraphic H be the set of coefficients of a graph neural network with L layers                 
and F features per layer, except for the input features F_0 and output features F               
uppercase L, which are equal to 1 

13. Then, run a GNN y_n with coefficients H on the graphon G_n to process the graph signal                 
x_n 

14. And a GNN y_m with coefficients H on the graph G_m to process the graph signal x_m 



15. Now, we want to compare y_n and y_M. But this is not possible, because these are                
graph signals, and therefore vectors, with different dimensions m and n. To solve this              
problem, we consider the induced graphon signals uppercase Y_n and uppercase Y_m 

 

Slide 10: Transferability Theorem 

16. With the same setup, assumptions, and definitions used in the GNN-WNN approximation            
theorem, we can now state the GNN transferability theorem 

17. Consider the graph signals S_n-x_n and S_m-x_m sampled from the graphon signal            
W-X. 

18. Further consider the corresponding GNN outputs y_n and y_m. The outputs are the             
result of processing these signals on the graphs G_n and G_m. But they both use the                
same set of filter coefficients. 

19. If assumptions (A1)-(A4) hold.  

20. And considering definitions (D1) and (D2). 

21. The difference between the norms of the induced graphon signals Y_n and Y_m 

22. Is bounded by the expression shown on the slide. There is a lot going on in this bound. 

23. Like before, we have terms that depend on the number of nodes of the graph. They are                 
sums of inverse square roots and vanish as n and m grow. 

24. The summands are scaled by the Lipschitz constants of the graphon 

25. The filter’s frequency response. 

26. And the graphon signal. 

27. We also have terms that depend on the bandwidth c along with the corresponding              
c-band cardinalities and the c-eigenvalue margins of the graphs G_n and G_m. The             
bound depends on the larger of the two c-band cardinalities and the minimum of the two                
c-eigenvalue margins. We pick the worst of the two in each case. The one that makes                
the bound largest. 



28. Finally, the bound also depends on the WNN depth L and the width F. 

29. And we also have the norm of the graphon signal X appearing in the bound. 

30. The same comments made for the graph filter transferability theorem apply here, as the              
bound is almost exactly the same. 

31. The only difference is the dependence on the depth L and width F of the GNN. 

 

Slide 11: Transferability-Discriminability Tradeoff for GNNs 
 

1. Because the GNN transferability bound looks almost exactly like the graph filter 
transferability bound, one might be inclined to think that graph filters and GNNs present 
the same discriminability-transferability non-tradeoff. 
 

2. But in the case of GNNs, this non-tradeoff actually becomes a tradeoff. The 
nonlinearities help. 
 

3. At each layer of the GNN, after the graph convolution, the nonlinearities sigma effectively 
scatter the eigenvalues of the graph around the spectra. In doing so, they allow some of 
the eigenvalues in the c-band 
 

4. To be scattered to the upper and lower ends of the spectrum corresponding to 
eigenvalues with magnitude larger than c. Where these eigenvalues can later be 
discriminated by the graph convolutions of the upcoming layer. 
 

5. The nonlinearities thus alleviate the discriminability-transferability trade-off. They give us 
room to decrease the c-band and increase the filter variability L_2, allowing to increase 
discriminability while retaining transferability. 
 

6. This effect of nonlinearities is not reflected in the GNN transferability bound we have 
derived --- which is almost the same as the graph filter transferability bound. But it 
makes it so that, for the same level of discriminability, GNNs are more transferable than 
graph filters. 


