
First Midterm

I We are halfway through the course. It is time for a midterm

1

Quiz

What?

Why?

⇒

⇒

Machine learning on graphs

Generic models of signal structure

Models of distributed physical infrastructure

How?

Does this work?

Should this work?

⇒

⇒

⇒

Graph Neural Networks

Yes: Examples

Yes: Equivariance and Stability

2

How? ⇒ Signals Supported on Graphs

I We saw several systems (and there are many more) that can be modeled with graph signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

I Nodes are customers. Signal values are product ratings. Edges are cosine similarities of past scores

3

How? ⇒ Signals Supported on Graphs

I We saw several systems (and there are many more) that can be modeled with graph signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges

3

How? ⇒ Signals Supported on Graphs

I We saw several systems (and there are many more) that can be modeled with graph signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

1

2

3

4

5

6

7

8

w12

w24

w25

w13

w23

w34

w46

w47

w35

w56
w67

w68

w57

w78

x1

x2

x3

x4

x5

x6

x7

x8
1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength

3

How? ⇒ Graph Convolutional Filters

I A Graph filter on shift operator S with coefficients hk is a polynomial on S ⇒ H(S) =
∞∑
k=0

hkSk

I A convolutional filter depends on the filter coefficients hh and the graph shift operator S

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

h?Sx

4

How? ⇒ Graph Convolutions

I A graph convolution is the result of applying a graph filter ⇒ h?Sx = H(S)x =

[∞∑
k=0

hkSk

]
x

I A weighted linear combination of the elements of the diffusion sequence ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

h?Sx

4

How? ⇒ Graph Neural Networks (GNNs)

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I The output of the GNN is the output of layer L

xL = Φ(x; S,H)

I Depends on filter tensor and shift operator

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x2

x2

x2

x2

x3 = Φ(x; S,H)

5

How? ⇒ Graph Neural Networks with Multiple Features

I Improve expressive power with MIMO graph filters

X` = σ
[

Z`
]

= σ

[
K−1∑
k=0

Sk X`−1H`k

]

I The output of GNN is the output of layer L

XL = Φ(X; S,H)

I Depends on filter tensor and shift operator

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)

6

How? ⇒ Some Observations About Graph Neural Networks

I Graph neural networks are...

⇒ Minor variations of graph filters

⇒ Pointwise nonlinearities and compositions

⇒ Transferable across different graphs

⇒ Generalizations of CNNs (line graph)

⇒ Particularizations of fully connected NNs

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)

7

Does This Work and Should This work?

I Does this work? ⇒ Recommendation Systems. Wireless Communication Networks

I Should this work?

⇒ Graph filters and GNNs are permutation equivariant. They leverage symmetries

⇒ GNNs have a better stability vs discriminability tradeoff They leverage quasi-symmetries

8

Learning Ratings in Recommendation Systems

I Formulate recommendation systems as ERM problems that predict ratings that users give to items

9

Recommendation Systems

I In a recommendation system, we want to predict the rating a user would give to an item

I Collect ratings that some users give to some items ⇒ These are rating histories

I Exploit product similarities to predict ratings of unseen user-item pairs

I Example 1 ⇒ In an online store items are products and users are customers

I Example 2 ⇒ In a movie repository items are movies and users are watchers

10

Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

11

Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u

11

Product Ratings as Graph Signals

I Construct product similarity graph with weights wij represent likelihood of similar scores

I Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

I The observed ratings xu of user u are a subsampling of this graph signal.

I Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

I Build similarity graph using available ratings. Use of expert knowledge is common as well

12

Product Similarity Graph

I Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

I Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑
u∈Uij

xui µji =
1

#(U ij)

∑
u∈Uji

xuj

I Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑
u∈Ui j

(
xui − µij

)(
xuj − µji

)
I Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj

13

Loss for Measuring Rating Prediction Quality

I Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

`
(

yu,Φ(xu)
)

=
1

2

∥∥∥ yu − Φ(xu)
∥∥∥2

I In reality, we want to predict the rating of specific item i

`
(

yu,Φ(xu)
)

=
1

2

(
eTi yu − eTi Φ(xu)

)2

I Where ei is a vector in the canonical basis ⇒ (ei)i = 1, (ei)j = 0 for j 6= i

14

Training Set

I For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(

eTi xu
)

ei x = xu − y for all u ∈ U i , for all i

I Extract the rating xui of item i . Record into graph signal y

I Remove rating xui from xu. Record to graph signal x

I Repeat for all users in the set U i of users that rated i

I Repeat for all items ⇒ Training set T

15

Learning Rating Predictions

I Parametrized AI Φ(xu) = Φ(xu;H). We want to find solution of the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I Two bad ideas ⇒ Linear regression. Fully connected neural networks

I Two good ideas ⇒ Graph filters. Graph neural networks

16

Learning Ratings with Graph Filters and GNNs

I We use graph filters and graph neural networks to learn ratings in recommendation systems

I We contrast with the use of linear regression and fully connected neural networks

17

Movie Ratings Dataset

I Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

I The ratings for each movie are between 1 and 5. From one star to five starts

I Train and test several machine learning parametrizations.

18

Empirical Risk Minimization

I We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

I Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs

19

Linear Regression and Graph Filters

I Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

I Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

20

Linear Regression and Graph Filters

I Linear regression works even worse in the test set

I The test MSE of the graph filter is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries

20

Fully Connected NNs and Graph NNs

I The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

I Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

21

Fully Connected NNs and Graph NNs

I But the fully connected NN does not do well in the test set. It does not generalize

I The test MSE of the graph NN is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries

21

Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

22

Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff

22

Transferability

I A GNN can be trained on a graph with a small number of nodes ...

⇒ And transferred to a graph with a (much) larger number of nodes. Without retraining

200 300 400 500 600 700 800
Nodes of the Graph

0.950

0.955

0.960

0.965

0.970

0.975

M
ea

n
Sq

ua
re

 E
rr

or

I In this recommendation system, transference incurs no MSE degradation ⇒ MSE is further reduced

23

The Engineer and the Scientist

I The engineer is satisfied ⇒ Proposed a method (GNNs). They demonstrated that it works

I The scientist is curious ⇒ The method worsk. But they don’t know why.

I This is the motivation for out analyses. Which we will proceed to review

24

Permutation Equivariance

I Graph filters and GNN are equivariant to permutations ⇒ They can exploit signal symmetries

I Predicting that they should outperform linear regression and fully connected neural networks

25

Permutation Equivariance of Graph Filters

I It is ready to show that graph filters are equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator Ŝ = PT SP and input signal x̂ = PT x. Then

H(Ŝ)x̂ = PT H(S)x

I Relabeling the input signal results in a consistent relabeling of the output signal

I Graph filters leverage permutation symmetries of graphs and graph signals

26

Permutation Equivariance of Graph Neural Networks

I It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PT SP and input signal x̂ = PT x. Then

Φ(x̂; Ŝ,H) = PT Φ(x; S,H)

I Relabeling the input signal results in a consistent relabeling of the output signal

I Graph neural networks leverage permutation symmetries of graphs and graph signals

27

Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

Graph signal x Supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Graph signal x̂ = PT x supported on Ŝ = PT SP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

28

Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x; S,H) supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

GNN Φ(x̂; Ŝ,H) = PT Φ(x; S,H) on Ŝ = PT SP

4

x4

5

x5
6

x6

1

x1

2
x2

3
x3

10

x10

9

x9

12

x12

8

x8

11
x11

7
x7

28

Graph Filters and GNNs Explouit Permutation Symmetries

I Equivariance lets graph filters and GNNs exploit permutation symmetries of graphs and graph signals

I By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

I Equivariance theorem implies ⇒ Φ
(

PT x; S,H
)

= Φ
(

PT x; PTSP,H
)

= PTΦ
(

x; S,H
)

From observing x supported on S

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

Learn to process PT x supported on S = PT SP

1

x1

2

x2
3

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

29

It is Quasi-Symmetry we Want to Exploit. Not Symmetry

I Graph not symmetric but close to symmetric ⇒ Deformed version of a permutation of itself

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

I Quasi-Symmetry, not symmetry ⇒ Stability to deformations that are close to permutation.

I GNNs have better stability properties than graph filters ⇒ Better at leveraging quasi-symmetries.

30

Stability of Graph Filters to Graph Perturbations

I Graph filters that are integral Lipschitz are stable to relative deformations of the graph

31

Frequency Response of a Graph Filter

I Graph filters are operators defined on graph shift operators ⇒ H(S) =
∞∑
k=1

hkSk

I They are completely characterized by their frequency responses ⇒ h̃(λ) =
∞∑
k=1

hkλ
k

λ

h̃(λ)

32

The Effect of the Graph

I Graph S has eigenvalues λi ⇒ The response is instantiated at these eigenvalues h̃(λi) =
∞∑
k=1

hkλ
k
i

I Graph Ŝ has eigenvalues λ̂i ⇒ The response is instantiated at these eigenvalues h̃(λ̂i) =
∞∑
k=1

hk λ̂
k
i

λ

h̃(λ)

33

Relative Perturbations of a Shift Operator

I Meaningful perturbations of a shift operator operator are relative ⇒ PT ŜP = S + ES + SE

I Conceptually, we learn all there is to be learnt from dilations ⇒ Ŝ = S + εS

I Eigenvalues are dilated λi → λ̂i = (1 + ε)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

34

Higher Frequencies are More Difficult to Process

I Higher eigenvalues move more. Signals with high frequency components are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ε)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h

35

Stability Requires Integral Lipschitz Filters

I To attain stable graph signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

I Either the eigenvalue does not change because we are considering low frequencies

I Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h

36

Pictures are Worth a Thousand Theorems

I But only when they illustrate theorems! We’ve proven that integral Lipschitz filters are stable

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) S and Ŝ are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) Error matrix has norm ‖E‖ = ε and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by∥∥H(Ŝ)− H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

37

Stability and Discriminability are Incompatible in Graph Filters

I The stability vs discriminability tradeoff depends on the frequency components of the signal

38

Discriminative Filter at Low Frequencies

I At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ε)λl

)

λlλl λ

h̃(λ)

λl λ̂l

39

Discriminative Filter at Medium Frequencies

I At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ε)λm

)

λmλm λ

h̃(λ)

λm λ̂m

40

Discriminative Filter at High Frequencies

I At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ε)λh

)

λhλh λ

h̃(λ)

λh λ̂h

41

Stability vs Discriminability Non-Tradeoff of Graph Filters

Fact: It is impossible to discriminate high frequency components with a stable filter

We can have a filter that is discriminative. Or a filter that is stable. But not one that is both.

42

Separate High Frequency Signals with Lipschitz Filter – No Deformation

Filter that learns to identify xi = vi

Input Output

xi = vi yi = h̃(λi)vi ≈ vi

xj = vj yj = h̃(λj)vj ≈ 0

λi λj

Filter that learns to identify xj = vj

Input Output

xi = vi yi = h̃(λi)vi ≈ 0

xj = vj yj = h̃(λj)vj ≈ vj

λi λj
λi λj

43

Separate High Frequency Signals with Lipschitz Filter – After Deformation

Filter that learns to identify xi = vi

Input Output

xi = vi yi = h̃(λ̂i)vi = (small)vi

xj = vj yj = h̃(λ̂j)vj ≈ 0

λi λj
λ̂i λ̂j

Filter that learns to identify xj = vj

Input Output

xi = vi yi = h̃(λ̂i)vi = (small)vi

xj = vj yj = h̃(λ̂j)vj = (small)vj

λi λj
λ̂i λ̂j

44

Stability vs Discriminability Non-Tradeoff of Graph Filters

Fact: This is not what we would had expected a priori

It is reasonable to expect discriminability to be in conflict with stability. But this is not what

happens. They are plainly incompatible.

I There is some tradeoff. Increasing C improves discriminability

⇒ But the effect is marginal at high frequencies

⇒ Given a stable filter there’s always a graph with features that can’t be discriminated by the filter

I The tradeoff is different at different frequencies. We can be more stable at low frequencies

45

The Stability vs Discriminability Tradeoff of GNNs

I The effect of pointwise nonlinearities is to move high frequencies into lower parts of the spectrum

⇒ Where they can be discriminated with stable filters at deeper layers

46

GNNs Inherit the Stability Properties of Graph Filters

I Nonlinearity is pointwise ⇒ Same stability theorem that holds for graph filters, also holds for GNNs.

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).

47

Stability vs Discriminability Tradeoff of GNNs

I Fact: It is possible to discriminate high frequency components with a stable GNN

⇒ GNNs inherits the (good) stability properties of graph filters

⇒ But they don’t have to inherit the (bad) discriminability properties of graph filters

I Pointwise nonlinearities demodulate high frequencies ⇒ Stable discrimination in deeper layers

48

Isolate High Frequency Signals – No Deformation

Filter that learns to isolate xi = vi and xj = vj

Input Output

xi = vi yi = h̃(λi)vi ≈ vi

xj = vj yj = h̃(λj)vj ≈ vj

I Separates them from the rest. But it

doesn’t discriminate between them

λi λjλi λj

49

Isolate High Frequency Signals – After Deformation

Filter that learns to isolate xi = vi and xj = vj

Input Output

xi = vi yi = h̃(λ̂i)vi ≈ vi

xj = vj yj = h̃(λ̂j)vj ≈ vj

I It is, however, stable to deformations.

λ̂i λ̂j

50

Pointwise Nonlinearities are Frequency Mixers

I Nonlinearities σ(vi) and σ(vj) spread

energy across all frequencies

I Some energy where it used to be

I Some energy at other high frequencies

I Some energy at medium frequencies

I Some energy at low frequencies

I Where it can be discriminated with a

stable filter in Layer 2

Spectrum of nonlinearity applied to vi ⇒ VHσ(vi)

λiλiλi λ̂i

Spectrum of nonlinearity applied to vj ⇒ VHσ(vj)

λjλjλj λ̂j

51

Stability vs Discriminability Tradeoff of GNNs

Fact: It is possible to discriminate high frequency components with a stable GNN

A GNN can be discriminative. And it can be stable. Stability and discriminability are compatible

I Stable layers can’t discriminate high frequency components. They must use integral Lipschitz filters

I But nonlinearities are low pass ⇒ They demodulate high frequencies into low frequencies

⇒ ReLU: max(0, x). Absolute value: |x |. Hyperbolic tangent: (e2x − 1)/(e2x + 1).

I Where a deeper layer can discriminate them with a stable filter

52

Equivariance, Stability, and Transference

53

Good and Bad Questions

I Some questions are good. Some questions are bad. Some are so bad they don’t even have an answer

I Does this work and should this work are not scientific questions. They can’t be proven or disproven

⇒ The questions are so bad they don’t even have an answer

I The theorems we have proven make scientific predictions. Which we can validate experimentally

54

Permutation Equivariance: Predictions

Theorem: Graph filters are equivariant to permutations of the shift operator

Theorem: GNNs are equivariant to permutations of the shift operator

Prediction: Graph filters outperform generic linear regression

Prediction: GNNs outperform generic fully connected neural networks (FCNNs)

55

Permutation Equivariance: Experiment 1

I Graph filters outperform linear regression when learning rating predictions in recommendation systems

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or
56

Permutation Equivariance: Experiment 2

I GNNs outperform FCNNs when learning rating predictions in recommendation systems

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n
Sq

ua
re

 E
rr

or

I Permutation equivariance of the task is crucial. You can’t use a GNN just because you have a graph

57

Stability to Deformations: Prediction

Theorem: Graph filters are stable to graph deformations if they are integral Lipschitz

Theorem: GNNs made up of integral Lipschitz layers are stable to graph deformations

Prediction: GNNs outperform graph filters

They are equality stable but better at discriminating high frequency components

58

Stability to Deformations: Experiment

I GNNs outperform graph filters when learning rating predictions in recommendation systems

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
Sq

ua
re

 E
rr

or

I The difference is small ⇒ Rating prediction is largely a low frequency problem

59

An Orphan Experiment

I It is possible to transfer a GNN to a graph with a (much) larger number of nodes

200 300 400 500 600 700 800
Nodes of the Graph

0.950

0.955

0.960

0.965

0.970

0.975

M
ea

n
Sq

ua
re

 E
rr

or

I This child need a mom ⇒ We study transference with graphon filters and graphon neural networks

60

	First Midterm
	Learning Ratings in Recommendation Systems
	Learning Ratings with Graph Filters and GNNs
	Permutation Equivariance
	Stability of Graph Filters to Graph Perturbations
	Stability and Discriminability are Incompatible in Graph Filters
	The Stability vs Discriminability Tradeoff of GNNs
	Equivariance, Stability, and Transference

