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1 Preliminary results, definitions and assump-
tions

The equations that describe the GRNN are represented by the following
equations
z; = 0(A(S)xt +B(S)z¢_1) 1)

yt =p (C(S)zt) 2)

1.1 Preliminary results and definitions

Proposition 1 Let S be a GSO and S = PTSP be a permutation of this GSO,
for some permutation matrix P € P. Let x; be a graph signal and %; = PTx; the
permuted version of the signal. Then, it holds that

7 =o(A(S)% +B(5)2 1) =Pz ®)
y: = p(C(S)z;) =Py, forall t. 4)
where P = {P € {0,1}N*N . p1 = 1,PT1 = 1}.

Proof: Refer to Appendix 4.1. |

Definition 1 (Relative perturbation matrices) Given GSOs S and S, we de-
fine the set of relative perturbation matrices modulo permutation as

€(S,S):{EE]RNXN:PTSP:S+ES+SET,P6P}. )
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We define the distance between two graphs described by S and S respec-
tively as
d(S,S) = min_|E|. (6)
Ec&(S,S)

Notice that if S is a permutation of S, then d(S,S) = 0.

Definition 2 (Integral Lipschitz filters) We say that the filter A(S) = 21152—01 4, Sk
is integral Lipschitz if there exists C such that its frequency response a(A) =
ZkK;()l ar Ak, satisfies

A2 — A4

la(Az2) —a(Ay)] < CW

@)

forall A, Ay € R

Integral Lipschitz filters also satisfy |[Aa’(A)| < C, where a'(A) is the
derivative of a(A).

1.2 Assumptions

Under the following assumptions, we prove that GRNNs built from inte-
gral Lipschitz filters are stable to relative perturbations in Theorem 1.

Assumption 1 The filters A, B and C of the GRNN (1)-(2) are integral Lip-
schitz [cf. (7)] with constants Ca, Cg and Cc and normalized filter height
|A|| = ||B]| = ||C|| = 1, respectively.

Assumption 2 The pointwise nonlinearities o and p (1)-(2) are normalized Lip-
schitz, i.e. |o(b) —o(a)| < |b—al forall a,b € R, and satisfy 0(0) = p(0) =
0.

Assumption 3 The initial hidden state is identically zero, i.e. zg = 0.
Assumption 4 The inputs x; satisfy ||x¢|| < ||x|| = 1 for every t.

Assumption 5 We focus on single-feature GRNNs.



2 Stability of the GRNNs

Theorem 1 (Stability of GRNNSs) Consider two graphs with N nodes repre-
sented by the GSOs S = VAVH and S. Let E = UMUM € £(S,S) be a
relative perturbation matrix [cf. (5)] such that [cf. (6)]

d(s,8) < |[E|| <e. ®)

Let y; and §; be the outputs of GRNNs (1)-(2) running on S and S respectively,
and satisfying AS1 through AS4. Then, it holds that

min [y —PTy|| < C(1+ VNS (2 +3t)e + O(e2) )

where C is the maximum filter constant,
C= max{CA, CB, Cc}

and § = (||U — V|| +1)? — 1 measures the eigenvector misalignment between
the GSO S and the error matrix E.

3 Proof of stability of the GRNNs

Lemma 1 Let S = VAV and S be graph shift operators. Let E = UMUH ¢
E(S,S) be a relative perturbation matrix [cf. Definition 1] whose norm is such
that

d(S,8) < |[E[| <&

For an integral Lipschitz filter [cf. Definition 2] with integral Lipschitz constant
C, the operator distance modulo permutation between filters H(S) and H(S)
satisfies

IH(S) — H(S)|p < 2C (1+5\/N)s+0(82) (10)

with § := (||U — V||o + 1)? — 1 standing for the eigenvector misalignment
between shift operator S and error matrix E.

Proof: See [1, Theorem 3]. |



Proof: [Proof of Theorem 1]

Without loss of generality, assume P = I in (6) and write S = S + ES +
SET, A = A(S), B = B(S) and C = C(S). From (2), we can write

lyt — ¢l = [lo(Czs) — p(Cy)|| < ||Cz¢ — Ci|| (11)

since p(-) is normalized Lipschitz. Adding and subtracting CZ on the
right-hand side of (11), and using both the triangle and Cauchy-Schwarz
inequalities, we get

lye = 3l < IC]ll|z¢ — 2| + [|C — Cl[]|2¢]]- (12)

The norm of C is assumed bounded, and Lemma 1 gives a bound to
|C — C||. Using (1), we can write

llze — 2¢]| = ||o(Ax¢ + Bzi_1) — 0 (Ax; + BZ;_1) || (13)
< HAXt + Bz;_1 — (AX,} + Bit_1) || (14)
< [|A = Allflx¢]| + |Bzs—1 — Bz;_1|| (15)

where the first inequality follows from the fact that o(-) is also normalized
Lipschitz and the second from the triangle and Cauchy-Schwarz inequal-
ities respectively. The norm difference ||A — A|| is bounded by Lemma
1 and ||x¢]| < ||x]| for all t, so we move onto deriving a bound for the
second summand of (15). We rewrite it as

|Bz;_14+BZ_1 — BZ_1 — Bz,_||

5 _— (16)
< ||B||||zt—1 — Z¢—1]| + ||B — B||||Z¢—1]|

which results in a recurrence relationship between ||z; — Z|| and ||z;_1 —
Z;_1||. Expanding this recurrence, we obtain
T 3
lze — e[| < ) [IBII"l|A = AffIx]

i=0

3
+1B|*llzo — Zoll + 1B — Bl }_ ||Z—i]
i=1

=1 A . =
< ) IBIF[|A — Alfljx]| + B — B }_ |||
i=0 i=0

where the second inequality follows from zg = Zj. Now it suffices to
bound ||z;|| for any given i > 0. Writing z; as in (1) and observing that,



because o (+) is normalized Lipschitz and o(0) = 0, |o(x)| < |x|, we can
use the triangle and Cauchy-Schwarz inequalities to write

i—1 ) )
Izl < [|AT il + IBIHIzi-all < 3 IBIVIAlllIx] + 1B] [zl (17)
j=0
for i > 0. Substituting this in (16), we get
3 =1 ‘
lze — z:l| < [[A = AlllIx[| 3 1B

i=0 (18)

t=1i—1 ) =1
+ 18- B (ALK L X 1B + 0]l 1811 ).
i=0

i=1j=0
Finally, substituting equations (16) and (18) in (12) gives
t—1

lye =3Il < [ {IIA —Alllxl X IIBl
i=0

t—1i-1 t=1
; |B—B|<||A||||x|| Y 1B+ [zl Y ||B||1)]
i=0

i=1j=0

t—1 . B
Flc-¢| [z 1BIIAllIx] + |B|f|zo||]
i=0

This expression can be simplified by applying Lemma 1 to the norm dif-
ferences ||[A — A||, |B — B|| and ||C — C||, and by recalling that ||A| =
IIB|| = ||IC|| =1, ||x|| =1 and zy = 0. Denoting C = max{Ca, Cg, Cc} the
maximum filter Lipschitz constant, we recover (9) with P =1,

lye — 9l < C(1+ VNS)(£ +3t)e + O() (19)

which completes the proof. |

4 Proofs of Auxiliary Results

4.1 Proof of Proposition 1



Proof: [Proof of Proposition 1] Since the permutation matrix P € P is
orthogonal, we have PTP = PPT, which implies

§ = (PTsp)" = PTS'P. (20)
taking into account that
A(S) =PTA(S)P (21)
and applying A(S) to x = PTx yields
A(8)x =PTA(S)PPTx = PTA(S)x. (22)

Graph convolutions are thus permutation equivariant. Using (1), we can
then write Z; as

z; = o(A(S)% + B(S)z;1) (23)
=o(PTA ( )xt+1’ B(S)z_1) (24)
=PTo(A(S)xi + B(S)z_1) =Pz (25)

where the second-to-last equality follows from the fact that ¢ is pointwise
and hence permutation equivariant. Since p is also pointwise, by a similar
reasoning we have y; = p(C(S)z;) = PTp(C(S)z:) = Py;. [ |
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