Convergence of Graph Filters in the Spectral Domain

- Convergence of graph filter sequences towards graphon filters for convergent graph signal sequences
Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients.

$$H(S_n) = \sum_{k=1}^{K} h_k S_n^k$$

$$T_H = \sum_{k=1}^{K} h_k T_W^{(k)}$$

Does the graph filter sequence converge to the graphon filter? ⇒ Not the most pertinent question

⇒ Filter convergence is important inasmuch as it implies convergence of filter outputs.
Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients.

Consider a convergent sequence of graph signals $(G_n, x_n) \rightarrow (W, X)$.

- Input graph signal x_n to graph filter $H(S_n)$ to produce output graph signal y_n.
- Input graphon signal X to graphon filter T_H to produce output graphon signal Y.

The graph signal sequence (G_n, y_n) converges to the graphon signal (W, Y) under some conditions.
Given filter coefficients h_k we have five polynomials which are the same except for their variables.

Two polynomials are representations in the node domain.

- The graph filter sequence defined on variable $S_n \Rightarrow H(S_n) = \sum_{k=1}^{K} h_k S_n^k$

- The graphon filter defined on variable $T_W \Rightarrow T_W^{(k)}$
Given filter coefficients h_k we have five polynomials which are the same except for their variables.

Three polynomials are representations in the spectral domain.

- The frequency response of the graph and graphon filters with variable λ is
 $$\tilde{h}(\lambda) = \sum_{k=1}^{K} h_k \lambda^{(k)}$$

- The frequency representation of the graph filters with variable λ_{nj} is
 $$\tilde{h}(\lambda_{nj}) = \sum_{k=1}^{K} h_k \lambda_{nj}^{(k)}$$

- The frequency representation of the graphon filter with variable λ_j is
 $$\tilde{h}(\lambda_j) = \sum_{k=1}^{K} h_k \lambda_j^{(k)}$$
Theorem (Convergence of graph filter sequences in the frequency domain)

Consider filter coefficients h_k generating a sequence of graph filters $H(S_n)$ supported on the graph sequence G_n and a graphon filter T_H supported on the graphon W. If $G_n \to W$

$$\lim_{n \to \infty} \tilde{h}(\lambda_{nj}) = \tilde{h}(\lambda_j)$$
Graph filter GFT representations converge to graphon filter WFT representation \(\Rightarrow \lim_{n \to \infty} \tilde{h}(\lambda_{nj}) = \tilde{h}(\lambda_j) \)

This is true because eigenvalues converge and the frequency responses are the same

This is not much to say \(\Rightarrow \) GFT and WFT are representations. \(\Rightarrow \) Filters operate in the node domain
Convergence of Graph Filters in the Node Domain

- We leverage spectral domain convergence to prove convergence of graph filters in the node domain

→ Provides a first approach to the study of transferability of graph filters
To prove convergence in the node domain we can go to the frequency domain and back.

Frequency representation of graph filters converge to frequency representation of graphon filter.

⇒ But the GFT and the iGFT do not converge ⇒ Unless the signals are graphon bandlimited
Input graph signal sequence \((G_n, x_n)\) ⇒ Generates output sequence \((G_n, y_n)\) with \(y_n = H(S_n)x_n\)

Input graphon signal \((W, X)\) ⇒ Generates output signal \((W, Y)\) with \(Y = T_H X\)

Theorem (Graph filter convergence for bandlimited inputs)

Given convergent graph signal sequence \((G_n, x_n) \rightarrow (W, X)\) and filters \(H(S_n)\) and \(T_H\) generated by the same coefficients \(h_k\). If the input signals are \(c\)-bandlimited

\((G_n, y_n) \rightarrow (W, Y)\)

The sequence of output graph signals converges to the output graphon signal.
Lipschitz Graphon Filters

- Convergence for bandlimited input is easy. Also weak. Therefore cheap. A stronger result is possible.

- **Lipschitz graphon filters** are filters with frequency responses that are Lipschitz in $[-1, 1]$

\[
|h(\lambda_1) - h(\lambda_2)| \leq L |\lambda_1 - \lambda_2|, \quad \text{for all } \lambda_1, \lambda_2 \in [0, 1]
\]

- Claim convergence of graph filter sequence, despite lack of convergence of the GFT and the iGFT.
Theorem (Graph filter convergence for Lipschitz continuous filters)

Given convergent graph signal sequence \((G_n, x_n) \to (W, X)\) and filters \(H(S_n)\) and \(T_H\) generated by the same coefficients \(h_k\). If the frequency response \(\tilde{h}(\lambda)\) is Lipschitz

\[(G_n, y_n) \to (W, Y)\]

The sequence of output graph signals converges to the output graphon signal

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
Remarks on the Proof of Convergence for Lipschitz Graphon Filters

- The challenge of filter convergence comes from the accumulation of eigenvalues around $\lambda = 0$
- Which causes complications with eigenvector convergence.
- Lipschitz continuity renders the effect void. All components are multiplied by similar numbers

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
We identify a fundamental issue ⇒ Transferability is counter to discriminability

⇒ If the filter converges, it can’t separate eigenvectors associated to eigenvalues close to $\lambda = 0$

Characterization is just a limit ⇒ Work on a finite-n transference bounding
Graph filters can approximate graphon filters under certain conditions. We discuss them now.
For a converging graph sequence, graph filters converge asymptotically to graphon filters.

Thus, as n grows, the graph filters become more similar to the graphon filter:

$$y_n = \sum_{k=1}^{K} h_k S_n^k x_n$$

And we can then use a graph filter as a surrogate for the graphon filter:

$$y_n = \sum_{k=1}^{K} h_k T_W^{(k)} x$$

We now want to quantify the quality of that approximation for different values of n.
Small Eigenvalues are Hard to Discriminate

- Graphon eigenvalues accumulate at $\lambda = 0$

- Making it hard to match graph eigenvalues to the corresponding graphon eigenvalues if λ is small
Small Eigenvalues are Hard to Discriminate

- Which in turn makes it hard to discriminate consecutive eigenvalues in that range.
- If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently.
- To obtain good approximations, we must then assume filters do not change much around $\lambda = 0$.
Small Eigenvalues are Hard to Discriminate

- Which in turn makes it hard to discriminate consecutive eigenvalues in that range.
- If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently.
- To obtain good approximations, we must then assume filters do not change much around $\lambda = 0$.

![Graph showing small eigenvalues and filter changes](image-url)
Graphon eigenvalues tend to zero as the index i grows \(\Rightarrow \lim_{i \to \infty} \lambda_i = \lim_{i \to \infty} \lambda_{-i} = 0 \)

Low-pass graphon filters must thus be zero for $\lambda < c$. Constant c determines the filter’s band.

The filter removes high frequency components. But low-frequency components are not affected.
Assumptions

(A1) The graphon W is L_1-Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2), it holds

$$\left| W(u_2, v_2) - W(u_1, v_1) \right| \leq L_1 \left(|u_2 - u_1| + |v_2 - v_1| \right)$$

(A2) The filter’s response is L_2-Lipschitz and normalized \Rightarrow For all λ_1, λ_2 and λ we have

$$|\tilde{h}(\lambda_2) - \tilde{h}(\lambda_1)| \leq L_2 |\lambda_2 - \lambda_1| \quad \text{and} \quad |h(\lambda)| \leq 1$$

(A3) The graphon signal X is L_3-Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq L_3 |u_2 - u_1|$$
We fix a bandwidth $c > 0$ to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \\left\{ \lambda_{ni} : |\lambda_{ni}| > c \right\}$$

(D2) The c-eigenvalue margin of graph G_n is the

$$\delta_{nc} = \min_{i,j \neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W.
Theorem (Graphon filter approximation by graph filter for low-pass filters)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ is zero for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|Y - Y_n\|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta n_c} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}}$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
High-Pass Filters

- **High-pass** filters have null frequency response for $|\lambda| > c$, removing low-frequency components.

- Moreover, we consider filters that have low variability around $\lambda = 0$.

This makes it easier to match graph eigenvalues to graphon eigenvalues around $\lambda = 0$.
Theorem (Graphon filter approximation by graph filter for high-pass filters)

Consider a graphon filter \(Y = \Phi(X; h, W) \) and a graph filter \(y_n = \Phi(x_n; h, S_n) \) instantiated from \(Y \). With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) \(h(\lambda) \) is zero for \(|\lambda| > c \)

The difference between \(Y \) and \(Y_n = \Phi(X_n; h, W_n) \) (graph filter induced by \(y_n \)) is bounded by

\[
\| Y - Y_n \|_{L^2} \leq L_2 c \| X \|
\]

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
Filter response has low variability for $|\lambda| < c$. Where the eigenvalues of the graphon accumulate.

For $|\lambda| > c$, graphon eigenvalues are countable. And easier to match to those of the graph.

A Lipschitz filter with variable band is the composition of a low-pass filter and a high-pass one.
Theorem (Graphon filter approximation by graph filter)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ has low variability for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|Y - Y_n\|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n c}{\delta n c} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$
Proof

- Filter with variable band is the sum of an L_2-Lipschitz filter $h_1(\lambda)$ with $h_1(\lambda) = 0$ for $|\lambda| < c$

- And a high-pass filter $h_2(\lambda)$ with $h_2(\lambda)$ showing low variability for $|\lambda| < c$ and 0 otherwise

- Thus, by the triangle inequality

$$\|Y - Y_n\|_{L_2} = \|T_H X - T_{H_n} X\|_{L_2} \leq \|T_{H_1} X - T_{H_{1_n}} X_n\|_{L_2} + \|T_{H_2} X - T_{H_{2_n}} X_n\|_{L_2}$$

- We know the first-term on the right-hand side. It’s the bound for low-pass filters

- And the second-term on the right-hand side is the bound for constant filters

- Summing up the two bounds, we then prove our result for Lipschitz filters with variable band
Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|Y - Y_n\|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- Bound depends on the filter transferability constant and on the difference between X and X_n
- Transferability constant depends on the graphon via L_1 which also affects the graphon variability
- As n grows, the transferability constant dominates the bound
Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\| Y - Y_n \|_{L_2} \leq \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- Transferability constant depends on the filter parameters L_2, n_c and δ_{nc}
- Filter’s Lipschitz constant L_2 and filter’s band $[c, 1]$ determine variability of the spectral response
- Number of eigenvalues in the passing band has to be limited: $n_c < \sqrt{n}$
- This ensures eigenvalues of W_n converge to those of W. And thus so does the filter approximation
We identify a fundamental issue ⇒ Good approximations are counter to discriminability

⇒ Tight approximation bounds require filters with low variability around $\lambda = 0$

⇒ But then the filter can’t discriminate components associated to eigenvalues close to $\lambda = 0$

That is less of an issue for larger graphs. Filter approximation requires $n_c < \sqrt{n}$

⇒ As n grows, we can afford a larger number of eigenvalues n_c in the passing band

⇒ Improving discriminability without penalizing the approximation bound
Transferability of Graph Filters: Theorem

- We show that graph filters are transferable across graphs that are drawn from a common graphon.
Have not proven transferability \(\Rightarrow \) Have proven that graph filters are close to graphon filters

\(\Rightarrow \) Graph \(G_n \) with \(n \) nodes sampled from graphon \(W \)

\(\Rightarrow \) Have shown that graph filter \(H(S_n) \) running on \(G_n \) is close to the graphon filter \(T_H \)
Transferability means that two different graphs with different number of nodes are close

⇒ Graph G_n and graph G_m with $n \neq m$ nodes. Both sampled from graphon W

⇒ Want to show that graph filter $H(S_n)$ and graph filter $H(S_m)$ are close
But graph filters are close because they are both close to the graphon filter

$$\Rightarrow \text{Graph filter } H(S_n) \text{ close to graphon filter } T_H. \text{ Graph filter } H(S_m) \text{ close to graphon filter } T_H$$

$$\Rightarrow \text{Graph filter } H(S_n) \text{ is close to graph filter } H(S_m) \Rightarrow \text{This is just the triangle inequality}$$
Running the Same Filter on Different Graphs

Consider graph signals \((S_n, x_n)\) and \((S_m, x_m)\) sampled from the graphon signal \((W, X)\).

Given filter coefficients \(h_k\) we process signals on their respective graphs:

\[y_n = H(S_n)x_n = \sum_{k=1}^{K} h_k S_n^k x_n \]

\[y_m = H(S_m)x_m = \sum_{k=1}^{K} h_k S_m^k x_n \]

Since they have different number of components we compare induced graphon signals \(Y_n\) and \(Y_m\).
Assumptions

(A1) The graphon W is L_1-Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2), it holds

$$\left| W(u_2, v_2) - W(u_1, v_1) \right| \leq L_1 \left(|u_2 - u_1| + |v_2 - v_1| \right)$$

(A2) The filter’s response is L_2-Lipschitz and normalized \Rightarrow For all λ_1, λ_2 and λ we have

$$\left| \tilde{h}(\lambda_2) - \tilde{h}(\lambda_1) \right| \leq L_2 |\lambda_2 - \lambda_1| \quad \text{and} \quad |h(\lambda)| \leq 1$$

(A3) The graphon signal X is L_3-Lipschitz \Rightarrow For all u_1 and u_2

$$\left| X(u_2) - X(u_1) \right| \leq L_3 |u_2 - u_1|$$
We fix a bandwidth $c > 0$ to separate eigenvalues not close to $\lambda = 0$ and define

D1 The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \left\{ \lambda_{ni} : |\lambda_{ni}| > c \right\}$$

D2 The c-eigenvalue margin of graph G_n is the

$$\delta_{nc} = \min_{i,j \neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W.
Theorem (Graph filter transferability)

Consider graph signals \((S_n, x_n)\) and \((S_m, x_m)\) sampled from graphon signal \((W, X)\) along with filter outputs \(y_n = H(S_n)x_n\) and \(y_m = H(S_m)x_m\). With Assumptions (A1)-(A3) and Definitions (D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

\[
\|Y_n - Y_m\| \leq \sqrt{L_1}\left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})}\right)\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right)\|X\| + \frac{2L_3}{\sqrt{3}}\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) + L_2c\|X\|
\]

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
We present remarks on the transferability theorem of graph filters sampled from a graphon filter.
Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

\[\| Y_n - Y_m \| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \| X \| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \| X \| \]

Thing 1: A term that comes from the discretization of the graphon signal ⇒ Not very important

Thing 2: A term coming from filter variability at eigenvalues \(|\lambda| > c\) ⇒ The easy components

Thing 3: A term coming from filter variability at eigenvalues \(|\lambda| \leq c\) ⇒ The difficult components
The difference norm of the respective graphon induced signals is bounded by

\[\| Y_n - Y_m \| \leq \sqrt{L_1 \left(L_2 + \frac{\pi \max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right)} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \| X \| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \| X \| \]

- As \((n, m) \to \infty\) most of the transferability error decreases with the square root of the graph sizes
- We can also afford smaller bandwidth limit \(c\) \(\Rightarrow\) Transfer filters closer to \(\lambda = 0\)
- Sharper filter responses (larger Lipschitz constant \(L_2\)) \(\Rightarrow\) Transfer more discriminative filters
Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

\[
\| Y_n - Y_m \| \leq \sqrt{L_1 \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right)} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \| X \| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \| X \|
\]

- Graph signals and graphons with rapid variability make filter transference more difficult
- This is because of sampling approximation error \(\Rightarrow \) Not fundamental
- The constants can be sharpened with modulo-permutation Lipschitz constants
Filter Discriminability

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

\[\| Y_n - Y_m \| \leq \sqrt{L_1 \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right)} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \| X \| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \| X \| \]

- Filters that are more discriminative are more difficult to transfer

 \[\Rightarrow \text{True in the part of the bound related to easy components associated with eigenvalues } |\lambda| > c \]

 \[\Rightarrow \text{True in the part of the bound related to difficult components associated with eigenvalues } |\lambda| \leq c \]
Spectral Properties of the Graphon

Theorem (Graph filter transferability)

The difference norm of the respective graphon induced signals is bounded by

\[\| Y_n - Y_m \| \leq \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \| X \| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \| X \| \]

- Bound is parametric on the bandwidth \(c \) ⇒ Different \(c \) result in different values for the bound
- Increase \(c \)-band cardinality or decrease \(c \)-eigenvalue margin ⇒ More challenging transferability
- A property of the graphon ⇒ Since eigenvalues converge \(B_{nc} \) and \(\delta_{nc} \) converge
If we fix n and m we observe emergence of a transferability vs discriminability non-tradeoff.

Discriminating around $\lambda = 0$ needs large Lipschitz constant $L_2 \Rightarrow$ Useless transferability bound.

To make transferability and discriminability compatible \Rightarrow Graph Neural Networks.
Transferability of GNNs

- We define graphon neural networks and discuss their interpretation as generative models for GNNs

- We show that graph neural networks inherit the transferability properties of graph filters
Graph filters are transferable \Rightarrow we can expect GNNs to inherit transferability from graph filters.

To analyze GNN transferability, we first define Graphon Neural Networks (WNNs).

The lth layer of a WNN composes a graphon convolution with parameters h and a nonlinearity σ.

$$X_l^f = \sigma \left(\sum_{g=1}^{F_{l-1}} h_{k,l}^{fg} T_W^{(k)} X_{l-1}^g \right)$$

L layers, $1 \leq f \leq F_l$ output features per layer. WNN input is $X_0 = X$. Output is $Y = X_L$.

Can be represented as $Y = \Phi(\mathcal{H}; W; X)$ with coefficients $\mathcal{H} = \{h_{k,l}^{fg}\}_{k,l,f,g}$. Just like the GNN.
As in the GNN map $\Phi(\mathcal{H}; S; x)$, in the WNN $\Phi(\mathcal{H}; W; X)$, the set \mathcal{H} doesn’t depend on the graphon. Therefore, we can use WNNs to instantiate GNNs \Rightarrow the WNN is a generative model for GNNs.

We will consider GNNs $\Phi(\mathcal{H}; S_n; x_n)$ instantiated from $\Phi(\mathcal{H}; W; X)$ on weighted graphs G_n

$[S_n]_{ij} = W(u_i, u_j) \quad [x_n]_i = X(u_i)$
Consider a graph signal \((S_n, x_n)\) sampled from the graphon signal \((W, X)\).

Given WNN coefficients \(\mathcal{H}\) for \(L\) layers, width \(F_i = F\) for \(1 \leq i < L\), and \(F_0 = F_L = 1\):

- Run WNN with coefficients \(\mathcal{H}\) on graphon \(W\) to process \(X\) \(\Rightarrow Y = \Phi(\mathcal{H}; W, X)\).
- Run GNN with coefficients \(\mathcal{H}\) on graph \(S_n\) to process \(x_n\) \(\Rightarrow y_n = \Phi(\mathcal{H}; S_n, x_n)\).

Since one is a vector and the other a function we consider the induced graphon signal \(Y_n\).
Assumptions

(A1) The graphon W is L_1-Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2), it holds

$$\left| W(u_2, v_2) - W(u_1, v_1) \right| \leq L_1 \left(|u_2 - u_1| + |v_2 - v_1| \right)$$

(A2) The filter’s response is L_2-Lipschitz and normalized \Rightarrow For all λ_1, λ_2 and λ we have

$$\left| \tilde{h}(\lambda_2) - \tilde{h}(\lambda_1) \right| \leq L_2 |\lambda_2 - \lambda_1| \quad \text{and} \quad |h(\lambda)| \leq 1$$

(A3) The graphon signal X is L_3-Lipschitz \Rightarrow For all u_1 and u_2

$$\left| X(u_2) - X(u_1) \right| \leq L_3 |u_2 - u_1|$$

(A4) The nonlinearities σ are normalized Lipschitz and $\sigma(0) = 0$ \Rightarrow For all x and y

$$|\sigma(x) - \sigma(y)| \leq |x - y|$$
Definitions

We fix a bandwidth $c > 0$ to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \left\{ \lambda_{ni} : |\lambda_{ni}| > c \right\}$$

(D2) The c-eigenvalue margin of G_n is the

$$\delta_{nc} = \min_{i,j \neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W.
Theorem (GNN-WNN approximation)

Consider the graph signal \((S_n, x_n)\) sampled from the graphon signal \((W, X)\) along with the GNN output \(y_n = \Phi(H; S_n, x_n)\) and WNN output \(Y = \Phi(H; W, X)\). With Assumptions (A1)-(A4) and Definitions (D1)-(D2) the norm difference \(\|Y_n - Y\|\) is bounded by

\[
\|Y - Y_n\| \leq LF^{L-1} \sqrt{L_1} \left(L_2 + \frac{\pi B_{nc}}{\delta_{nc}} \right) \left(\frac{1}{\sqrt{n}} \right) \|X\| + \frac{L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} \right) + LF^{L-1} L_2 c \|X\|
\]

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/
The error incurred when using a GNN to approximate a WNN can be upper bounded.

Same comments as for graph and graphon filters apply. With additional dependence on L and F

Distances between GNNs and WNN can be combined to calculate distance between GNNs.

GNNs $Y_n = \Phi(H; W_n, x_n)$ and $Y_m = \Phi(H; W_m, x_m)$ instantiated from WNN $Y = \Phi(H; W, X)$

\[\|Y_n - Y_m\| = \|Y_n - Y + Y - Y_m\| \leq \|Y_n - Y\| + \|Y - Y_m\| \]

The inequality follows from the triangle inequality. By which we have proved GNN transferability.
Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from the graphon signal (W, X).

Given GNN coefficients H for L layers, width $F_i = F$ for $1 \leq i < L$, and $F_0 = F_L = 1$:

- Run GNN with coefficients H on graph S_n to process x_n $\Rightarrow y_n = \Phi(H; S_n, x_n)$
- Run filter with coefficients H on graph S_m to process x_m $\Rightarrow y_m = \Phi(H; S_m, x_n)$

Since they have different number of components we compare induced graphon signals Y_n and Y_m.
Theorem (GNN transferability)

Consider graph signals \((S_n, x_n)\) and \((S_m, x_m)\) sampled from graphon signal \((W, X)\) along with GNN outputs \(y_n = \Phi(H; S_n, x_n)\) and \(y_m = \Phi(H; S_m, x_m)\). With Assumptions (A1)-(A4) and Definitions (D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

\[
\|Y_n - Y_m\| \leq LF^{L-1}\sqrt{L_1}\left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})}\right)\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right)\|X\| + \frac{L_3}{\sqrt{3}}\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}}\right) + LF^{L-1}L_2c\|X\|
\]

- Same comments as in the case of graph filter transferability. With additional dependence on \(L, F\)
The transferability-discriminability trade-off looks the same. But it is helped by the nonlinearities.

At each layer of the GNN, the nonlinearities σ scatter eigenvalues from $|\lambda| \leq c$ to $|\lambda| > c$.

Nonlinearities allows $\downarrow c$ and $\uparrow L_2 \Rightarrow$ increasing discriminability while retaining transferability.

For the same level of discriminability, GNNs are more transferable than graph filters.