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1 Preliminary results, definitions and assump-
tions

The equations that describe the GRNN are represented by the following
equations

zt = σ
(
A(S)xt + B(S)zt−1

)
(1)

ŷt = ρ (C(S)zt) (2)

1.1 Preliminary results and definitions

Proposition 1 Let S be a GSO and S̃ = PTSP be a permutation of this GSO,
for some permutation matrix P ∈ P . Let xt be a graph signal and x̃t = PTxt the
permuted version of the signal. Then, it holds that

z̃t = σ(A(S̃)x̃t + B(S̃)z̃t−1) = PTzt (3)

ỹt = ρ(C(S̃)z̃t) = PTyt for all t. (4)

where P =
{

P ∈ {0, 1}N×N : P1 = 1, PT1 = 1
}

.

Proof: Refer to Appendix 4.1. �

Definition 1 (Relative perturbation matrices) Given GSOs S and S̃, we de-
fine the set of relative perturbation matrices modulo permutation as

E(S, S̃) =
{

E∈RN×N : PTS̃P = S + ES + SET, P ∈ P
}

. (5)
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We define the distance between two graphs described by S and S̃ respec-
tively as

d(S, S̃) = min
E∈E(S,Ŝ)

‖E‖. (6)

Notice that if S̃ is a permutation of S, then d(S, S̃) = 0.

Definition 2 (Integral Lipschitz filters) We say that the filter A(S) = ∑K−1
k=0 akSk

is integral Lipschitz if there exists C such that its frequency response a(λ) =

∑K−1
k=0 akλk, satisfies

|a(λ2)− a(λ1)| ≤ C
|λ2 − λ1|
|λ1 + λ2|/2

(7)

for all λ1, λ2 ∈ R.

Integral Lipschitz filters also satisfy |λa′(λ)| ≤ C, where a′(λ) is the
derivative of a(λ).

1.2 Assumptions

Under the following assumptions, we prove that GRNNs built from inte-
gral Lipschitz filters are stable to relative perturbations in Theorem 1.

Assumption 1 The filters A, B and C of the GRNN (1)-(2) are integral Lip-
schitz [cf. (7)] with constants CA, CB and CC and normalized filter height
‖A‖ = ‖B‖ = ‖C‖ = 1, respectively.

Assumption 2 The pointwise nonlinearities σ and ρ (1)-(2) are normalized Lip-
schitz, i.e. |σ(b)− σ(a)| ≤ |b− a| for all a, b ∈ R, and satisfy σ(0) = ρ(0) =
0.

Assumption 3 The initial hidden state is identically zero, i.e. z0 = 0.

Assumption 4 The inputs xt satisfy ‖xt‖ ≤ ‖x‖ = 1 for every t.

Assumption 5 We focus on single-feature GRNNs.
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2 Stability of the GRNNs

Theorem 1 (Stability of GRNNs) Consider two graphs with N nodes repre-
sented by the GSOs S = VΛVH and S̃. Let E = UMUH ∈ E(S, S̃) be a
relative perturbation matrix [cf. (5)] such that [cf. (6)]

d(S, S̃) ≤ ‖E‖ ≤ ε. (8)

Let yt and ỹt be the outputs of GRNNs (1)-(2) running on S and S̃ respectively,
and satisfying AS1 through AS4. Then, it holds that

min
P∈P
‖yt − PTỹt‖ ≤ C(1 +

√
Nδ)(t2 + 3t)ε +O(ε2) (9)

where C is the maximum filter constant,

C = max{CA, CB, CC}

and δ = (‖U−V‖+ 1)2 − 1 measures the eigenvector misalignment between
the GSO S and the error matrix E.

3 Proof of stability of the GRNNs

Lemma 1 Let S = VΛVH and S̃ be graph shift operators. Let E = UMUH ∈
E(S, S̃) be a relative perturbation matrix [cf. Definition 1] whose norm is such
that

d(S, S̃) ≤ ‖E‖ ≤ ε.

For an integral Lipschitz filter [cf. Definition 2] with integral Lipschitz constant
C, the operator distance modulo permutation between filters H(S) and H(S̃)
satisfies

‖H(S)−H(S̃)‖P ≤ 2C
(

1 + δ
√

N
)

ε +O(ε2) (10)

with δ := (‖U − V‖2 + 1)2 − 1 standing for the eigenvector misalignment
between shift operator S and error matrix E.

Proof: See [1, Theorem 3]. �
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Proof: [Proof of Theorem 1]

Without loss of generality, assume P = I in (6) and write S̃ = S + ES +
SET, Ã = A(S̃), B̃ = B(S̃) and C̃ = C(S̃). From (2), we can write

‖yt − ỹt‖ = ‖ρ(Czt)− ρ(C̃z̃t)‖ ≤ ‖Czt − C̃z̃t‖ (11)

since ρ(·) is normalized Lipschitz. Adding and subtracting Cz̃ on the
right-hand side of (11), and using both the triangle and Cauchy-Schwarz
inequalities, we get

‖yt − ỹt‖ ≤ ‖C‖‖zt − z̃t‖+ ‖C− C̃‖‖z̃t‖. (12)

The norm of C is assumed bounded, and Lemma 1 gives a bound to
‖C− C̃‖. Using (1), we can write

‖zt − z̃t‖ = ‖σ(Axt + Bzt−1)− σ(Ãxt + B̃z̃t−1)‖ (13)

≤ ‖Axt + Bzt−1 − (Ãxt + B̃z̃t−1)‖ (14)

≤ ‖A− Ã‖‖xt‖+ ‖Bzt−1 − B̃z̃t−1‖ (15)

where the first inequality follows from the fact that σ(·) is also normalized
Lipschitz and the second from the triangle and Cauchy-Schwarz inequal-
ities respectively. The norm difference ‖A − Ã‖ is bounded by Lemma
1 and ‖xt‖ ≤ ‖x‖ for all t, so we move onto deriving a bound for the
second summand of (15). We rewrite it as

‖Bzt−1+Bz̃t−1 − Bz̃t−1 − B̃z̃t−1‖
≤ ‖B‖‖zt−1 − z̃t−1‖+ ‖B− B̃‖‖z̃t−1‖

(16)

which results in a recurrence relationship between ‖zt − z̃t‖ and ‖zt−1 −
z̃t−1‖. Expanding this recurrence, we obtain

‖zt − z̃t‖ ≤
t−1

∑
i=0
‖B‖i‖A− Ã‖‖x‖

+ ‖B‖t‖z0 − z̃0‖+ ‖B− B̃‖
t

∑
i=1
‖z̃t−i‖

≤
t−1

∑
i=0
‖B‖i‖A− Ã‖‖x‖+ ‖B− B̃‖

t−1

∑
i=0
‖z̃i‖

where the second inequality follows from z0 = z̃0. Now it suffices to
bound ‖zi‖ for any given i > 0. Writing zt as in (1) and observing that,
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because σ(·) is normalized Lipschitz and σ(0) = 0, |σ(x)| < |x|, we can
use the triangle and Cauchy-Schwarz inequalities to write

‖zi‖ ≤ ‖A‖‖xi‖+ ‖B‖‖zi−1‖ ≤
i−1

∑
j=0
‖B‖j‖A‖‖x‖+ ‖B‖i‖z0‖ (17)

for i > 0. Substituting this in (16), we get

‖zt − z̃t‖ ≤ ‖A− Ã‖‖x‖
t−1

∑
i=0
‖B‖i

+ ‖B− B̃‖
(
‖Ã‖‖x‖

t−1

∑
i=1

i−1

∑
j=0
‖B̃‖j + ‖z0‖

t−1

∑
i=0
‖B̃‖i

)
.

(18)

Finally, substituting equations (16) and (18) in (12) gives

‖yt − ỹt‖ ≤ ‖C‖
[
‖A− Ã‖‖x‖

t−1

∑
i=0
‖B‖i

+ ‖B− B̃‖
(
‖Ã‖‖x‖

t−1

∑
i=1

i−1

∑
j=0
‖B̃‖j + ‖z0‖

t−1

∑
i=0
‖B̃‖i

)]

+ ‖C− C̃‖
[ t−1

∑
i=0
‖B̃‖i‖Ã‖‖x‖+ ‖B̃‖t‖z0‖

]
.

This expression can be simplified by applying Lemma 1 to the norm dif-
ferences ‖A − Ã‖, ‖B − B̃‖ and ‖C − C̃‖, and by recalling that ‖A‖ =
‖B‖ = ‖C‖ = 1, ‖x‖ = 1 and z0 = 0. Denoting C = max{CA, CB, CC} the
maximum filter Lipschitz constant, we recover (9) with P = I,

‖yt − ỹt‖ ≤ C(1 +
√

Nδ)(t2 + 3t)ε +O(ε2) (19)

which completes the proof. �

4 Proofs of Auxiliary Results

4.1 Proof of Proposition 1
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Proof: [Proof of Proposition 1] Since the permutation matrix P ∈ P is
orthogonal, we have PTP = PPT, which implies

S̃k = (PTSP)k = PTSkP. (20)

taking into account that

A(S̃) = PTA(S)P (21)

and applying A(S̃) to x̃ = PTx yields

A(S̃)x̃ = PTA(S)PPTx = PTA(S)x. (22)

Graph convolutions are thus permutation equivariant. Using (1), we can
then write z̃t as

z̃t = σ(A(S̃)x̃t + B(S̃)z̃t−1) (23)

= σ(PTA(S)xt + PTB(S)zt−1) (24)

= PTσ(A(S)xt + B(S)zt−1) = PTzt (25)

where the second-to-last equality follows from the fact that σ is pointwise
and hence permutation equivariant. Since ρ is also pointwise, by a similar
reasoning we have ỹt = ρ(C(S̃)z̃t) = PTρ(C(S)zt) = PTyt. �
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