Stability of GRNNs

Alejandro Ribeiro, Luana Ruiz, and Fernando Gama

1 Preliminary results, definitions and assumptions

The equations that describe the GRNN are represented by the following equations

$$\mathbf{z}_t = \sigma \big(\mathbf{A}(\mathbf{S}) \mathbf{x}_t + \mathbf{B}(\mathbf{S}) \mathbf{z}_{t-1} \big)$$
(1)

$$\hat{\mathbf{y}}_t = \rho\left(\mathbf{C}(\mathbf{S})\mathbf{z}_t\right) \tag{2}$$

1.1 Preliminary results and definitions

Proposition 1 Let **S** be a GSO and $\tilde{\mathbf{S}} = \mathbf{P}^{\mathsf{T}} \mathbf{S} \mathbf{P}$ be a permutation of this GSO, for some permutation matrix $\mathbf{P} \in \mathcal{P}$. Let \mathbf{x}_t be a graph signal and $\tilde{\mathbf{x}}_t = \mathbf{P}^{\mathsf{T}} \mathbf{x}_t$ the permuted version of the signal. Then, it holds that

$$\tilde{\mathbf{z}}_t = \sigma(\mathbf{A}(\tilde{\mathbf{S}})\tilde{\mathbf{x}}_t + \mathbf{B}(\tilde{\mathbf{S}})\tilde{\mathbf{z}}_{t-1}) = \mathbf{P}^{\mathsf{T}}\mathbf{z}_t$$
(3)

$$\tilde{\mathbf{y}}_t = \rho(\mathbf{C}(\tilde{\mathbf{S}})\tilde{\mathbf{z}}_t) = \mathbf{P}^{\mathsf{T}}\mathbf{y}_t \quad \text{for all } t.$$
(4)

where $\mathcal{P} = \{ \mathbf{P} \in \{0, 1\}^{N \times N} : \mathbf{P1} = \mathbf{1}, \mathbf{P}^{\mathsf{T}}\mathbf{1} = \mathbf{1} \}.$

Proof: Refer to Appendix 4.1.

Definition 1 (Relative perturbation matrices) Given GSOs **S** and \tilde{S} , we define the set of relative perturbation matrices modulo permutation as

$$\mathcal{E}(\mathbf{S}, \tilde{\mathbf{S}}) = \left\{ \mathbf{E} \in \mathbb{R}^{N \times N} : \mathbf{P}^{\mathsf{T}} \tilde{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E} \mathbf{S} + \mathbf{S} \mathbf{E}^{\mathsf{T}}, \mathbf{P} \in \mathcal{P} \right\}.$$
 (5)

We define the distance between two graphs described by ${\bf S}$ and $\tilde{{\bf S}}$ respectively as

$$d(\mathbf{S}, \tilde{\mathbf{S}}) = \min_{\mathbf{E} \in \mathcal{E}(\mathbf{S}, \hat{\mathbf{S}})} \|\mathbf{E}\|.$$
 (6)

Notice that if $\tilde{\mathbf{S}}$ is a permutation of \mathbf{S} , then $d(\mathbf{S}, \tilde{\mathbf{S}}) = 0$.

Definition 2 (Integral Lipschitz filters) We say that the filter $\mathbf{A}(\mathbf{S}) = \sum_{k=0}^{K-1} a_k \mathbf{S}^k$ is integral Lipschitz if there exists C such that its frequency response $a(\lambda) = \sum_{k=0}^{K-1} a_k \lambda^k$, satisfies

$$|a(\lambda_2) - a(\lambda_1)| \le C \frac{|\lambda_2 - \lambda_1|}{|\lambda_1 + \lambda_2|/2}$$
(7)

for all $\lambda_1, \lambda_2 \in \mathbb{R}$ *.*

Integral Lipschitz filters also satisfy $|\lambda a'(\lambda)| \leq C$, where $a'(\lambda)$ is the derivative of $a(\lambda)$.

1.2 Assumptions

Under the following assumptions, we prove that GRNNs built from integral Lipschitz filters are stable to relative perturbations in Theorem 1.

Assumption 1 The filters **A**, **B** and **C** of the GRNN (1)-(2) are integral Lipschitz [cf. (7)] with constants C_A , C_B and C_C and normalized filter height $\|\mathbf{A}\| = \|\mathbf{B}\| = \|\mathbf{C}\| = 1$, respectively.

Assumption 2 *The pointwise nonlinearities* σ *and* ρ (1)-(2) *are normalized Lipschitz, i.e.* $|\sigma(b) - \sigma(a)| \le |b - a|$ *for all* $a, b \in \mathbb{R}$ *, and satisfy* $\sigma(0) = \rho(0) = 0$.

Assumption 3 The initial hidden state is identically zero, i.e. $\mathbf{z}_0 = \mathbf{0}$.

Assumption 4 *The inputs* \mathbf{x}_t *satisfy* $\|\mathbf{x}_t\| \leq \|\mathbf{x}\| = 1$ *for every t.*

Assumption 5 We focus on single-feature GRNNs.

2 Stability of the GRNNs

Theorem 1 (Stability of GRNNs) Consider two graphs with N nodes represented by the GSOs $\mathbf{S} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{H}}$ and $\tilde{\mathbf{S}}$. Let $\mathbf{E} = \mathbf{U}\mathbf{M}\mathbf{U}^{\mathsf{H}} \in \mathcal{E}(\mathbf{S}, \tilde{\mathbf{S}})$ be a relative perturbation matrix [cf. (5)] such that [cf. (6)]

$$d(\mathbf{S}, \tilde{\mathbf{S}}) \le \|\mathbf{E}\| \le \varepsilon.$$
(8)

Let \mathbf{y}_t *and* $\tilde{\mathbf{y}}_t$ *be the outputs of GRNNs (1)-(2) running on* \mathbf{S} *and* $\tilde{\mathbf{S}}$ *respectively, and satisfying AS1 through AS4. Then, it holds that*

$$\min_{\mathbf{P}\in\mathcal{P}} \|\mathbf{y}_t - \mathbf{P}^{\mathsf{T}}\tilde{\mathbf{y}}_t\| \le C(1+\sqrt{N}\delta)(t^2+3t)\varepsilon + \mathcal{O}(\varepsilon^2)$$
(9)

where C is the maximum filter constant,

$$C = \max\{C_{\mathbf{A}}, C_{\mathbf{B}}, C_{\mathbf{C}}\}$$

and $\delta = (\|\mathbf{U} - \mathbf{V}\| + 1)^2 - 1$ measures the eigenvector misalignment between the GSO **S** and the error matrix **E**.

3 Proof of stability of the GRNNs

Lemma 1 Let $S = V\Lambda V^H$ and \tilde{S} be graph shift operators. Let $E = UMU^H \in \mathcal{E}(S, \tilde{S})$ be a relative perturbation matrix [cf. Definition 1] whose norm is such that

$$d(\mathbf{S}, \tilde{\mathbf{S}}) \leq \|\mathbf{E}\| \leq \varepsilon$$

For an integral Lipschitz filter [cf. Definition 2] with integral Lipschitz constant C, the operator distance modulo permutation between filters H(S) and $H(\tilde{S})$ satisfies

$$\|\mathbf{H}(\mathbf{S}) - \mathbf{H}(\tilde{\mathbf{S}})\|_{\mathcal{P}} \le 2C \left(1 + \delta \sqrt{N}\right)\varepsilon + \mathcal{O}(\varepsilon^2)$$
(10)

with $\delta := (\|\mathbf{U} - \mathbf{V}\|_2 + 1)^2 - 1$ standing for the eigenvector misalignment between shift operator **S** and error matrix **E**.

Proof: See [1, Theorem 3].

Proof: [Proof of Theorem 1]

Without loss of generality, assume P = I in (6) and write $\tilde{S} = S + ES + SE^{\mathsf{T}}$, $\tilde{A} = A(\tilde{S})$, $\tilde{B} = B(\tilde{S})$ and $\tilde{C} = C(\tilde{S})$. From (2), we can write

$$\|\mathbf{y}_t - \tilde{\mathbf{y}}_t\| = \|\rho(\mathbf{C}\mathbf{z}_t) - \rho(\tilde{\mathbf{C}}\tilde{\mathbf{z}}_t)\| \le \|\mathbf{C}\mathbf{z}_t - \tilde{\mathbf{C}}\tilde{\mathbf{z}}_t\|$$
(11)

since $\rho(\cdot)$ is normalized Lipschitz. Adding and subtracting $C\tilde{z}$ on the right-hand side of (11), and using both the triangle and Cauchy-Schwarz inequalities, we get

$$\|\mathbf{y}_t - \tilde{\mathbf{y}}_t\| \le \|\mathbf{C}\| \|\mathbf{z}_t - \tilde{\mathbf{z}}_t\| + \|\mathbf{C} - \tilde{\mathbf{C}}\| \|\tilde{\mathbf{z}}_t\|.$$
(12)

The norm of **C** is assumed bounded, and Lemma 1 gives a bound to $\|\mathbf{C} - \tilde{\mathbf{C}}\|$. Using (1), we can write

$$\|\mathbf{z}_t - \tilde{\mathbf{z}}_t\| = \|\sigma(\mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{z}_{t-1}) - \sigma(\tilde{\mathbf{A}}\mathbf{x}_t + \tilde{\mathbf{B}}\tilde{\mathbf{z}}_{t-1})\|$$
(13)

$$\leq \|\mathbf{A}\mathbf{x}_{t} + \mathbf{B}\mathbf{z}_{t-1} - (\tilde{\mathbf{A}}\mathbf{x}_{t} + \tilde{\mathbf{B}}\tilde{\mathbf{z}}_{t-1})\|$$
(14)

$$\leq \|\mathbf{A} - \tilde{\mathbf{A}}\| \|\mathbf{x}_t\| + \|\mathbf{B}\mathbf{z}_{t-1} - \tilde{\mathbf{B}}\tilde{\mathbf{z}}_{t-1}\|$$
(15)

where the first inequality follows from the fact that $\sigma(\cdot)$ is also normalized Lipschitz and the second from the triangle and Cauchy-Schwarz inequalities respectively. The norm difference $\|\mathbf{A} - \tilde{\mathbf{A}}\|$ is bounded by Lemma 1 and $\|\mathbf{x}_t\| \leq \|\mathbf{x}\|$ for all *t*, so we move onto deriving a bound for the second summand of (15). We rewrite it as

$$\begin{aligned} \|\mathbf{B}\mathbf{z}_{t-1} + \mathbf{B}\tilde{\mathbf{z}}_{t-1} - \mathbf{B}\tilde{\mathbf{z}}_{t-1} - \mathbf{B}\tilde{\mathbf{z}}_{t-1}\| \\ &\leq \|\mathbf{B}\| \|\mathbf{z}_{t-1} - \tilde{\mathbf{z}}_{t-1}\| + \|\mathbf{B} - \tilde{\mathbf{B}}\| \|\tilde{\mathbf{z}}_{t-1}\| \end{aligned}$$
(16)

which results in a recurrence relationship between $\|\mathbf{z}_t - \tilde{\mathbf{z}}_t\|$ and $\|\mathbf{z}_{t-1} - \tilde{\mathbf{z}}_{t-1}\|$. Expanding this recurrence, we obtain

$$\begin{aligned} \|\mathbf{z}_{t} - \tilde{\mathbf{z}}_{t}\| &\leq \sum_{i=0}^{t-1} \|\mathbf{B}\|^{i} \|\mathbf{A} - \tilde{\mathbf{A}}\| \|\mathbf{x}\| \\ &+ \|\mathbf{B}\|^{t} \|\mathbf{z}_{0} - \tilde{\mathbf{z}}_{0}\| + \|\mathbf{B} - \tilde{\mathbf{B}}\| \sum_{i=1}^{t} \|\tilde{\mathbf{z}}_{t-i}\| \\ &\leq \sum_{i=0}^{t-1} \|\mathbf{B}\|^{i} \|\mathbf{A} - \tilde{\mathbf{A}}\| \|\mathbf{x}\| + \|\mathbf{B} - \tilde{\mathbf{B}}\| \sum_{i=0}^{t-1} \|\tilde{\mathbf{z}}_{i}\| \end{aligned}$$

where the second inequality follows from $\mathbf{z}_0 = \tilde{\mathbf{z}}_0$. Now it suffices to bound $\|\mathbf{z}_i\|$ for any given i > 0. Writing \mathbf{z}_t as in (1) and observing that,

because $\sigma(\cdot)$ is normalized Lipschitz and $\sigma(0) = 0$, $|\sigma(x)| < |x|$, we can use the triangle and Cauchy-Schwarz inequalities to write

$$\|\mathbf{z}_{i}\| \leq \|\mathbf{A}\| \|\mathbf{x}_{i}\| + \|\mathbf{B}\| \|\mathbf{z}_{i-1}\| \leq \sum_{j=0}^{i-1} \|\mathbf{B}\|^{j} \|\mathbf{A}\| \|\mathbf{x}\| + \|\mathbf{B}\|^{i} \|\mathbf{z}_{0}\|$$
(17)

for i > 0. Substituting this in (16), we get

$$\|\mathbf{z}_{t} - \tilde{\mathbf{z}}_{t}\| \leq \|\mathbf{A} - \tilde{\mathbf{A}}\| \|\mathbf{x}\| \sum_{i=0}^{t-1} \|\mathbf{B}\|^{i} + \|\mathbf{B} - \tilde{\mathbf{B}}\| \left(\|\tilde{\mathbf{A}}\| \|\mathbf{x}\| \sum_{i=1}^{t-1} \sum_{j=0}^{i-1} \|\tilde{\mathbf{B}}\|^{j} + \|\mathbf{z}_{0}\| \sum_{i=0}^{t-1} \|\tilde{\mathbf{B}}\|^{i} \right).$$
(18)

Finally, substituting equations (16) and (18) in (12) gives

$$\begin{split} \|\mathbf{y}_{t} - \tilde{\mathbf{y}}_{t}\| &\leq \|\mathbf{C}\| \left[\|\mathbf{A} - \tilde{\mathbf{A}}\| \|\mathbf{x}\| \sum_{i=0}^{t-1} \|\mathbf{B}\|^{i} \\ &+ \|\mathbf{B} - \tilde{\mathbf{B}}\| \left(\|\tilde{\mathbf{A}}\| \|\mathbf{x}\| \sum_{i=1}^{t-1} \sum_{j=0}^{i-1} \|\tilde{\mathbf{B}}\|^{j} + \|\mathbf{z}_{0}\| \sum_{i=0}^{t-1} \|\tilde{\mathbf{B}}\|^{i} \right) \right] \\ &+ \|\mathbf{C} - \tilde{\mathbf{C}}\| \left[\sum_{i=0}^{t-1} \|\tilde{\mathbf{B}}\|^{i} \|\tilde{\mathbf{A}}\| \|\mathbf{x}\| + \|\tilde{\mathbf{B}}\|^{t} \|\mathbf{z}_{0}\| \right]. \end{split}$$

This expression can be simplified by applying Lemma 1 to the norm differences $\|\mathbf{A} - \tilde{\mathbf{A}}\|$, $\|\mathbf{B} - \tilde{\mathbf{B}}\|$ and $\|\mathbf{C} - \tilde{\mathbf{C}}\|$, and by recalling that $\|\mathbf{A}\| = \|\mathbf{B}\| = \|\mathbf{C}\| = 1$, $\|\mathbf{x}\| = 1$ and $\mathbf{z}_0 = \mathbf{0}$. Denoting $C = \max\{C_{\mathbf{A}}, C_{\mathbf{B}}, C_{\mathbf{C}}\}$ the maximum filter Lipschitz constant, we recover (9) with $\mathbf{P} = \mathbf{I}$,

$$\|\mathbf{y}_t - \tilde{\mathbf{y}}_t\| \le C(1 + \sqrt{N}\delta)(t^2 + 3t)\varepsilon + \mathcal{O}(\varepsilon^2)$$
(19)

which completes the proof.

4 Proofs of Auxiliary Results

4.1 **Proof of Proposition 1**

Proof: [Proof of Proposition 1] Since the permutation matrix $\mathbf{P} \in \mathcal{P}$ is orthogonal, we have $\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{P}\mathbf{P}^{\mathsf{T}}$, which implies

$$\tilde{\mathbf{S}}^{k} = (\mathbf{P}^{\mathsf{T}} \mathbf{S} \mathbf{P})^{k} = \mathbf{P}^{\mathsf{T}} \mathbf{S}^{k} \mathbf{P}.$$
(20)

taking into account that

$$\mathbf{A}(\tilde{\mathbf{S}}) = \mathbf{P}^{\mathsf{T}} \mathbf{A}(\mathbf{S}) \mathbf{P}$$
(21)

and applying $\mathbf{A}(\mathbf{\tilde{S}})$ to $\mathbf{\tilde{x}} = \mathbf{P}^{\mathsf{T}}\mathbf{x}$ yields

$$\mathbf{A}(\tilde{\mathbf{S}})\tilde{\mathbf{x}} = \mathbf{P}^{\mathsf{T}}\mathbf{A}(\mathbf{S})\mathbf{P}\mathbf{P}^{\mathsf{T}}\mathbf{x} = \mathbf{P}^{\mathsf{T}}\mathbf{A}(\mathbf{S})\mathbf{x}.$$
 (22)

Graph convolutions are thus permutation equivariant. Using (1), we can then write \tilde{z}_t as

$$\tilde{\mathbf{z}}_t = \sigma(\mathbf{A}(\tilde{\mathbf{S}})\tilde{\mathbf{x}}_t + \mathbf{B}(\tilde{\mathbf{S}})\tilde{\mathbf{z}}_{t-1})$$
(23)

$$= \sigma(\mathbf{P}^{\mathsf{T}}\mathbf{A}(\mathbf{S})\mathbf{x}_{t} + \mathbf{P}^{\mathsf{T}}\mathbf{B}(\mathbf{S})\mathbf{z}_{t-1})$$
(24)

$$= \mathbf{P}^{\mathsf{T}} \sigma(\mathbf{A}(\mathbf{S})\mathbf{x}_{t} + \mathbf{B}(\mathbf{S})\mathbf{z}_{t-1}) = \mathbf{P}^{\mathsf{T}} \mathbf{z}_{t}$$
(25)

where the second-to-last equality follows from the fact that σ is pointwise and hence permutation equivariant. Since ρ is also pointwise, by a similar reasoning we have $\tilde{\mathbf{y}}_t = \rho(\mathbf{C}(\tilde{\mathbf{S}})\tilde{\mathbf{z}}_t) = \mathbf{P}^{\mathsf{T}}\rho(\mathbf{C}(\mathbf{S})\mathbf{z}_t) = \mathbf{P}^{\mathsf{T}}\mathbf{y}_t$.

References

 F. Gama, J. Bruna, and A. Ribeiro, "Stability properties of graph neural networks," *arXiv*:1905.04497v2 [cs.LG], 4 Sep. 2019. [Online]. Available: http://arxiv.org/abs/1905.04497