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In this article, we provide a tutorial proof for the first stability result pre-
sented in Lecture 12 — stability of algebraic filters. Before proceeding to
prove this result, we recall the definition of a stable operator in algebraic
signal processing.

Definition 1 (Operator Stability) Given operators p(S) and p(S̃) defined on
the processing models (A,M, ρ) and (A,M, ρ̃), we say the operator p(S) is
Lipschitz stable if there exist constants C0, C1 > 0 such that∥∥p(S)x− p(S̃)x

∥∥ ≤[
C0 sup

S∈S
‖T(S)‖+ C1 sup

S∈S

∥∥DT(S)
∥∥+O (‖T(S)‖2

)] ∥∥x
∥∥, (1)

for all x ∈ M. In (1), DT(S) is the Fréchet derivative of the perturbation
operator T.

We also recall the definitions of Lipschitz and integral Lipschitz filters.

Definition 2 Let p : C→ C be single variable function. Then, it is said that p
is Lipschitz if there exists L0 > 0 such that

|p(λ)− p(µ)| ≤ L0|λ− µ| (2)

for all λ, µ ∈ C. Additionally, it is said that p(λ) is Lipschitz integral if there
exists L1 > 0 such that ∣∣∣∣λ dp(λ)

dλ

∣∣∣∣ ≤ L1 for all λ. (3)
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In what follows, when considering subsets of a commutative algebra A,
we denote by AL0 the subset of elements in A that are Lipschitz with
constant L0 and by AL1 the subset of element of A that are Lipschitz
integral with constant L1. Additionally, for the sake of simplicity we will
not make reference to ι.

Our goal is to prove stability of filters p satisfying the above definition, as
stated in the following theorem.

Theorem 1 Let A be an algebra with one generator element g and let (M, ρ)
be a finite or countable infinite dimensional representation of A. Let (M, ρ̃) be
a perturbed version of (M, ρ). Then, if pA ∈ AL0 ∩ AL1 the operator p(S) is
stable in the sense of Definition 1 with C0 = (1 + δ)L0 and C1 = (1 + δ)L1.

Proof: The proof of this theorem follows immediately from Lemma
1 and Lemma 2 below, whose proofs are deferred to Sections 1 and 2
respectively. Lemma 1 is a result for operators in algebraic models with
a single generator, highlighting the role of the Fréchet derivative of the
map that relates the operator and its perturbed version. Lemma 2 shows
that this term is related to T(S) and its Fréchet derivative DT.

Lemma 1 LetA be an algebra generated by g and let (M, ρ) be a representation
of A with ρ(g) = S ∈ End(M). Let ρ̃(g) = S̃ ∈ End(M) where the pair
(M, ρ̃) is a perturbed version of (M, ρ). Then, for any pA ∈ A we have∥∥p(S)x− p(S̃)x

∥∥ ≤ ‖x‖ (∥∥Dp(S) {T(S)}
∥∥+O (‖T(S)‖2

))
(4)

where Dp(S) is the Fréchet derivative of p on S.

Lemma 2 Let A be an algebra with one generator element g and let (M, ρ) be
a finite or countable infinite dimensional representation of A. Let (M, ρ̃) be a
perturbed version of (M, ρ). If pA ∈ AL0 ∩AL1 , then

∥∥DpT(S)
∥∥ ≤ (1 + δ)

(
L0 sup

S
‖T(S)‖+ L1 sup

S
‖DT(S)‖

)
(5)

The stability result is then proved by simply replacing (5) from Lemma 2
into (4) from Lemma 1 and reordering terms.

�
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1 Proof of Lemma 1

We say that p(S) as a function of S is Fréchet differentiable at S if there
exists a bounded linear operator Dp : End(M)m → End(M) such that [1,
2]

lim
‖ξ‖→0

∥∥p(S + ξ)− p(S)− Dp(S) {ξ}
∥∥

‖ξ‖ = 0 (6)

which in Landau notation can be written as

p(S + ξ) = p(S) + Dp(S) {ξ}+ o(‖ξ‖). (7)

Calculating the norm in eqn. (7) and applying the triangle inequality we
have: ‖p(S + ξ)− p(S)‖ ≤

∥∥Dp(S) {ξ}
∥∥+O (‖ξ‖2) for all ξ = (ξ1, . . . , ξm) ∈

End(M)m. Now, taking into account that (see [3] pages 69-70)

‖Dp(S) {ξ} ‖ ≤
m

∑
i=1

∥∥∥Dp|Si
(S) {ξi}

∥∥∥ (8)

we have

‖p(S + ξ)− p(S)‖ ≤
m

∑
i=1

∥∥∥Dp|Si
(S) {ξi}

∥∥∥+O (‖ξ‖2
)

,

where Dp|Si
(S) is the partial Frechet derivative of p(S) on Si. Then, tak-

ing into account that ‖p(S + ξ)x− p(S)x‖ ≤ ‖x‖ ‖p(S + ξ)− p(S)‖ and
selecting ξi = T(Si) we complete the proof.

2 Proof of Lemma 2

To start, we discuss how to find the Frechet Derivative Dp|Si
(S). First,

notice that p(S) = ∑∞
k1,...,km=0 hk1 ...km Sk1

1 . . . Skm
m = ∑∞

ki=0 Ski
i Aki

, where

Aki
= ∑∞

{kj}=0
j 6=i

hk1,...,km ∏m
j=1
j 6=i

S
kj
j . Then, it follows that

p(S + ξ)− p(S) =
∞

∑
ki=0

(Si + ξi)
ki Aki

−
∞

∑
ki=0

Ski
i Aki

(9)
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for ξ = (0, . . . , ξi, . . . , 0). Considering the expansion (Si + ξi)
ki = Ski

i +

ξ
ki
i + ∑k−1

r=1 π(rSi, (ki − r)ξi) for ki ≥ 2, eqn. (9) takes the form

p(S + ξ)− p(S) =
∞

∑
ki=1

ki−1

∑
r=1

π (rξi, (ki − r)Si)Aki
+

∞

∑
ki=1

ξ
ki
i Aki

. (10)

Separating the linear terms on ξi eqn. (10) leads to

p(S + ξ)− p(S) =
∞

∑
ki=1

π (ξi, (ki − 1)Si)Aki

+
∞

∑
ki=2

ki−1

∑
r=2

π (rξi, (ki − r)Si)Aki
+

∞

∑
ki=2

ξki Aki
. (11)

Therefore, taking into account the definition of Fréchet derivative (see
Section 1) it follows that

Dp|Si
(S) {ξi} =

∞

∑
ki=1

π (ξi, (ki − 1)Si)Aki
(12)

We may now proceed to prove Lemma 2.

Proof: [Proof of Lemma 2] Taking into account the definition of the
Fréchet derivative, we have∥∥∥Dp|Si

(S) {T(Si)}
∥∥∥ =

∥∥∥∥∥ ∞

∑
ki=1

Aki
π (T(Si), (ki − 1)Si)

∥∥∥∥∥ ,

and re-organizating terms we have

∥∥∥Dp|Si
(S) {T(Si)}

∥∥∥ =

∥∥∥∥∥ ∞

∑
`=1

S`−1
i T(Si)

∞

∑
ki=`

Aki
Ski−`

i

∥∥∥∥∥ .

Taking into account that STr = TcrS + SPr, it follows that∥∥∥Dp|Si
(S) {T(Si)}

∥∥∥ =∥∥∥∥∥ ∞

∑
`=1

(
T0c,iS`−1

i + S`−1
i P0,i

) ∞

∑
ki=`

Aki
Ski−`

i +
∞

∑
`=1

(
T1c,iS`

i + S`−1
i P1,iSi

) ∞

∑
k=`

Aki
Ski−`

∥∥∥∥∥ .

(13)
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Applying the triangle inequality and distribuiting the sum we have

∥∥∥Dp|Si
(S) {T(Si)}

∥∥∥ ≤ ∥∥∥∥∥T0c,i

∞

∑
`=1

∞

∑
ki=`

Ski−1
i Aki

∥∥∥∥∥+ ∥∥∥Dp|Si
(S) {P0,i}

∥∥∥
+

∥∥∥∥∥T1c,i

∞

∑
`=1

∞

∑
ki=`

Ski Aki

∥∥∥∥∥+ ∥∥∥Dp|Si
(S) {P0,iSi}

∥∥∥ (14)

Now, we analyze term by term in eqn. (14). For the first term we take
into account that ∑∞

`=1 ∑∞
ki=` Ski−1

i Aki
= ∑∞

ki=1 kiAki
Ski−1

i and we apply
the product norm property taking into account that the filters belong to
AL0 , which leads to∥∥∥∥∥T0c,i

∞

∑
`=1

∞

∑
ki=`

Ski−1
i Aki

∥∥∥∥∥ ≤ ‖T0c,i‖
∥∥∥∥∥ ∞

∑
ki=1

kiAki
Ski−1

i

∥∥∥∥∥ ≤ L0‖T0,i‖. (15)

For the second term in eqn. (14) we take into account that (see [1] page
84, [2] page 158 and [4] page 386):

∥∥∥Dp|Si
(S) {P0,i}

∥∥∥ ≤ L0‖P0,i‖ if p is
Gâteaux differentiable, which is always true because p is Fréchet differen-
tiable and with the fact that ‖P0,i‖ ≤ δ‖T0,i‖, we have

∥∥∥Dp|Si
(S) {P0,i}

∥∥∥ ≤
L0δ‖T0,i‖.

For the third term in eqn. (14), we take into account that ∑∞
`=1 ∑∞

ki=` Ski
i Aki

=

∑∞
ki=1 kiAki

Ski
i and we apply the norm product property taking into ac-

count that the filters belong to AL1 , which leads to∥∥∥∥∥T1c,i

∞

∑
`=1

∞

∑
ki=`

Ski
i Aki

∥∥∥∥∥ ≤ ‖T1c,i‖
∥∥∥∥∥ ∞

∑
ki=1

kiAki
Ski

i

∥∥∥∥∥ ≤ L1‖T1,i‖. (16)

Finally, for the fourth term we use the notation D̃(S) {P1,i} = Dp|Si
(S) {P1,iSi}.

We start taking into account that (see [5] pages 61 and 331) the eigenval-
ues of the operator D̃(S) represented as ζpq are given by

ζpq =

{ p(λp)−p(λq)
λp−λq

λq if λp 6= λq

λp p
′
(λp) if λp = λq

, (17)

then, taking into account that the filters belong to AL1 we have ‖D̃(S)‖ ≤
L1, therefore

∥∥∥Dp|Si
(S) {P1,iSi}

∥∥∥ =
∥∥D̃(S) {P1,i}

∥∥ ≤ L1‖P1,i‖. Addition-

ally, with ‖P1,i‖ ≤ δ‖T1,i‖ it follows that
∥∥∥Dp|Si

(S) {P1,iSi}
∥∥∥ ≤ L1δ‖T1,i‖.

5



Putting all these results together into eqn. (14) we reach∥∥∥Dp|Si
(S) {T(Si)}

∥∥∥ ≤ (1 + δ)L0‖T0,i‖+ (1 + δ)L1‖T1,i‖

≤ (1 + δ)

(
L0 sup

Si∈S
‖T(Si)‖+ L1 sup

Si∈S
‖DT(Si)‖

)
�

3 Appendix: Spectral Decompositions

In this section we provide the basic notions about spectral or Fourier
decompositions in the context of algebraic signal models. We will see
how this is derived from decompositions of a given representation in
terms of other irreducible representations.

We start with some basic definitions.

Definition 3 Let (M, ρ) be a representation of A. Then, a representation
(U , ρ) of A is a subrepresentation of (M, ρ) if U ⊆ M and U is invari-
ant under all operators ρ(a) for all a ∈ A, i.e. ρ(a)u ∈ U for all u ∈ U
and a ∈ A. A representation (M 6= 0, ρ) is irreducible or simple if the only
subrepresentations of (M 6= 0, ρ) are (0, ρ) and (M, ρ).

The class of irreducible representations of an algebra A is denoted by
Irr{A}. Notice that the zero vector space and M induce themselves
subrepresentations of (M, ρ). In order to state a comparison between
representations the concept of homomorphism between representations is in-
troduced in the following definition.

Definition 4 Let (M1, ρ1) and (M2, ρ2) be two representations of an algebra
A. A homomorphism or interwining operator φ : M1 → M2 is a linear
operator which commutes with the action of A, i.e.

φ(ρ1(a)v) = ρ2(a)φ(v). (18)

A homomorphism φ is said to be an isomorphism of representations if it is an
isomorphism of vectors spaces.
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Notice from definition 4 a substantial difference between the concepts of
isomorphism of vector spaces and isomorphism of representations. In
the first case we can consider that two arbitray vector spaces of the same
dimension (finite) are isomorphic, while for representations that condi-
tion is required but still the condition in eqn. (18) must be satisfied. For
instance, as pointed out in [6] all the irreducible 1-dimensional represen-
tations of the polynomial algebra C[t] are non isomorphic.

As we have discussed before, the vector space M associated to (M, ρ)
provides the space where the signals are modeled. Therefore, it is of
central interest to determine whether it is possible or not to decompose
M in terms of simpler or smaller spaces consistent with the action of ρ.
We remark that for any two representations (M1, ρ1) and (M2, ρ2) of an
algebra A, their direct sum is given by the representation (M1 ⊕M2, ρ)
where ρ(a)(x1 ⊕ x2) = (ρ1(a)x1 ⊕ ρ2(a)x2). We introduce the concept of
indecomposability in the following definition.

Definition 5 A nonzero representation (M, ρ) of an algebra A is said to be
indecomposable if it is not isomorphic to a direct sum of two nonzero represen-
tations.

Indecomposable representations provide the minimum units of information
that can be extracted from signals in a given space when the filters have a
specific structure (defined by the algebra) [7]. The following theorem pro-
vides the basic building block for the decomposition of finite dimensional
representations.

Theorem 2 (Krull-Schmit, [8]) Any finite dimensional representation of an
algebra can be decomposed into a finite direct sum of indecomposable subrepre-
sentations and this decomposition is unique up to the order of the summands and
up to isomorphism.

The uniqueness in this result means that if (⊕r
r=1Vi, ρ) ∼= (⊕s

j=1Wj, γ) for
indecomposable representations (Vj, ρj), (Wj, γj), then r = s and there is
a permutation π of the indices such that (Vi, ρi) ∼= (Wπ(j), γπ(j)) [8]. Al-
though theorem 2 provides the guarantees for the decomposition of repre-
sentation in terms of indecomposable representations, it is not applicable
when infinite dimensional representations are considered. However, it
is possible to overcome this obstacle taking into account that irreducible
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representations are indecomposable [6, 8], and they can be used then to
build representations that are indecomposable. In particular, irreducibility
plays a central role to decompose the invariance properties of the im-
ages of ρ on End(M) [8]. Representations that allow a decomposition in
terms of subrepresentations that are irreducible are called completely re-
ducible and its formal description is presented in the following definition.

Definition 6 ( [8]) A representation (M, ρ) of the algebra A is said to be com-
pletely reducible if (M, ρ) =

⊕
i∈I(Ui, ρi) with irreducible subrepresentations

(Ui, ρi). The length of (M, ρ) is given by |I|.

For a given (U , ρU ) ∈ Irr{A} the sum of all irreducible subrepresentations
of (V, ρV) that are equivalent (isomorphic) to (U , ρU ) is represented by
V(U ) and it is called the U -homogeneous component of (V, ρV). This
sum is a direct sum, therefore it has a length that is well defined and
whose value is called the multiplicity of (U , ρU ) and is represented by
m(U , V) [8]. Additionally, the sum of all irreducible subrepresentations
of (V, ρV) will be denoted as soc{V}. It is possible to see that a given
representation (V, ρV) is completely reducible if and only if (V, ρV) =
soc{S} [8]. The connection between soc{V} and V(U ) is given by the
following proposition.

Proposition 1 (Proposition 1.31 [8]) Let (V, ρV) ∈ Rep{A}. Then soc{V} =⊕
S∈Irr{A} V(S).

Now, taking into account that any homogeneous component V(U ) is itself
a direct sum we have that

soc{V} ∼=
⊕

S∈Irr{A}
S⊕m(U ,V). (19)

Equation (19) provides the building block for the definition of Fourier
decompositions in algebraic signal processing [9]. With all these concepts
at hand we are ready to introduce the following definition.

Definition 7 (Fourier Decomposition) For an algebraic signal model (A,M, ρ)
we say that there is a spectral or Fourier decomposition of (M, ρ) if

(M, ρ) ∼=
⊕

(Ui ,φi)∈Irr{A}
(Ui, φi)

⊕m(Ui ,M) (20)

8



where the (Ui, φi) are irreducible subrepresentations of (M, ρ). Any signal x ∈
M can be therefore represented by the map ∆ given by

∆ : M→ ⊕
(Ui ,φi)∈Irr{A}(Ui, φi)

⊕m(Ui ,M)

x 7→ x̂
(21)

known as the Fourier decomposition of x and the projection of x̂ in each Ui are
the Fourier components represented by x̂(i).

Notice that in eqn. (20) there are two sums, one dedicated to the non
isomorphic subrepresentations (external) and another one (internal) ded-
icated to subrepresentations that are isomorphic. In this context, the
sum for non isomorphic representations indicates the sum on the frequen-
cies of the representation while the sum for isomorphic representations
a sum of components associated to a given frequency. It is also worth
pointing out that ∆ is an interwining operator, therefore, we have that
∆(ρ(a)x) = ρ(a)∆(x). As pointed out in [10] this can be used to define a
convolution operator as ρ(a)x = ∆−1(ρ(a)∆(x)). The projection of a fil-
tered signal ρ(a)x on each Ui is given by φi(a)x̂(i) and the collection of all
this projections is known as the spectral representation of the operator ρ(a).
Notice that φi(a)x̂(i) translates to different operations depending on the
dimension of Ui. For instance, if dim(Ui) = 1, x̂(i) and φi(a) are scalars
while if dim(Ui) > 1 and finite φi(a)x̂(i) is obtained as a matrix product.

Remark 1 The spectral representation of an operator indicated as φi(a)x̂(i)
and eqns. (20) and (21) highlight one important fact that is essential for
the discussion of the results in Section ??. For a completely reducible rep-
resentation (M, ρ) ∈ Rep{A} the connection between the algebra A and
the spectral representation is exclusively given by φi(a) which is acting on
x̂(i), therefore, it is not possible by the selection of elements or subsets
of the algebra to do any modification on the spaces Ui associated to the
irreducible components in eqn.(20). As a consequence, when measuring
the similarities between two operators ρ(a) and ρ̃(a) associated to (M, ρ)
and (M, ρ̃), respectively, there will be two sources of error. One source of
error that can be modified by the selection of a ∈ A and another one that
will be associated with the differences between spaces Ui and Ũi, which
are associated to the direct sum decomposition of (M, ρ) and (M, ρ̃), re-
spectively. This point was first elucidated in [11] for the particular case
of GNNs, but it is part of a much more general statement that becomes
more clear in the language of algebraic signal processing.
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Example 1 (Discrete signal processing) In CNNs the filtering is defined
by the polynomial algebra A = C[t]/(tN − 1), therefore, in a given layer
the spectral representation of the filters is given by

ρ(a)x =
N

∑
i=1

φi

(
K−1

∑
k=0

hktk

)
x̂(i)ui

=
N

∑
i=1

K−1

∑
k=0

hkφi(t)k x̂(i)ui =
N

∑
i=1

K−1

∑
k=0

hk

(
e−

2πij
N

)k
x̂(i)ui,

with a = ∑K−1
k=0 hktk and where the ui(v) = 1√

N
e

2π jvi
N are the column vec-

tors of the traditional DFT matrix, while φi(t) = e−
2π ji

N is the eigenvalue
associated to ui. Here x̂ represents the DFT of x.

Example 2 (Graph signal processing) Taking into account that the filter-
ing in each layer of a GNN is defined by a polynomial algebra, the spectral
representation of the filter is given by

ρ(a)x =
N

∑
i=1

φi

(
K−1

∑
k=0

hktk

)
x̂(i)ui

=
N

∑
i=1

K−1

∑
k=0

hkφi(t)k x̂(i)ui =
N

∑
i=1

K−1

∑
k=0

hkλk
i x̂(i)ui (22)

with a = ∑K−1
k=0 hktk, and where the ui are given by the eigenvector decom-

position of ρ(t) = S, where S could be the adjacency matrix or the Lapla-
cian of the graph, while φi(t) = λi being λi the eigenvalue associated to
ui. The projection of x in each subspace Ui is given by x̂(i) = 〈ui, x〉,
and if U is the matrix of eigenvectors of S we have the widely known
representation x̂ = UTx [12].

Example 3 (Group signal processing) Considering the Fourier decompo-
sition on general groups [13, 14, 15], we obtain the spectral representation
of the algebraic filters as

a ∗ x = ∑
u,h∈G

a(uh−1) ∑
i,j,k

dk
|G| x̂

(
ϕ(k)

)
i,j

ϕ
(k)
i,j (h)hu,

where x̂(ϕ(k)) represents the Fourier components associated to the kth
irreducible representation with dimension dk and ϕ(k) is the associated
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unitary element. We can see that the kth element in this decomposition is

∑i,j x(ϕ(k))i,j ∑u,h
dk
|G|a(uh−1)ϕ

(k)
i,j (h)hu.

Example 4 (Graphon signal processing) According to the spectral theo-
rem [16, 17], it is possible to represent the action of a compact normal
operator S as Sx = ∑i λi〈ϕi, x〉ϕi where λi and ϕi are the eigenvalues and
eigenvectors of S, respectively, and 〈·〉 indicates an inner product. Then,
the spectral representation of the filtering of a signal in the layer ` is given
by

ρ` (p(t)) x = ∑
i

p(λi)〈x,ϕi〉ϕi = ∑
i

φi(p(t))x̂iϕi,

where φi(p(t)) = p(λi).
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