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1 Assumptions and preliminary results

Before showing formally how and why the GFT of sequences of graphs
converge to the WFT the limit, we state clearly our assumptions and we
introduce some basic theorems, corollaries and lemmas necessary for our
discussion.

1.1 Assumptions

Assumption 1 The graphons induced by graphs and the graphons con-
sidered to be the limit of a sequence of graphs are nonderogatory (see
definition below).

Definition 1 A graphon W is non-derogatory if λi 6= λj for all i 6= j and
i, j ∈ Z \ {0}.

Assumption 2 The graphon signals induced by graph signals and the
graphon signal limits are bandlimited (see definition below).

Definition 2 (Graphon bandlimited signals) A graphon signal (W, X) is
c-bandlimited, with bandwith c ∈ [0, 1], if X̂(λj) = 0 for all j such that |λj| < c.

Assumption 3 Although the GSOs Sn of the graphs Gn have a finite num-
ber of eigenvalues λj(Sn), we still associate the eigenvalue sign with its
index and order the eigenvalues in decreasing order of absolute value.
The indices j are now defined on some finite set L ⊆ Z \ {0}.
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Assumption 4 Taking into account that the induced graphon represen-
tations are defined uniquely from the sequences of graphs and graph
signals, we use in our analysis these induced representations. In partic-
ular, we will consider the graphon WGn induced by Gn and the graphon
signal XGn induced by xn.

1.2 Preliminary results

In the following lemma we provide the formal connection between a
graph signal and its induced graphon representation.

Lemma 1 Let (WG, XG) be the graphon signal induced by the graph signal
(G, x) on n nodes. Then, for j ∈ L we have

λj(TWG) =
λj(S)

n
ϕj(TWG)(u) = [vj]k ×

√
nI (u ∈ Ik)

[X̂G]j =
[x̂]j√

n

where λj(S) are the eigenvalues of the graph. For j /∈ L, λj(TWG) = [X̂G]j = 0
and ϕj(TWG) = ψj such that {ϕj(TWG)} ∪ {ψj} forms an orthonormal basis of
L2([0, 1]).

Proof: Refer to the section 5.1. �

Lemma 2 Let C = {j ∈ Z \ {0} | |λj(TW)| ≥ c} and denote S the subspace
spanned by the eigenfunctions {ϕj(TW)}j/∈C . Then, ϕj(TWn)→ ϕj(TW) weakly
for j ∈ C and ϕj(TWn) → Ψ ∈ S for j /∈ C, where Ψ completes ϕj(TW) as an
orthonormal basis.

Proof: Refer to the section 5.2 �
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2 Convergence of the GFT to the WFT

When a sequence of graph signals converges to a bandlimited graphon
signal, we can show that the GFT converges to the WFT as long as the
limit graphon is non-derogatory (Def. 1). This is stated and proved in
Thm. 1.

Theorem 1 (Convergence of GFT to WFT) Let {(Gn, xn)} be a sequence of
graph signals converging to the c-bandlimited graphon signal (W, X) in the
sense of Def. 2, where W is non-derogatory. Then, there exists a sequence of
permutations {πn} such that

GFT{(πn(Gn), πn(xn))} → WFT{(W, X)}
and iGFT{x̂n} → iWFT{X̂}

where x̂n is the GFT of (πn(Gn), πn(xn)) and X̂ the WFT of (W, X). The
eigenvalues of W and of the πn(Gn) are assumed ordered with indices j ∈ Z \
{0} according to their sign and in decreasing order of absolute value.

Thm. 1 relates the GFT, a “discrete” transform under the probabilistic
interpretation of graphons, to the WFT, a “continuous” Fourier transform
for graphon signals. This makes for an interesting parallel with the re-
lationship between the discrete Fourier transform (DFT) and the Fourier
series for continuous time signals. It also allows drawing conclusions
about the spectra of immeasurable or corrupted graph signals through
analysis of the spectrum of the generating graphon signal when the latter
is known. This is a consequence of both Thm. 1 and the fact that sampled
sequences of graph signals converge to the generating graphon signal in
probability.

3 Proof of convergence of the GFT to the WFT

Proof: [Proof of Thm. 1] We now prove that, since the finite set L con-
verges to Z \ {0} as n goes to infinity, WFT{(Wπn(Gn), πn(XGn))} →
WFT{(W, X)}. We leave the dependence on πn(Gn) implicit and write
Wn = Wπn(Gn) and Xn = πn(XGn). Next, we use the eigenvector con-
vergence result from the following lemma. Thm. 1 then follows from the
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fact that inner products are continuous in the product topology that they
induce.

Starting with the eigenvectors with indices in C, for any ε > 0 it holds
from Lemma 2 and from the convergence of Xn in L2 that there exist n1
and n2 such that

‖ϕj(TWn)− ϕj(TW)‖ ≤ ε

2‖X‖ , for all n > n1

and ‖Xn − X‖ ≤ ε

2
, for all n > n2 .

Recall that ‖ϕj(TWn)‖ ≤ 1 for all n and j ∈ C because the graphon spec-
tral basis is orthonormal. Since the sequence {Xn} is convergent, it is
bounded and ‖X‖ < ∞. Let m = max {n1, n2}. Then, it holds that

|[X̂n]j − [X̂]j| = |〈Xn, ϕj(TWn)〉 − 〈X, ϕj(TW)〉|
= |〈Xn − X, ϕj(TWn)〉+ 〈X, ϕj(TWn)− ϕj(TW)〉|
≤ ‖Xn − X‖‖ϕj(TWn)‖+ ‖X‖‖ϕj(TWn)− ϕj(TW)‖

≤ ε

2
‖ϕj(TWn)‖+ ‖X‖

ε

2‖X‖ ≤ ε for all n > m.

For j /∈ C, the eigenfunctions ϕj(TWn) may not converge to ϕj(TW), but
they do converge to some function Ψ ∈ S . Given that the graphon signal
(W, X) is bandlimited with bandwith c, we have 〈X, ϕj(TW)〉 = 0 for
j /∈ C, so that X must be orthogonal to all functions in S . Using the same
argument as for j ∈ C yields that the remaining GFT coefficients also
converge to the WFT. Formally,

〈ϕj(TWn), Xn〉 → 〈Ψ, X〉 = 0 = 〈ϕj(TW), X〉 .

Convergence of the iGFT to the iWFT follows directly from these results
and from Lemma 2. Explicitly, use the triangle inequality to write∥∥∥∥∥∥ ∑

j∈Z\{0}
[X̂]j ϕj(TW)− ∑

j∈Z\{0}
[X̂n]j ϕj(TWn)

∥∥∥∥∥∥
≤ ∑

j∈Z\{0}
‖[X̂]j ϕj(TW)− [X̂]j ϕj(TWn)‖

+ ∑
j∈Z\{0}

‖[X̂]j ϕj(TWn)− [X̂n]j ϕj(TWn)‖ .
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Applying the Cauchy-Schwarz inequality and splitting the sums between
j ∈ C and j /∈ C, we get∥∥∥∥∥∥ ∑

j∈Z\{0}
[X̂]j ϕj(TW)− ∑

j∈Z\{0}
[X̂n]j ϕj(TWn)

∥∥∥∥∥∥
≤ ∑

j∈C
|[X̂]j|‖ϕj(TW)− ϕj(TWn)‖

+ ∑
j∈C
|[X̂]j − [X̂n]j|‖ϕj(TWn)‖

+ ∑
j/∈C
|[X̂n]j|‖ϕj(TWn)‖ → 0 .

(1)

�

4 Important Remarks

We point out that the requirement that the graphon be non-derogatory is
not very restrictive: as stated in the following proposition, the space of
non-derogatory graphons is dense in the space of graphons.

Proposition 1 (Density of W) Let W denote the space of all bounded symmet-
ric measurable functions W : [0, 1]2 → R, i.e., the space of graphons. The space
of non-derogatory graphons is dense in W.

Proof: Refer to [1] �

Prop. 1 tells us that, even if a graphon is derogatory, there exists a non-
derogatory graphon arbitrarily close to it for which the GFT convergence
result from Thm. 1 holds.

5 Proofs of preliminary results and lemmas

5.1 Proof of Lemma 1
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Proof: The proof follows by direct computation. For j ∈ L,

(TWG ϕj)(u) =
∫ 1

0
WG(u, v)ϕj(v)dv

=
√

nI (u ∈ Ik)
∫ 1

0
[S]k`[vj]k × I (v ∈ I`) dv

=
√

nI (u ∈ Ik)
n

∑
`=1

[S]k`[vj]k

∫
I`

dv =
[Svj]k

n
×
√

nI (u ∈ Ik)

=
λj(S)

n

[
[vj]k ×

√
nI (u ∈ Ik)

]
= λj(TWG)ϕj(u).

If j /∈ L, then 〈ϕj, ϕk〉 = 0 for all k ∈ L. In this case, we can trivially write
(TWG ϕj)(u) = 0 = λj(TWG)ϕj(u). Note that since the vk are orthonormal,
so are the {ϕk(TWG)} and therefore a basis completion {ϕj} can always
be obtained. To conclude, compute for j ∈ L

[φ̂G]j =
∫ 1

0
ϕj(v)φG(v)dv

=
√

n
∫ 1

0
[vj]`[x]` × I (v ∈ I`) dv

=
√

n
n

∑
`=1

[vj]`[x]`
∫

I`
dv =

vT
j x
√

n
=

[x̂]j√
n

.

If j /∈ L, recall that since the {vj} form a basis of Rn, we can write
x = ∑k∈L ckvk. Hence,

[φ̂G]j =
∫ 1

0
ϕj(v)φG(v)dv

=
∫ 1

0
[x]` × I (v ∈ I`) ϕj(v)dv

=
∫ 1

0
∑
k∈L

ck[vk]` × I (v ∈ I`) ϕj(v)dv

=
1√
n ∑

k∈L
ck

∫ 1

0
ϕk(v)ϕj(v)dv = 0.

�
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5.2 Proof of lemma 2

To prove Lemma 2, we require the following lema.

Lemma 3 (Eigenvalue convergence) Let {Gn} be a sequence of graphs with
eigenvalues {λj(Sn)}j∈Z\{0}, and W a graphon with eigenvalues {λj(TW)}j∈Z\{0}.
Assume that, in both cases, the eigenvalues are ordered by decreasing order of ab-
solute value and indexed according to their sign. If {Gn} converges to W, then,
for all j

lim
n→∞

λj(Sn)

n
= lim

n→∞
λj(TWGn

) = λj(TW) . (2)

Proof:

Recall that since the sequence {Gn} converges to W, the density of homo-
morphisms for any finite graph also converges. The result then follows by
choosing a homomorphism connected to the eigenvalues of their induced
operators, namely the k-cycle Ck. Indeed, notice that for any graphon W′

and k ≥ 2, we have, by definition, that t(Ck, W′) = ∑i∈Z\{0} λi(TW′)
k.

Hence,

lim
n→∞ ∑

i∈Z\{0}
λi(TWn)

k = ∑
i∈Z\{0}

λi(TW)k, for k ≥ 2 (3)

where TWn = TWGn
. It now suffices to show that (3) implies λi(TWn) →

λi(TW).

We start by bounding the eigenvalues of any graphon W′ in terms of its
density of homomorphisms. In particular, for k = 4 we obtain that

m

∑
i=1

λi(TW′)
4 ≤ ∑

i∈Z\{0}
λi(TW′)

4 = t(C4, W′)⇒

λm(TW′) ≤
[

t(C4, W′)
m

]1/4

and

−1

∑
i=−m

λi(TW′)
4 ≤ ∑

i∈Z\{0}
λi(TW′)

4 = t(C4, W′)⇒

λ−m(TW′) ≥ −
[

t(C4, W′)
m

]1/4

.
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Since t(C4, Wn) is a convergent sequence, it has a bound B, which implies
that

|λi(TWn)| ≤
(

B
|i|

)1/4
, for all i ∈ Z \ {0}. (4)

Note that for k ≥ 5, we can take the limit in (3) term-by-term since,
as |λi(TWn)

k| ≤ (B/|i|)k/4 and the series ∑i(B/|i|)k/4 is convergent for
k > 4, ∑i∈Z\{0} |λi(TWn)

k| also converges. Hence, from (3), we have

lim
n→∞ ∑

i∈Z\{0}
λi(TWn)

k = ∑
i∈Z\{0}

ζk
i = ∑

i∈Z\{0}
λi(TW)k (5)

for k ≥ 5, where ζk
i = limn→∞ λi(TWn)

k.

To conclude, we proceed by induction over an ordering of the sequence
of eigenvalues λi(TW), namely over i`, ` = 1, 2, . . . , such that |λi1(TW)| ≥
|λi2(TW)| ≥ · · · ≥ |λi`(TW)|. Suppose that ζi` = λi`(TW) for ` < `∗

and let λi`∗ (TW) be of multiplicity a and appear b times in the sequence
{ζi} and −λi`∗ (TW) be of multiplicity a′ and appear b′ times in {ζi}. The
identity in (5) then reduces to

[
b + (−1)kb′

]
+ ∑

`>`∗

(
ζi`

λi`∗ (TW)

)k

=

[
a + (−1)ka′

]
+ ∑

`>`∗

(
λi`(TW)

λi`∗ (TW)

)k

, for k ≥ 5,

where we divided both sides by λi`∗ (TW)k. Due to the ordering of the λi` ,
for k → ∞ through the even numbers we get b + b′ = a + a′ and through
the odd numbers we get b− b′ = a− a′. Immediately, we have that a = a′

and b = b′, so that ζi`∗ = λi`∗ . Although this argument assumes ζi` < λi`∗
for all ` > `∗, applying the same procedure to an ordering of the sequence
{ζi} yields the same conclusion. �

We will also require the following well known result about the pertur-
bation of self-adjoint operators. For σ a subset of the eigenvalues of a
self-adjoint operator T, define the spectral projection ET(σ) as the pro-
jection onto the subspace spanned by the eigenfunctions relative to those
eigenvalues in σ. Then,

Proposition 2 Let T and T′ be two self-adjoint operators on a separable Hilbert
spaceH whose spectra are partitioned as σ∪Σ and ω ∪Ω respectively, with σ∩
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Σ = ∅ and ω∩Ω = ∅. If there exists d > 0 such that minx∈σ, y∈Ω |x− y| ≥ d
and minx∈ω, y∈Σ |x− y| ≥ d, then

|||ET(σ)− ET′(ω)||| ≤ π

2
|||T − T′|||

d
(6)

Proof: See [2]. �

Lastly, we need two results related to the graphon norm. The first, pre-
sented in Lemma 3, states that if a sequence of graphs converges to a
graphon in the homomorphism density sense, it also converges in the cut
norm. The cut norm of a graphon W : [0, 1]2 → [0, 1] is defined as [3, eq.
(8.13)]

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣ ∫S×T
W(u, v)dudv

∣∣∣∣.
The second, here presented as Prop. 3, is due to [3, Thm. 11.57] and
bounds the L2-induced norm of the graphon operator by is cut norm.

Lemma 3 (Cut norm convergence) If {Gn} → W in the homomorphism
density sense, then the there exists a sequence of permutations {πn} such that

‖Wπn(Gn) −W‖� → 0

where WGn is the graphon induced by the graph Gn.

Proof: See [3, Thm. 11.57]. �

Proposition 3 Let TW be the operator induced by the graphon W. Then, ‖W‖� ≤
|||TW||| ≤

√
8‖W‖�.

This is a direct consequence of [4, Thm. 3.7(a)] and of the fact that
t(C2, W) is the Hilbert-Schmidt norm of TW, which dominates the L2-
induced operator norm.

We can now proceed with the proof of our lemma:
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Proof: [Proof of Lemma 2] For j ∈ C, let σ = λj(TW), Σ = {λi(TW)}i 6=j,
ω = λj(TWn), and Ω = {λi(TWn)}i 6=j in Prop. 2 to get

∣∣∣∣∣∣Ej − Ejn
∣∣∣∣∣∣ ≤ π

2
|||TWn − TW|||

djn
(7)

where Ej and Ejn are the spectral projections of TW and TWn with respect
to their j-th eigenvalue and

djn = min
(
|λj − λj+1(TWn)|, |λj − λj−1(TWn)|,

|λj+1 − λj(TWn)|, |λj−1 − λj(TWn)|
)
,

where we omitted the dependence on W by writing λj = λj(TW).

Fix ε > 0. From Lemma 3, we know we can find n1 such that |djn − δj| ≤
δj/2 for all n > n1, where

δj = min
(
|λj − λj+1|, |λj − λj−1|

)
.

Since W is non-derogatory, δj > 0. Additionally, the cut norm con-
vergence of graphon sequences (Lemma 3) together with Prop. 3 im-
plies there exists n2 such that |||TWn − TW||| ≤ εδj/π. Hence, for all
n > max(n1, n2) it holds from (7) that

∣∣∣∣∣∣Ej − Ejn
∣∣∣∣∣∣ ≤ π

2
εδj/π

δj/2
= ε. (8)

Since ε is arbitrary, (8) proves that the projections onto the eigenfunctions
of the same eigenvalue converge. I.e., the eigenfunction sequence ϕj(TWn)
itself converges weakly.

To proceed, let us apply Prop. 2 to the subspace spanned by the re-
maining eigenfunctions with indices not in C. Let σ = {λi(TW)}i/∈C ,
Σ = {λi(TW)}i∈C , ω = {λi(TWn)}i/∈C , and Ω = {λi(TWn)}i∈C in (6) to
get ∣∣∣∣∣∣E′ − E′n

∣∣∣∣∣∣ ≤ π

2
|||TWn − TW|||

dn
, (9)

where E′ and E′n are the projections onto the subspaces given by S =
span ({ϕi(TW)}i/∈C) and Sn = span ({ϕi(TWn)}i/∈C) respectively. From
Prop. 2, the denominator dn must satisfy dn ≤ mini/∈C,i−sgn(i)∈C |λi(TWn)−
λi−sgn(i)(TW)| = d(1) and d ≤ mini/∈C,i−sgn(i)∈C |λi(TW)−λi−sgn(i)(TWn)| =
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d(2). For j ∈ C, we have |λj(TW)| ≥ c and so d(1) ≥ mini/∈C c− |λi(TWn)|.
As for d(2), there exists n0 such that d(2) ≥ mini/∈C c− |λi(TW)| for n > n0
because λj(TWn) → λj(TW) for all j from Lemma 3. Thus, for n > n0
Prop. 2 holds with dn given by

dn ≤ min{min
i/∈C

c− |λi(TWn)|,

min
i/∈C

c− |λi(TW)|}

which is satisfied by dn = infi/∈C c − |λi(TWn)|. Since the graphon W is
non-derogatory, there exists an n1 such that dn > 0 for all n > max(n0, n1)
and we can use the same argument as above to obtain that E′n → E′ in
operator norm.

To see how this implies that ϕi(TWn) → Ψ ∈ S for all i /∈ C, suppose this
is not the case. Then, ‖Ψ− E′(Ψ)‖ ≥ ε > 0 since Ψ /∈ S . Without loss of
generality, we assume that ‖Ψ‖ = 1 (if not, simply normalize Ψ: since S is
a subspace Ψ /∈ S ⇔ KΨ /∈ S for any K > 0). Notice, however, that there
exists n′ such that ‖ϕi(TWn)−Ψ‖ ≤ ε/8 and ‖E′(Ψ)− E′n(Ψ)‖ ≤ ε/4
for all n > n′, which implies that ‖Ψ− E′(Ψ)‖ ≤ ε/2, contradicting the
hypothesis. Indeed,

‖Ψ− E′(Ψ)‖ =‖Ψ− ϕi(TWn) + E′n(Ψ)− E′(Ψ)+

E′n(ϕi(TWn)−Ψ)‖ ≤ ‖Ψ− ϕi(TWn)‖+
‖E′n(Ψ)− E′(Ψ)‖+ ‖E′n(ϕi(TWn)−Ψ)‖.

Then, using Cauchy-Schwarz and the fact that E′n is an orthogonal pro-
jection, i.e., ‖E′n‖ = 1, yields

‖Ψ− E′(Ψ)‖ ≤ 2‖Ψ− ϕi(TWn)‖+ ‖E′n(Ψ)− E′(Ψ)‖.

which for all n > n′ reduces to

‖Ψ− E′(Ψ)‖ ≤ ε

2
(10)

contradicting the fact that Ψ /∈ S . �
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