
Graphons

I We introduce graphons to study graph filters and GNNs in the limit of large number of nodes
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Graphon Definition

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Can think of a graphon as a weighted symmetric graph with uncountable nodes

⇒ The labels are the graphon arguments ⇒ u ∈ [0, 1].

⇒ The weights are the graphon values ⇒ W (u, v) = W (v , u)
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Graphon Examples

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

Uniform (Erdős-Rényi)

W (u, v) = p

Balanced stochastic block model (SBM)

W (u, v) = p � W (u, v) = q

Unbalanced (SBM)

W (u, v) = p � W (u, v) = q
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The Purpose of a Graphon

Definition (Graphon)

A graphon is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

I Practice ⇒ Graph sets where graphs in the set have large number of nodes and similar structure

I Theory ⇒ A generative model of graph families via deterministic or stochastic edge sampling

I Theory ⇒ A limit object for a sequence of graphs

4



The Product Similarity “Graphon”

I Product similarity graphs, even with different number of nodes, “look like each other”

I Abstract similarities between graphs into a limit object ⇒ The product similarity “graphon”

n = 30 products n = 50 products n = 100 products
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The Product Similarity “Graphon”

I We never compute the product similarity “graphon”

⇒ Use abstract idea of graphon to work with all of these graphs as if they were the same object

n = 30 products n = 50 products n = 100 products
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Graphons as Generative Models

I Vertices: For an n-node graph, sample n points {u1, u2, . . . , un} from the unit interval [0, 1]

⇒ Points can be sampled on a grid, uniformly at random, etc.

⇒ Each sample ui corresponds to a node i ∈ {1, 2, 3, . . . , n} of the graph

I Edges: Evaluate W(ui , uj) for edge (i , j)

⇒ Stochastic: Connect i and j with an unweighted undirected edge with probability W(ui , uj)

⇒ Weighted: Connect i and j with weighted undirected edge with weight W(ui , uj)
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Uniform Graphons as Generative Models

I Use uniform Graphon
W (u, v) = p

To generate random graphs with the same

Or different number of nodes

n = 50 nodes n = 50 nodes n = 100 nodes
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Balanced SBM Graphons as Generative Models

I Use balanced SBM

Graphon

q p

p q

To generate balanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Unbalanced SBM Graphons as Generative Models

I Use Unbalanced SBM

Graphon

q p

p q

To generate unbalanced SBM graphs with the same

Or different number of nodes

n = 20 nodes n = 20 nodes n = 40 nodes
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Uniform Graphons as a Limit Object

I As we consider random graphs with larger numbers of nodes the graphs approach a limit

⇒ It is unclear what that limit is. The graphon is the limit. As we will see

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Convergence of Graph Sequences

I A graphon is the limit of a sequence of graphs that converges in terms of homomorphism densities
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Convergent Graph Sequences

I Sequence of graphs with growing number of nodes n ⇒
{
Gn = (Vn,En, Sn)

}∞
n=1

.

I The graph sequence {Gn}∞n=1 converges to a graphon W ⇒ In what sense?

⇒ We need to introduce three concepts: Motifs, homomorphisms, and homomorphism densities

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Motifs and Graph Homomorphisms

I A motif F is a graph. But think of it as a small graph that we embed in another larger graph
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I Homomorphisms are adjacency preserving maps from motif F = (V ′,E ′) into graph G = (V ,E)

β : V ′ → V such that
(
i , j
)
∈ E ′ implies

(
β(i), β(j)

)
∈ E
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Homomorphism Count

I Given motif F and graph G , there are multiple homomorphism functions β
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I We define hom(F ,G) to represent the number of homomorphisms between motif F and graph G
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Homomorphism Density

I If the graph G has n nodes and the motif F has n′ nodes, there are nn′ different maps from F to G

I Homomorphism density of motif F in graph G is the fraction of maps that are homomorphisms

t(F ,G) =
hom(F ,G)

nn′

I Density t(F ,G) is a relative measure of the number of ways in in which F can be mapped into G
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Homomorphism Density for Weighted Graphs

I Consider weighted graph G = (V ,E ,S) with adjacency matrix S

I Homomorphism density of motif F in weighted graph G with the adjacency matrix S is

t(F ,G) = =

∑
β

∏
(i,j)∈E′

[
S
]
β(i)β(j)

nn′

I Weight each motif embedding by the product of the edge weights in the homomorphism image.
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Homomorphism Density for Graphons

I The Homomorphism density of a motif F into a given graphon W is defined as

t(F ,W ) =

∫
[0,1]n

′

∏
(i,j)∈E′

W (ui , uj)
∏
i∈V′

dui

I The homomorphism density is the probability of drawing the motif F from the graphon W
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Convergence in Homomorphism Density Sense

Definition (Convergent graph sequence)

A sequence of undirected graphs Gn converges to the graphon W if and only if for all motifs F

lim
n→∞

t(F ,Gn) = t(F ,W )

I We say that the sequence Gn converges to W in the homomorphism density sense

I It can be proven that every graphon is the limit object of a sequence of convergent graphs

I It can be proven that every convergent graph sequence converges to a graphon
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Example of Convergent Graph Sequence

I Consider a sequence of random graphs {Gn} sampled from the graphon W. Graphs Gn have

⇒ Labels ui ∼ U[0, 1] drawn uniformly at random from the interval [0, 1]

⇒ Edge sets such that (ui , uj) ∈ E with probability W (ui , uj)

I We have lim
n→∞

t(F ,Gn) = t(F ,W ) in the homomorphism density sense almost surely

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p
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Induced Graphons

I Every undirected graph admits a graphon representation which we call its induced graphon

I Consider a graph G = {V, E ,S} with |V| = n and normalized graph shift operator S

I Regular partition of the unit interval with n subintervals ⇒ Ii =
[

(i − 1)/n, i/n
)

I We define the induced graphon WG ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

1
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6

→

Cycle graph G with n = 6 nodes Graphon WG induced by the graph G
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Graphon Signals

I Graph signals are signals supported on graphons. They are limit objects of graph signals
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Graphon Signals

I Graphon signals are pairs (W ,X ) where W is a graphon and X : [0, 1]→ R is a function

I Function X (u) ∈ L2
(
[0, 1]

)
has finite energy ⇒

∫ 1

0

|X (u)|2du <∞.

0 1 u

x(u)

I Generative models of graph signals. And limits of convergent sequences of graph signals
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Graphon Signals as Generative Models

I We generate graph signals (Sn, xn) by taking n samples of the graphon signal (W ,X )

I Sample the graphon at node labels ui . Sample the function X at node labels ui ⇒ xi = X (ui )

I Graph signal sampled from the unit interval in the same coordinates ui where graphon is sampled

0 1 u

x(u)
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Induced Graphon Signals

I Every graph signal x supported on graph G induces a graphon signal (WG ,XG )

I Regular partition of unit interval with n subintervals Ii =
[

(i − 1)/n, i/n
)

⇒ Induced signal XG (u) = xi I(u ∈ Ii )

⇒ WG is the graphon induced by the graph G ⇒ WG (u, v) = [S]ij I(u ∈ Ii ) I(v ∈ Ij)

0 1 u

x(u)
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Convergent Sequences of Graph Signals

Definition (Convergent sequences of graph signals)

A sequence of graph signals (Gn, xn) is said to converge to the graphon signal (W ,X ), if there

exists a sequence of permutations πn such that for all motifs F we have

t(F ,Gn)→ t(F ,W ), and
∥∥∥Xπn(Gn) − X

∥∥∥
L2
→ 0

We say (W ,X ) is the limit of the graph signal sequence and write (Gn, xn)→ (W ,X )

I The permutation is used here to make the convergence definition independent of labels

I To enable comparison of the vector xn and the function X we use the induced signal in the L2 norm
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Graphon Shift Operator

I The Graphon W can be used to define an integral linear operator ⇒ TW : L2([0, 1]
)
→ L2([0, 1]

)
I When applied to the graphon signal X , the operator TW produces the signal TWX with values

(TWX )(v) =

∫ 1

0

W (u, v)X (u) du

I This is a Hilbert-Schmidt operator because W is bounded and compact. It’s a matrix multiplication

I We say that the linear operator TW is the graphon shift operator (WSO) of the graphon W

⇒ Applying the WSO TW to the graphon signal X diffuses X over the graphon W
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Graphon Fourier Transform

I We define a graphon Fourier transform to enable spectral representation of graphon signals.
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The WSO is a self adjoint Hilbert-Schmidt operator ⇒ (TWX )(v) =

∫ 1

0

W(u, v)X (u) du

I The function ϕ : [0, 1]→ R is an eigenfunction of TW with associated eigenvalue λ if

(TWϕ)(v) =

∫ 1

0

W(u, v)ϕ(u) du = λϕ(v)

I TW has a countable number of eigenvalue-eigenfunction pairs ⇒
{

(λi , ϕi )
}∞

i=1

I We assume eigenfunctions are normalized to unit energy ⇒ ‖ϕi‖2 =

∫ 1

0

ϕ(u)du = 1
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Eigenfunctions and Eigenvalues of the Graphon Shift Operator (WSO)

I The (countable number of) eigenfunctions of the operator Tw are an orthonormal basis of L2
(
[0, 1]

)

I We can thus decompose the graphon W in the basis
{
ϕi

}∞
i=1

of eigenfunctions of the operator TW

W(u, v) =
∞∑
i=0

λi ϕi (u)ϕi (v)

I More or less the same as the eigenvector decomposition ⇒ S = VΛVH =
∞∑
i=0

λi vi vT
i
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The Range of the Graphon Eigenvalues

I TW is self adjoint and 0 ≤W (x , y) ≤ 1 ⇒ Eigenvalues are real and lie in the interval [−1, 1]

I Order them as ⇒ −1 ≤ λ−1 ≤ λ−2 ≤ . . . ≤ 0 ≤ . . . ≤ λ2 ≤ λ1 ≤ 1

-1 0 1λ−2λ−1 λ2 λ1
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Eigenvalues Concentrate Around Zero

I Graphon eigenvalues accumulate at λ = 0 ⇒ lim
i→∞

λi = lim
i→∞

λ−i = 0. And only at λ = 0

I For any c > 0, the number of eigenvalues with
∣∣λi

∣∣ ≥ c is finite ⇒ #
{
λi :

∣∣λi

∣∣ ≥ c
}

= nc <∞

I All eigenvalues that are not λj = 0 have finite multiplicity

-1 0 1λ−2λ−1 λ2 λ1−c +c
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Eigenvalues of a Convergent Graph Sequence Converge to those of the Graphon

Theorem (Eigenvalue Convergence of a Graph Sequence)

If a graph sequence {Gn} converges to a graphon W in the homomorphism density sense , then

lim
n→∞

λj(Sn)

n
= λj(TW) = lim

n→∞
λj(TWn ) for all j

I For any convergent graph sequence, the eigenvalues of the graph converge to those of the graphon

Borgs-Chayes-Lovász-Sós-Vesztergombi, Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics,
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Eigenvalues of a Convergent Graph Sequence Converge to Those of the Graphon

I For a convergent graph sequence, eigenvalues of the graph converge to those of the limit graphon

-1 0 1

I Convergence holds in the sense that ⇒ ∃ n0 s.t. for all n > n0,

∣∣∣∣λj(Sn)

n
− λj(TW)

∣∣∣∣ < ε , ε > 0

I But n0 will be different for each j . Eigenvalue convergence is not uniform
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The Graphon Shift Operator Induces a Transform

I The graphon shift operator can be rewritten as

(TWφ)(v) =
∞∑
j=0

λjϕj(v)

∫ 1

0

ϕj(u)X (u)du

I Integral terms correspond to inner products 〈X , ϕj〉 between the signal and the eigenfunctions

I Moreover, the eigenfunctions form a complete orthonormal basis of L2([0, 1])

I Thus, the inner products can provide a complete representation of the signal on the graphon basis

I That change of basis is called the graphon Fourier Transform
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The Graphon Fourier Transform (WFT)

Definition (Graphon Fourier transform)

The graphon Fourier transform (WFT) of a graphon signal X is defined as a functional X̂ =

WFT(X ) with continuous input X and discrete output

X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u)du

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I The eigenvalues λj are countable ⇒ The graphon Fourier transform X̂ can always be defined
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The Inverse Graphon Fourier Transform (iWFT)

Definition (Inverse graphon Fourier transform)

The inverse graphon Fourier transform (iWFT) of a graphon Fourier transform X̂ is defined as

iWFT(X̂ ) =
∑

j∈Z/{0}

X̂ (λj)ϕj = X

with {λj}j∈Z/{0} the eigenvalues and {ϕj}j∈Z/{0} the eigenfunctions of TW

I Eigenfunctions {ϕj}j∈Z/{0} are orthonormal. The iWFT is a proper inverse of the WFT
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The GFT converges to the WFT

I We discuss the convergence of the GFT to the WFT for graph sequences that converge to graphons.

I This need us to review convergence of eigenvectors and eigenvalues of graph sequences
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Graph signal sequence (Gn, xn) converges to graphon signal (W ,X ) ⇒ Conjecture GFT convergence

GFT(Gn, xn) → WFT(W ,X )

I Eigenvalue convergence holds ⇒ λnj → λj . Conjecture is reasonable GFT convergence should hold
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The Graphon Fourier Transform and the Graph Fourier Transform

I Graphon FT, WFT(W ,X ) is the eigenspace projection ⇒ X̂j = X̂ (λj) =

∫ 1

0

X (u)ϕj(u) du

I Graph FTs, GFT(Gn, xn) are the eigenspace projections ⇒ x̂n(j) = x̂n(λnj) =
n∑

i=1

xn(i) vnj(i)

I Alas, this conjecture is wrong ⇒ GFT convergence to the WFT does not hold in general

GFT(Gn, xn) 6→ WFT(W ,X )

I GFT and WFT are projections on eigenvectors and eigenfunctions. Not eigenvalues
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Convergence to Graphon Eigenvectors

I Convergence of two eigenvectors depends on how close the eigenvalues of other eigenvectors are

I Eigenvalues accumulate around λ = 0. They all converge. But different eigenvalues are close

I It makes the eigenvectors slow to converge ⇒ They all converge but convergence is not uniform

-1 0 1λ3 λ2 λ1
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Eigenvalue Margin for Linear Operators

I Consider eigenvalues λj of graphon W and λnj of graph Gn with the same index j

⇒ Compare graphon eigenvalue λj to the closest graph eigenvalue other than λnj

⇒ Compare graph eigenvalue λni to the closest graphon eigenvalue other than λj

d(λj , λnj) = min

(
d1 = min

i 6=j

∣∣∣λj − λni

∣∣∣, d2 = min
i 6=j

∣∣∣λnj − λi

∣∣∣ )
⇒ The minimum of these two is the eigenvalue margin d(λj , λnj) for the eigenvalue pair (λj , λnj)

λj λnjλj − d1 λj + d1 λj λnjλnj − d2 λnj + d2
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Convergence of Eigenfunctions

Theorem (Davis-Kahan)

Given graphon W and graphon WGn induced by graph Gn we consider graphon eigenvalue λj and

graph eigenvalue λnj . The distance between the associated eigenfunctions is bounded by

‖ϕj − ϕnj‖ ≤
π

2

‖W −WGn‖
d(λj , λnj)

where d(λj , λnj) is the eigenvalue margin for the eigenvalue pair (λj , λnj)

I Graph eigenvectors converge to graphon eigenfunctions if graph sequence converges to graphon

I When the distance to other eigenvalues decreases, the distance between eigenvectors increases
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The GFT Does Not Converge to the WFT

I For eigenvalues close to 0 the margin d(λj , λnj) vanishes ⇒ There are infinite eigenvalues in [−c, c]

I Thus for any n and ε > 0 we have some j for which ⇒ π

2

‖W − Gn‖
d(λj , λnj)

> ε

I Opposite of a convergence claim. ⇒ For any ε > 0, all n > n0, and j ⇒ π

2

‖W − Gn‖
d(λj , λnj)

≤ ε

-1 0 1−c +c
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Graphon Bandlimited Signals

Definition (Graphon bandlimited signals)

A graphon signal (W ,X ) is c-bandlimited, with bandwith c ∈ (0, 1], if X̂ (λj) = 0 for all |λj | < c.

-1 0 1−c +c
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Bandlimited and Not-Bandlimited Graphon Signals

I Just to emphasize the simplicity of this definition consider a graphon signal that is Not-Bandlimited

I To make it bandlimited it suffices for us to nullify all of the WFT components in the interval (−c, c)

-1 0 1−c +c
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-1 0 1−c +c
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Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (GFT convergence for graphon bandlimited signals)

Let (Gn, xn) be a sequence of graph signals converging to the c-bandlimited graphon signal (W ,X ).

There exists a sequence of permutations πn such that

GFT
(
πn(Gn), πn(xn)

)
→ WFT

(
W ,X

)

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Inverse Graph Fourier Transform Convergence for Bandlimited Signals

Theorem (iGFT convergence for graphon bandlimited signals)

Let (Gn, x̂n) be a sequence of GFTs converging to the WFT (W ,X ). The WFT is associated to a

c-bandlimited graphon signal. There exists a sequence of permutations {πn} such that

πn

(
iGFT(x̂n)

)
→ iWFT

(
X̂
)

.

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graph Fourier Transform Convergence for Bandlimited Signals

I Convergence of GFT depends on convergence of graph eigenvalues to graphon eigenvalues

I As the number of nodes n grows, the eigenvalues of Gn converge to the eigenvalues of W .

-1 0 1−c +c
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Graph Fourier Transform Convergence for Bandlimited Signals

I However, for large |j | the graph and graphon eigenvalues become difficult to tell apart

I Therefore, the GFT only converges to the WFT for graphon bandlimited signals

-1 0 1−c +c
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Graphon Filters

I We define graphon filters and prove their frequency response, which is independent of the graphon.
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Graphon Filters

I Apply the Graphon shift operator recursively to create the graphon diffusion sequence

(
T

(k)
W X

)
(v) =

∫ 1

0

W(u, v)
(
T

(k−1)
W X

)
(u) du T

(0)
W X = X

I A graphon filter of order K is defined by the filter coefficients hk and produces outputs as per

Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v) = (THX )(v)

I A linear combination of the elements of the diffusion sequence modulated by coefficients hk
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Graphon Filters and Graph Filters

I A graphon filter has the same algebraic structure of a graph filter ⇒ Y (v) =
K∑

k=1

hk
(
T

(k)
W X

)
(v)

I Only difference is a change of shift operator ⇒ TWX : (TW )X (v) =

∫ 1

0

W(u, v)X (u) du

TW TW TW

+ + + +

T
(0)
W X T

(1)
W X T

(2)
W X T

(3)
W X

h0 h1 h2 h3

h0T
(0)
W X + h1T

(1)
W X + h2T

(2)
W X + h3T

(3)
W X

Y
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Graphon Filters in the Graphon Fourier Transform Domain

⇒ WFTs of input signal ⇒ X̂j =

∫ 1

0

X (u)ϕj(u)du ⇒ WFT of output ⇒ Ŷj =

∫ 1

0

Y (u)ϕj(u)du

Theorem (Graph frequency representation of graphon filters)

Given a graphon filter TH with coefficients hk , the components of the graphon Fourier transforms

of the input and output signals are related by

Ŷj =
K∑

k=0

hkλ
k
j X̂j

I The same polynomial that defines the filter but with the eigenvalue λi as a variable

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-9/ �
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Graphon Frequency Response

I Graphon filters are pointwise in the WFT domain ⇒ Ŷj =
K∑

k=0

hkλ
k
j X̂j = h(λj) X̂j

Definition (Frequency response of a graphon filter)

Given a graphon filter with coefficients h = {hk}∞k=1 the frequency response is the polynomial

h(λ) =
∞∑
k=0

hkλ
k

I This is also the exact same definition of the frequency response of a graph filter with coefficients hk
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Frequency Response of Graphs and Graphons

I The frequency response of a graphon filter and a graph filter with the same coefficients are the same

I Graphon filter instantiates graphon eigenvalues. Graph filter instantiates graph eigenvalues

I If graph sequence converges to a graphon eigenvalues converge ⇒ The filter transfers

-1 0 1
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-1 0 1
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