
Distributed Learning with Graph Neural
Networks

Alejandro Ribeiro, Zhan Gao and Alejandro Parada Mayorga

November 9, 2020

Graph neural networks (GNNs) explore the irregular structure of graph
signals, and exhibit superior performance in various applications of rec-
ommendation systems, wireless networks and control. A key property
GNNs inherit from graph filters is the distributed implementation. This
property makes them suitable candidates for distributed learning over
large-scale networks, where global information is not available at indi-
vidual agents. Each agent must decide its own actions from local obser-
vations and communication with immediate neighbors. In this lab assign-
ment, we focus on the distributed learning with graph neural networks.

1 Distributed Control Systems

We consider a team of N agents tasked with controlling a dynamical pro-
cess that is evolving in the space where the team is deployed. The sys-
tem is distributed because the agents are located in different positions;
see Figure 1. We characterize this dynamical process by the collection
of state values xi(t) ∈ Rp as well as the collection of control actions
ui(t) ∈ Rq that agents take. In this notation, i represents an agent in-
dex and t represents continuous time. We further group local states
and local actions into matrices X(t) = [x1(t), . . . , xN(t)]T ∈ RN×p and
U(t) = [u1(t), . . . , uN(t)]T ∈ RN×q that represent the global state of the
system and the global control action at time t. Observe that row n of X(t)
is the state associated with agent n and that row n of U(t) is the control
action taken by agent n.

1

With these definitions we write the evolution of the dynamical process
through a differential equation of the form,

Ẋ(t) = f
(

X(t), U(t)
)

. (1)

In order to design a controller for this dynamical system we operate in
discrete time by introducing a sampling time Ts and a discrete time index
n. We define Xn = X(nTs) as the discrete time state and Un as the control
action held from time nTs until time (n + 1)Ts. Solving the differential
equation between times nTs and (n + 1)Ts, we end up with the discrete
dynamical system

Xn+1 = Xn +
∫ (n+1)Ts

nTs
f
(

X(t), Un

)
dt, with X(nTs) = Xn. (2)

At each point in (discrete) time, we consider a cost function c(Xn, Un).
The objective of the control system is to choose actions Un that reduce
the accumulated cost ∑∞

n=0 c(Xn, Un). When the collection of state obser-
vations Xn = [xT

1n; . . . ; xT
Nn] is available at a central location it is possi-

ble for us to consider centralized policies Π that choose control actions
Un = Π(Xn) that depend on global information. In such case the optimal
policy is the one that minimizes the expected long term cost,

Π∗C = argmin
Π

E

[
∞

∑
n=0

c
(

Xn, Π(Xn)
)]

. (3)

If the dynamics in f (X(t), U(t)) and the costs c
(
Xn, Un

)
are known, as we

assume here, there are several techniques to find the optimal policy Π∗.
Our interest in this exercise is in decentralized controllers that operate
without access to global information. In those situations, implementing
(9) is not possible because of delays in percolating information through
the distributed system as we explain in the following section.

1.1 Decentralized Control

In distributed systems we face the challenge of collecting information.
Implementing the policy in (9) requires knowledge of the global system
state x(n). This can’t be done if we consider systems where the number of
agents N is large. When N is large we leverage the locality of the problem
by relying on communication between nearby agents.

2

Figure 1.

We therefore consider a communication network described with a set of
edges (i, j) ∈ En. The presence of the edge (i, j) in the set En indicates
that j may send data to i at time n. This set may vary over time. When
this happens we say that j is a neighbor of i and define the neighborhood
of i at time n as the collection of all its neighbors,

Nin = {j : (i, j) ∈ En}. (4)

We can also define multi-hop neighborhoods of a node. To do so begin
by convening that the 0-hop neighborhood of i is N 0

in = {i}; namely, the
node itself. Further rename the neighborhood of n as the 1-hop neighbor-
hood and denote N 1

in = Nin. We can now define the k-hop neighborhood
of i as the set of nodes that can reach node i in exactly k hops. Their
formal definition can be given by the recursion

N k
in =

{
j′ ∈ N k−1

j(n−1), such that j ∈ Nin

}
. (5)

That is, the set of k-hop neighbors of i is the set of nodes that were (k− 1)-
hop neighbors at time n− 1 of the nodes that are neighbors of i at time
n.

This neighborhood definition in (5) characterizes the information that is
available to node i at time n; see Figure 2. This information includes
the local state xin that can be directly observed by node i at time n. It
also includes the value of the state xj(n−1) of all the nodes that are 1-hop
neighbors of i at time n. But these state observations make it to node i
with a delay of 1 time step. Node i can observe the state xj(n−1), not the
state xjn. Communication is not instantaneous. It is also possible for node
i to observe the states xj(n−2) of its 2-hop neighbors. This is because the

3

information can be relayed from 1-hop neighbors. But the information
makes it to node i with two units of delay. It is the state xj(n−2), not
the state xjn that is available at i for its 2-hop neighbors. We can repeat
this argument for general k-hop neighborhoods to define the information
history Hin of node i at time n as the collection of state observations out
to a maximal history depth K

Hin =
K−1⋃
k=0

{
xj(n−k), such that j ∈ N k

in

}
. (6)

The challenge in decentralized control is that it is impossible for agent i
to implement the controller in (9) with the information available in (6).
We can extend the history depth K to the diameter of the network and
make sure we observe states for all nodes. But the information received
by node i is delayed. For a k hop neighbor node i has access to the
state xj(n−k) corresponding to discrete time index n − k. Implementing
(9) needs access to the state xjn at the current time index n.

The information history in (6) indicates that the control action of node i
must be of the form,

uin = πin(Hin). (7)

Using the local control actions in (7), which depend on local information
histories, results in the distributed control policies

ΠDn =
[
π1(H1n), . . . , πN(HNn)

]T
. (8)

And therefore leads to the replacement of the optimal control problem in
(9) by the optimal control problem

Π∗Dn = argmin
ΠDn

E

[
∞

∑
n=0

c
(

Xn, ΠDn

)]
, (9)

in which the optimization is over control polciies that respect the informa-
tion structure of the distributed system. The problem in (9) is famously
difficult to solve except in some particularly simple scenarios

The challenge arises from the need to define policies that depend on in-
formation histories. This creates an exponential complexity that is typical
of systems that lack the Markov memoryless property. The complexity
of finding the decentralized policy Π∗Dn of (9) vis-à-vis the relative sim-
plicity of finding the optimal centralized policy Π∗C of (9) motivates the

4

Figure 2.

introduction of a method that learns to mimic the global controller. We
describes this in the following section.

1.2 Imitation of Centralized Policies

Introduce a parameterized policy π(Hin, A) that maps local information
histories Hin to local actions uin = π(Hin, A). We consider global policies
in which all the agents execute policies π(Hin, A) with the same parame-
ter A.

Π(A) =
[
π(H1n, A), . . . , π(Hin, A)

]T
. (10)

We point out that in (10) it is not immediately apparent how we can
reuse the same parameter A at all nodes. Neighborhood cardinalities
can be different for instance and the orderings of neighbors are arbitrary.
We will resolve this issue with the use of graph filters and graph neural
networks in Section 3 but we set aside this concern until then.

The policy in (10) is, by deign, one that respects the information struc-
ture of the decentralized policies defined in (8). To mimic the centralized
policy in (9) we consider a loss function L(Π(A), Π∗C) to measure the dif-
ference between the optimal centralized policy Π∗C and a system where
all agents (locally) execute the (local) policy π(Hin, A). Our goal is to find
the tensor of parameter A that solves the optimization problem

A∗ = argmin
A

EΠ∗C
[
L
(

π
(
Hin, H

)
, π∗(xn)

)]
, (11)

where we use the notation EΠ∗C to emphasize that the distribution of ob-

5

served states xn over which we compare the parametrized policy with the
optimal centralized policy Π(A) and Π∗C is that of a system that follows
the optimal policy Π∗C.

The formulation in (11) is one in which we want to learn a local policy
π
(
Hin, A

)
that mimics the rows of the centralized policy Π∗ to the extent

that this is possible with the information that is available to each individ-
ual node. The success of this effort depends on the appropriate choice of
the parameterization that determines the family of policies π(Hin, H) that
can be represented by different choices of parameters, H. In this exercise
we explore the use of graph filters and graph neural network (Section
3). We demonstrate their applications to the problem of network consen-
sus (Section 2) and to the problem of flocking with collision avoidance
(Section 4).

2 Network Consensus

To ground the discussion in Section 1 we consider a consensus problem.
The goal of a consensus problem is to compute an average over a network.
It is not a difficult problem. In fact, one would venture that it is elemen-
tary. Yet, the solution in a decentralized setting becomes complicated. It
therefore serves as a good illustration of the challenges of decentralized
control.

To be more specific consider a reference velocity rn = r(nTs) ∈ R2. This
reference velocity evolves according to a random acceleration model that
we write in discrete time as

rn+1 = rn + Ts∆rn. (12)

In (12), the acceleration term ∆rin is white Gaussian with independent
components and expected norm E(‖∆rn‖)1. The initial reference velocity
r0 is initialized with a normal distribution with zero mean independent
components and expected norm E(‖r0‖). The values we will use for these
and other parameters in numerical experiments are shown in Table 3.

1A Gaussian random variable X in two dimensions with independent components, each
of which has variance σ2, has a expected norm E(‖X‖) = σ

√
π/2. To generate a Gaussian

with expected norm E(‖X‖) we use variances σ2 = (2/π)E2(‖X‖) in each component.

6

We consider a team of n agents whose goal is to estimate this reference
velocity. However, the agents do not observe the reference directly. Each
of them observes a biased version of the reference velocity according to
the model

rin = rn + ∆ri. (13)

The bias terms ∆ri of each agent are white Gaussian with independent
components and expected norm E(‖∆ri‖). Notice that the bias term does
not change over time. It is a systematic error in the velocity measurements
of each agent.

The reference velocities in (13) are observations of agents. In addition
to this observations, agents have velocity estimates vin. These velocities
evolve according to the dynamical model

vi(n+1) = vin + Tsuin, (14)

in which uin is a control acceleration that is to be chosen by agent i. The
goal of the agents is to make this estimate as close as possible to the
reference velocity rn. This velocity, however, is not observed by the team.
We therefore set to find a policy that controls for the cost function

c̃(Vn, Rn) =
1

2N

N

∑
i=1

∥∥∥∥∥ vin −
1
N

N

∑
j=1

rjn

∥∥∥∥∥
2

. (15)

According to (15), the goal is for each agent to find out velocities vin that
coincide with the average reference velocity (1/N)∑N

j=1 rjn observed by
the team. If it helps to fix ideas, you can think of a flock that wants to
move with the wind. They each observe the wind with some systematic
error and collaborate to follow the average of their wind estimates.

To minimize the cost in (15) we just need to get the swarm to follow the
average. Namely, to make vin = (1/N ∑N

j=1 rjn). To make the problem
more interesting we ask for a balance between velocity reduction and
energy. The latter depends on the acceleration uin. We therefore consider
a relative weight λ and define the cost

c(Vn, Rn, Un) =
1

2N

N

∑
i=1

∥∥∥∥∥ vin −
1
N

N

∑
j=1

rjn

∥∥∥∥∥
2

+
λ

2N

N

∑
i=1

∥∥∥ Tsuin

∥∥∥2
. (16)

In the general problem definition we introduced in Section 1 we consider
the cost over a time horizon [cf. eqref(9)]. To keep the problem simple we

7

Parameter Symbol Value

Initial reference velocity E(‖r0‖) 2 m/s

Reference velocity acceleration E(‖∆rn)‖) 1 m/s2

Reference velocity agent bias E(‖∆rin‖) 2 m/s

Maximum agent acceleration ‖u0‖ 3 m/s2

Sample time Ts 0.1 s

Energy weight λ 1

Initial agent density ρ 0.005 agents/m2

Network degree d 4 agents

Reference distance d0 15 m

Collision avoidance weight µ 1

Figure 3. Parameter values.

consider here a greedy formulation where at time step n we want to min-
imize the cost c(Vn+1, Rn+1, Un+1) at the next time step. This result in a
simple expression for the optimal control policy in which the acceleration
of agent i is given by

u∗in =
−1

Ts(1 + λ)

(
vin −

1
N

N

∑
j=1

rjn

)
. (17)

The solution in (17) computes the difference between the velocity of agent
i and the average reference velocity and accelerates in the opposite direc-
tion. The amount of acceleration is controlled by λ. The larger λ, the less
we accelerate.

Question 2.1: System simulation. Create a class that simulates the sys-
tem described by (12)-(14). The parameters in the table in Figure 3 are
attributes of this class. The class also records the number of agents N as
an attribute.

The class has a method to simulate the generation of reference velocities
as per (12) and (13). This method admits a time horizon T so that the

8

system is simulated for T/Ts iterations.

The class has another method to simulate the evolution of velocities as
per (14). The methods takes the system state Vn and the control action
Un as inputs and produces the next state Vn+1 as an output.

Test the class with N = 100 and T = 10 s.

Question 2.2: Implementation of centralized Consensus. Implement
the optimal controller in (17). Plot velocity trajectories vin and compare
them with the average reference velocity (1/N ∑N

j=1 rjn).

2.1 Decentralized Consensus

The consensus problem we have just described becomes more interesting
when formulated in a distributed setting. To do that, assume that agents
are connected through a communication network. As in Section 1.2 the
network is described by a set of edges (i, j) ∈ En which induce the neigh-
borhoods Nin defined in (4). With a graph restricting the exchange of
information, the implementation of (17) becomes impossible.

An important point to repeat is that it becomes difficult to design appro-
priate controllers. Our goal is still the minimization of the cost in (16)
but this is difficult to do with the partial information we are given. Faced
with the impossibility of finding optimal controllers, we can resort to ap-
proximations. A natural idea is to forget about the fact that information is
delayed and just evaluate (17) with the information we have. We therefore
define the averages

r̄k
jn =

1
#
(
N k

in
) ∑

j∈N k
in

rj(n−k), (18)

which represent the average velocity of the k-hop neighbors of node i
corrected by appropriated delays. Using these averages we can now ap-
proximate the controller in (17) as

u†
in =

−1
Ts(1 + λ)

(
vin −

1
K

K

∑
k=1

r̄k
jn

)
. (19)

9

The controller defined by (18) and (19) is decentralized because it respects
the information history structure we defined in (6). The values that are
needed for implementing (19) are available at node i because they have
been relayed through neighbors. That the controller can be implemented
does not mean it will be any good. We are taking averages of out of date
information.

Question 2.3: Communication Network. We consider a scenario in
which n transmitters are dropped in an area of dimensions wx by wy. The
transmitters are dropped uniformly at random. An important parameter
of the network is the agent density, defined as

ρ = (wxwy) / n. (20)

We construct a network model in which agent i and agent j communicate
with each other if and only if agent j is among the d agents closest to i
or agent i is among the d agents closest to agent j. We refer to d as the
network degree, even though d is not exactly the average degree of the
connectivity graph. A node i is connected to its d closest agents and it
it is also connected to all the agents j for which i is one of its d closest
agents.

Write a class whose attributes are the the dimensions wx and wy along
with the number of nodes n and the network degree d. These numbers
are provided at initialization. Add attributes to represent the positions
of agents and receivers. These are generated at initialization with trans-
mitters and receivers placed at random as described above. This class is
similar to the one you programmed for Lab 4.

Add an attribute to represent the unweighted adjacency matrix of a con-
nectivity graph that follows the generating model we described above.
Add a method that calculates the adjacency matrix when requested.

Test with the parameters in the table in Figure 3 along with wx = 200 m
and wy = 100 m.

Question 2.4: Decentralized Consensus. Implement the decentralized
consensus controller in (19). Leverage the classes you constructed in
Questions 2.1 and 2.3.

10

In your decentralized controller you can choose different values of K. Try
several values. Plot velocity trajectories vin and compare them with the
average reference velocity (1/N ∑N

j=1 rjn). Compare with the optimal cen-
tralized controller in Question 2.2. It should be much worse irrespectively
of your choice of K.

The fact that we are referring to vin as the velocity of agent i at time n
hints at moving agents. We are going to go there in Section 4, but for
the time being we are neglecting the fact that agents are moving. This is
important because as agents move the communication network changes.
This is not an issue except that it increases the cost of your simulation
due the the necessity to recompute the communication graph.

3 Learning Distributed Controllers

In Section 1.2 we explained the inherent complexity of decentralized con-
trol. In Section 2.1 we illustrated that these inherent complexities lead
to important differences in practical performance. One can attribute the
performance penalty to the fact that (19) forgets the fact that it is aver-
aging information that can be out of date. This is true, but how can we
correct for that? Say we choose to discount older information. This is a
sensible idea but how do we choose discount factors? The problem is not
that decentralized control becomes impossible to solve. But since finding
the optimal controller is impossible, we are left to choose among many
possible heuristics.

If we are settling for heuristics, there is no reason to overlook the use of
learned heuristics. We use our models as a source of simulated data and
fit a learned parametrization. This is the idea we described in Section 1.2.
The goal of mimicking the optimal centralized policy means that, at least
in principle, the learned heuristic can learn an optimal controller. This is
something we give away in designed heuristics.

If we decide to settle for learned heuristics, our job as system designers
is not complete. We should still choose the parametrization. Since we are
considering a problem where a network plays a central role, the choice of
parametrization is clear: We should choose graph filters and graph neural
networks (GNNs). In the case of distributed systems there is a second,

11

more important reason for us to use graph filters and GNNs: They can be
implemented in a distributed manner while respecting the information
structure of distributed control. We explain this in the next section.

3.1 Distributed Implementation of Graph Filters and GNNs

To explain the use of graph filters and GNNs in distributed systems we
start by recalling our definition of MIMO graph filters as polynomials on
the graph shift operator S.

Z =
K

∑
k=0

SkXHk. (21)

In the case of distributed systems the matrix graph signal X is evolving
over time index n. We therefore introduce a time varying version of (21)
in which the kth term of the polynomial multiplies the signal Xn−k

Zn =
K

∑
k=0

SkXn−kHk. (22)

The reason for introducing this modification in (22) is that it is now possi-
ble to provide a distributed implementation that respects the information
history structure we introduced in (6). To see how this is done we express
(22) in terms of a modified diffusion sequence. This diffusion sequence is
initialized as Yn0 = Xn and its subsequent elements are computed recur-
sively as

Ynk = SY(n−1)(k−1). (23)

Applying this definition recursively we have that Ynk = SkY(n−k)0. Fur-
ther recalling the initialization condition we have that Y(n−k)0 = Xn−k.
Thus, Ynk = SkXn−k and we have that the the filter in (22) can be equiva-
lently written as a summation of elements of the diffusion sequence,

Zn =
K

∑
k=0

YnkHk (24)

To show that we can implement (24) in a distributed manner, it suffices
if we show that each of the Ynk terms can be evaluated through local

12

computation exchanges. To see that this is true recall that the shift oper-
ator shares the sparsity pattern of the graph. Thus, when we look at the
computation of the ith entry of Ynk we can write[

Ynk

]
i
= ∑

j∈Nni

[
S
]

ij
×
[

Y(n−1)(k−1)

]
j
. (25)

According to (25), node i can compute the ith entry of Ynk if it receives
information from neighboring agents j about the values of the jth entries
of the Y(n−1)(k−1). This is something that is available to node i because
it can be communicated from its neighboring agents j. These are, by
definition, the agents with which i can communicate.

If a graph filter can be implemented in a distributed manner, a GNN
can be as well. This is because the nonlinearity is pointwise and can
be implemented locally. Having seen that a GNN can respect the in-
formation structure of distributed systems, we can use them as learning
parametrizations in decentralized control. This is the goal of the next
question.

Question 3.1: Learning with a GNN. Use a GNN to learn a distributed
policy that mimics the optimal centralized controller in Question 2.2. Plot
velocity trajectories vin and compare them with the average reference ve-
locity (1/N ∑N

j=1 rjn). Compare with the optimal centralized controller in
Question 2.2 and with the decentralized controller in Question 2.4.

Given we have been working with GNNs for a while, you are free to play
with the choice of shift operator and GNN architecture. An example of
an architecture that works well is to use Rn and Vn as input features, have
L = 2 layers with F1 = 64 features and F2 = 2 features. In Layer 1 you
use filters of order K1 = 4 and in Layer 2 filters of order K2 = 1. The
2 features at the output of Layer 2 are mapped to the control inputs uin.
The normalized adjacency is used as a shift operator.

As in question 2.4 we disregard the movement of the agents.

13

4 Agent Mobility

We modify the problem in Section 2 to incorporate agent mobility. Denote
as pin the position of agent i at time n and augment the dynamical model
in (14) to incorporate the dynamics that control this variable,

pi(n+1) = pin + Tsvin + (T2
s /2)uin. (26)

When we incorporate agent mobility the first aspect of the problem that
changes is that the network is no longer fixed. As agents move, their set
of nearest neighbors change. This is consistent with our generic problem
description in Section 1.2. To make our graph filters consistent with a
time varying network we just need to modify the definition of the diffu-
sion sequence to take time varying networks into consideration. We thus
replace (22) by

Ynk = SnY(n−1)(k−1), (27)

where Sn is the shift operator of the communication network at time n.

Question 4.1: Mobility. Modify the class in Question 2.1 to incorporate
positions and mobility according to the dynamical model in (26).

Implement the controller you learnt in Question 3.1 in a system with
mobility. This requires that you recompute the communication network
at every step. Or every so often if you want a speedier simulation. This is
a good moment to create a class that inherits from this class and the class
that simulates the communication network in (2.3).

Question 4.2: It works so well. Despite the fact that you trained with-
out mobility, the implementation with mobility in (4.1) has a small degra-
dation in cost. This is something we knew was going to happen. Why?

Question 4.3: Training with Mobility. Retrain the GNN of Question
4.1 using the time varying networks that result from the incorporation of
mobility.

14

5 Collision and Spread Avoidance

The second aspect of the problem that changes when we incorporate mo-
bility is that agents can get too close to each other, which would result in
a collision. Agents can also get too far apart, which would result in their
inability to communicate. To prevent both outcomes we utilize a potential
function to encourage neighboring agents to stay within a target distance
of each other. Formally, let pin be the position of agent i at time n and
pjn be the position of agent j. Agents j is a neighbor of agent i. We then
define the potential

U(pin, pjn) =
d2

0
‖pin − pjn‖2 + log

[
‖pin − pjn‖2

d2
0

]
(28)

This potential function has a minimum when the distance between agents
i and j is ‖pin − pjn‖2 = d0.

The potentials U(pin, pjn) in (28) are added to the cost function in (16) to
define the loss function

`(Pn, Vn, Rn, Un) = c(Vn, Rn, Un) +
µ

2N

N

∑
i=1

1
(Nin)

∑
j∈Nin

U(pin, pjn).

(29)
The optimal centralized controller is the one that greedily minimizes the
cost in (29) at each time step. Our goal in this section is to learn a GNN
controller that mimics this optimal centralized controller.

Question 5.1: Relative center of mass.. Before we set out to design this
GNN, we define the following feature at node i,

qin =
1

(Nin)
∑

j∈Nin

pin, pjn. (30)

This is the center of mass of the neighbors of i measured relative to the
position of node i. In this definition, it is not very important that qin be a
center of mass. But is is very important that the measure be relative so as
to preserve permutation equivariance. Explain

Question 5.2: Learning with a GNN. Use a GNN to learn a distributed
policy that mimics the optimal centralized controller that minimizes the

15

cost in (29). The input features to the GNN are Vn, Rn, and Qn. Compare
the cost with the cost of the optimal centralized controller.

The GNN architecture of Question 3.1 works well for this problem. But
you should play around with different architectural choices.

16

6 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Question 2.1 Do not report.

Question 2.2 Plot with 10 representative trajectories. Cost
averaged over 100 simulations.

Question 2.3 Do not report.

Question 2.4 Plot with 10 representative trajectories. Cost
averaged over 100 simulations.

Question 3.1 GNN architecture parameters. Plot with
10 representative trajectories. Cost averaged
over 100 simulations.

Question 4.1 Plot with 10 representative trajectories. Cost
averaged over 100 simulations.

Question 4.2 One Paragraph.

Question 4.3 GNN architecture parameters. Plot with
10 representative trajectories. Cost averaged
over 100 simulations.

Question 5.1 One Paragraph.

Question 5.2 GNN architecture parameters. Plot with
10 representative trajectories. Cost averaged
over 100 simulations.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 16% of your
final grade.

17

	Distributed Control Systems
	Decentralized Control
	Imitation of Centralized Policies

	Network Consensus
	Decentralized Consensus

	Learning Distributed Controllers
	Distributed Implementation of Graph Filters and GNNs

	Agent Mobility
	Collision and Spread Avoidance
	Report

