
First Midterm

I We are halfway through the course. It is time for a midterm
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Quiz

What?

Why?

⇒

⇒

Machine learning on graphs

Generic models of signal structure

Models of distributed physical infrastructure

How?

Does this work?

Should this work?

⇒

⇒

⇒

Graph Neural Networks

Yes: Examples

Yes: Equivariance and Stability
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How? ⇒ Signals Supported on Graphs

I We saw several systems (and there are many more) that can be modeled with graph signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components
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I Nodes are customers. Signal values are product ratings. Edges are cosine similarities of past scores
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I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges
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How? ⇒ Signals Supported on Graphs

I We saw several systems (and there are many more) that can be modeled with graph signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components
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I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength
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How? ⇒ Graph Convolutional Filters

I A Graph filter on shift operator S with coefficients hk is a polynomial on S ⇒ H(S) =
∞∑
k=0

hkSk

I A convolutional filter depends on the filter coefficients hh and the graph shift operator S

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

h?Sx
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How? ⇒ Graph Convolutions

I A graph convolution is the result of applying a graph filter ⇒ h?Sx = H(S)x =

[ ∞∑
k=0

hkSk

]
x

I A weighted linear combination of the elements of the diffusion sequence ≡ Shift. Scale. Sum

S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

h0S0x + h1S1x + h2S2x + h3S3x

h?Sx
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How? ⇒ Graph Neural Networks (GNNs)

I A GNN with L layers follows L recursions of the form

x` = σ
[

z`
]

= σ

[
K−1∑
k=0

h`k Sk x`−1

]

I The output of the GNN is the output of layer L

xL = Φ(x; S,H)

I Depends on filter tensor and shift operator

Layer 1

Layer 2

Layer 3

x0 = x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[

z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[

z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[

z3

]z3

x1

x1

x1

x1

x2

x2

x2

x2

x3 = Φ(x; S,H)
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How? ⇒ Graph Neural Networks with Multiple Features

I Improve expressive power with MIMO graph filters

X` = σ
[

Z`
]

= σ

[
K−1∑
k=0

Sk X`−1H`k

]

I The output of GNN is the output of layer L

XL = Φ(X; S,H)

I Depends on filter tensor and shift operator

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)
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How? ⇒ Some Observations About Graph Neural Networks

I Graph neural networks are...

⇒ Minor variations of graph filters

⇒ Pointwise nonlinearities and compositions

⇒ Transferable across different graphs

⇒ Generalizations of CNNs (line graph)

⇒ Particularizations of fully connected NNs

Layer 1

Layer 2

Layer 3

X0 = X

Z1 =

K−1∑
k=0

Sk X H1k X1 = σ
[

Z1

]Z1

Z2 =

K−1∑
k=0

Sk X1 H2k X2 = σ
[

Z2

]Z2

Z3 =

K−1∑
k=0

Sk X2 H3k X3 = σ
[

Z3

]Z3

X1

X1

X1

X2

X2

X2

X3 = Φ(X; S,H)
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Does This Work and Should This work?

I Does this work? ⇒ Recommendation Systems. Wireless Communication Networks

I Should this work?

⇒ Graph filters and GNNs are permutation equivariant. They leverage symmetries

⇒ GNNs have a better stability vs discriminability tradeoff They leverage quasi-symmetries
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Learning Ratings in Recommendation Systems

I Formulate recommendation systems as ERM problems that predict ratings that users give to items
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Recommendation Systems

I In a recommendation system, we want to predict the rating a user would give to an item

I Collect ratings that some users give to some items ⇒ These are rating histories

I Exploit product similarities to predict ratings of unseen user-item pairs

I Example 1 ⇒ In an online store items are products and users are customers

I Example 2 ⇒ In a movie repository items are movies and users are watchers
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Ratings and Sampled Ratings

I For all items i and users u there exist ratings ⇒ yui

⇒ User rating vector yu has entries yui

I We only observe a subset of ratings ⇒ xui

⇒ Observed user rating vector xu has entries xui

⇒ We assume xui = 0 if item i is unrated by user u
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Product Ratings as Graph Signals

I Construct product similarity graph with weights wij represent likelihood of similar scores

I Interpret vector of ratings yu of user u as a graph signal supported on the product similarity graph

I The observed ratings xu of user u are a subsampling of this graph signal.

I Our goal is to learn to reconstruct the rating graph signal yu from the observed ratings xu

I Build similarity graph using available ratings. Use of expert knowledge is common as well
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Product Similarity Graph

I Consider pair of products i and j . Restrict attention to set of users that rated both products ⇒ U ij

I Mean ratings restricted to users that rated products i and j

µij =
1

#(U ij)

∑
u∈Uij

xui µji =
1

#(U ij)

∑
u∈Uji

xuj

I Similarity score = correlation restricted to users in U ij

σij =
1

#(U ij)

∑
u∈Ui j

(
xui − µij

)(
xuj − µji

)
I Weights = normalized correlations ⇒ wij = σij

/√
σiiσjj
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Loss for Measuring Rating Prediction Quality

I Given observed ratings xu the AI produces estimates Φ(xu). We want Φ(xu) to approximate yu

`
(

yu,Φ(xu)
)

=
1

2

∥∥∥ yu − Φ(xu)
∥∥∥2

I In reality, we want to predict the rating of specific item i

`
(

yu,Φ(xu)
)

=
1

2

(
eTi yu − eTi Φ(xu)

)2

I Where ei is a vector in the canonical basis ⇒ (ei )i = 1, (ei )j = 0 for j 6= i
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Training Set

I For each item i let U i be the set of users that have rated i . Construct training pairs (x, y) with

y =
(

eTi xu
)

ei x = xu − y for all u ∈ U i , for all i

I Extract the rating xui of item i . Record into graph signal y

I Remove rating xui from xu. Record to graph signal x

I Repeat for all users in the set U i of users that rated i

I Repeat for all items ⇒ Training set T
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Learning Rating Predictions

I Parametrized AI Φ(xu) = Φ(xu;H). We want to find solution of the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I Two bad ideas ⇒ Linear regression. Fully connected neural networks

I Two good ideas ⇒ Graph filters. Graph neural networks
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Learning Ratings with Graph Filters and GNNs

I We use graph filters and graph neural networks to learn ratings in recommendation systems

I We contrast with the use of linear regression and fully connected neural networks
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Movie Ratings Dataset

I Use MovieLens-100k as benchmark ⇒ 106 ratings given by U = 943 users to M = 1, 682 movies

I The ratings for each movie are between 1 and 5. From one star to five starts

I Train and test several machine learning parametrizations.
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Empirical Risk Minimization

I We predict ratings using AI that results from solving the ERM problem

H∗ = argmin
H

∑
(x,y)∈T

(
eTi y − eTi Φ(x;H)

)2

I Parameterizations that ignore data structure= ⇒ Linear regression. Fully connected NNs

I Parameterizations that leverage data structure= ⇒ Graph filters. Graph NNs
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Linear Regression and Graph Filters

I Linear regression reduces training MSE to about 2. Quite bad for ratings that vary from 0 to 5

I Graph filter reduces training MSE to about 1. Not too good. Humans are not that predictable
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I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries
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Linear Regression and Graph Filters

I Linear regression works even worse in the test set

I The test MSE of the graph filter is about the same as the training MSE. It generalizes
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I Graph filter outperforms linear regression ⇒ Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs

I The fully connected NN reduces the MSE to about 0.8. Looks like a great accomplishment.

I Graph NN reduces test MSE to about 0.9. Not bad. But not as good as the fully connected NN
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I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries
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Fully Connected NNs and Graph NNs

I But the fully connected NN does not do well in the test set. It does not generalize

I The test MSE of the graph NN is about the same as the training MSE. It generalizes

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n 
Sq

ua
re

 E
rr

or

0 50 100 150 200 250 300
Iterations

0

1

2

3

4

5

6

7

8

M
ea

n 
Sq

ua
re

 E
rr

or

I Graph NN outperforms fully connected NN ⇒ Leverages underlying permutation symmetries
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Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant
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I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff
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Graph Filters and Graph Neural Networks

I The graph filter and the GNN do well in the training and test set. They generalize well

I The GNN does a little better. Not by much. But an extra 10% is not irrelevant
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I GNN outperforms graph filter ⇒ The GNN has a better stability-discriminability tradeoff
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Transferability

I A GNN can be trained on a graph with a small number of nodes ...

⇒ And transferred to a graph with a (much) larger number of nodes. Without retraining
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I In this recommendation system, transference incurs no MSE degradation ⇒ MSE is further reduced
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The Engineer and the Scientist

I The engineer is satisfied ⇒ Proposed a method (GNNs). They demonstrated that it works

I The scientist is curious ⇒ The method worsk. But they don’t know why.

I This is the motivation for out analyses. Which we will proceed to review
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Permutation Equivariance

I Graph filters and GNN are equivariant to permutations ⇒ They can exploit signal symmetries

I Predicting that they should outperform linear regression and fully connected neural networks
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Permutation Equivariance of Graph Filters

I It is ready to show that graph filters are equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator Ŝ = PT SP and input signal x̂ = PT x. Then

H(Ŝ)x̂ = PT H(S)x

I Relabeling the input signal results in a consistent relabeling of the output signal

I Graph filters leverage permutation symmetries of graphs and graph signals
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Permutation Equivariance of Graph Neural Networks

I It is equally ready to show that GNNs are also equivariant to permutations of the input signals

Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator Ŝ = PT SP and input signal x̂ = PT x. Then

Φ(x̂; Ŝ,H) = PT Φ(x; S,H)

I Relabeling the input signal results in a consistent relabeling of the output signal

I Graph neural networks leverage permutation symmetries of graphs and graph signals
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Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output
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Signal Processing with Graph Filters and GNNs is Independent of Labeling

I Graph filters and GNNs, perform label-independent processing of graph signals

⇒ Permute input and shift ≡ Relabel input ⇒ Permute output ≡ Relabel output

GNN output Φ(x; S,H) supported on S
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Graph Filters and GNNs Explouit Permutation Symmetries

I Equivariance lets graph filters and GNNs exploit permutation symmetries of graphs and graph signals

I By symmetry we mean that the graph can be permuted onto itself ⇒ S = PTSP

I Equivariance theorem implies ⇒ Φ
(

PT x; S,H
)

= Φ
(

PT x; PTSP,H
)

= PTΦ
(

x; S,H
)

From observing x supported on S
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It is Quasi-Symmetry we Want to Exploit. Not Symmetry

I Graph not symmetric but close to symmetric ⇒ Deformed version of a permutation of itself

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

1

x1

2
x23

x3

4

x4

5
x5

6
x6

7

x7

8

x8

9

x9

10

x10

11
x11

12
x12

I Quasi-Symmetry, not symmetry ⇒ Stability to deformations that are close to permutation.

I GNNs have better stability properties than graph filters ⇒ Better at leveraging quasi-symmetries.
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Stability of Graph Filters to Graph Perturbations

I Graph filters that are integral Lipschitz are stable to relative deformations of the graph
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Frequency Response of a Graph Filter

I Graph filters are operators defined on graph shift operators ⇒ H(S) =
∞∑
k=1

hkSk

I They are completely characterized by their frequency responses ⇒ h̃(λ) =
∞∑
k=1

hkλ
k

λ

h̃(λ)
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The Effect of the Graph

I Graph S has eigenvalues λi ⇒ The response is instantiated at these eigenvalues h̃(λi ) =
∞∑
k=1

hkλ
k
i

I Graph Ŝ has eigenvalues λ̂i ⇒ The response is instantiated at these eigenvalues h̃(λ̂i ) =
∞∑
k=1

hk λ̂
k
i

λ

h̃(λ)
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Relative Perturbations of a Shift Operator

I Meaningful perturbations of a shift operator operator are relative ⇒ PT ŜP = S + ES + SE

I Conceptually, we learn all there is to be learnt from dilations ⇒ Ŝ = S + εS

I Eigenvalues are dilated λi → λ̂i = (1 + ε)λi . Frequency response instantiated on dilated eigenvalues

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Higher Frequencies are More Difficult to Process

I Higher eigenvalues move more. Signals with high frequency components are more difficult to process

⇒ Even small perturbations yield large differences in the filter values that are instantiated

⇒ We think we instantiate h
(
λi

)
⇒ But in reality we instantiate h

(
λ̂i

)
= h

(
(1 + ε)λi

)

λl λm λhλl λm λh λ

h̃(λ)

λl λm λhλ̂l λ̂m λ̂h
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Stability Requires Integral Lipschitz Filters

I To attain stable graph signal processing we need integral Lipschitz filters ⇒
∣∣λh̃′(λ)

∣∣ ≤ C

I Either the eigenvalue does not change because we are considering low frequencies

I Or the frequency response does not change when we are considering high frequencies

λl λhλl λh λ

h̃(λ)

λl λhλ̂l λ̂h
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Pictures are Worth a Thousand Theorems

I But only when they illustrate theorems! We’ve proven that integral Lipschitz filters are stable

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) S and Ŝ are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) Error matrix has norm ‖E‖ = ε and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by∥∥H(Ŝ)− H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).
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Stability and Discriminability are Incompatible in Graph Filters

I The stability vs discriminability tradeoff depends on the frequency components of the signal
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Discriminative Filter at Low Frequencies

I At low frequencies a sharp highly discriminative filter is also highly stable

⇒ Ideal response h
(
λl

)
is very close to perturbed response h

(
λ̂l

)
= h

(
(1 + ε)λl

)

λlλl λ

h̃(λ)

λl λ̂l
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Discriminative Filter at Medium Frequencies

I At intermediate frequencies a sharp highly discriminative filter is somewhat stable

⇒ Ideal response h
(
λm

)
is somewhat close to perturbed response h

(
λ̂m

)
= h

(
(1 + ε)λm

)

λmλm λ

h̃(λ)

λm λ̂m
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Discriminative Filter at High Frequencies

I At high frequencies a sharp highly discriminative filter is unstable. It becomes useless

⇒ Ideal response h
(
λh

)
is very different from perturbed response h

(
λ̂h

)
= h

(
(1 + ε)λh

)

λhλh λ

h̃(λ)

λh λ̂h
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Stability vs Discriminability Non-Tradeoff of Graph Filters

Fact: It is impossible to discriminate high frequency components with a stable filter

We can have a filter that is discriminative. Or a filter that is stable. But not one that is both.
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Separate High Frequency Signals with Lipschitz Filter – No Deformation

Filter that learns to identify xi = vi

Input Output

xi = vi yi = h̃(λi )vi ≈ vi

xj = vj yj = h̃(λj)vj ≈ 0

λi λj

Filter that learns to identify xj = vj

Input Output

xi = vi yi = h̃(λi )vi ≈ 0

xj = vj yj = h̃(λj)vj ≈ vj

λi λj
λi λj
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Separate High Frequency Signals with Lipschitz Filter – After Deformation

Filter that learns to identify xi = vi

Input Output

xi = vi yi = h̃(λ̂i )vi = (small)vi

xj = vj yj = h̃(λ̂j)vj ≈ 0

λi λj
λ̂i λ̂j

Filter that learns to identify xj = vj

Input Output

xi = vi yi = h̃(λ̂i )vi = (small)vi

xj = vj yj = h̃(λ̂j)vj = (small)vj

λi λj
λ̂i λ̂j
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Stability vs Discriminability Non-Tradeoff of Graph Filters

Fact: This is not what we would had expected a priori

It is reasonable to expect discriminability to be in conflict with stability. But this is not what

happens. They are plainly incompatible.

I There is some tradeoff. Increasing C improves discriminability

⇒ But the effect is marginal at high frequencies

⇒ Given a stable filter there’s always a graph with features that can’t be discriminated by the filter

I The tradeoff is different at different frequencies. We can be more stable at low frequencies
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The Stability vs Discriminability Tradeoff of GNNs

I The effect of pointwise nonlinearities is to move high frequencies into lower parts of the spectrum

⇒ Where they can be discriminated with stable filters at deeper layers
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GNNs Inherit the Stability Properties of Graph Filters

I Nonlinearity is pointwise ⇒ Same stability theorem that holds for graph filters, also holds for GNNs.

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).
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Stability vs Discriminability Tradeoff of GNNs

I Fact: It is possible to discriminate high frequency components with a stable GNN

⇒ GNNs inherits the (good) stability properties of graph filters

⇒ But they don’t have to inherit the (bad) discriminability properties of graph filters

I Pointwise nonlinearities demodulate high frequencies ⇒ Stable discrimination in deeper layers
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Isolate High Frequency Signals – No Deformation

Filter that learns to isolate xi = vi and xj = vj

Input Output

xi = vi yi = h̃(λi )vi ≈ vi

xj = vj yj = h̃(λj )vj ≈ vj

I Separates them from the rest. But it

doesn’t discriminate between them

λi λjλi λj
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Isolate High Frequency Signals – After Deformation

Filter that learns to isolate xi = vi and xj = vj

Input Output

xi = vi yi = h̃(λ̂i )vi ≈ vi

xj = vj yj = h̃(λ̂j )vj ≈ vj

I It is, however, stable to deformations.

λ̂i λ̂j

50



Pointwise Nonlinearities are Frequency Mixers

I Nonlinearities σ(vi ) and σ(vj) spread

energy across all frequencies

I Some energy where it used to be

I Some energy at other high frequencies

I Some energy at medium frequencies

I Some energy at low frequencies

I Where it can be discriminated with a

stable filter in Layer 2

Spectrum of nonlinearity applied to vi ⇒ VHσ(vi )

λiλiλi λ̂i

Spectrum of nonlinearity applied to vj ⇒ VHσ(vj )

λjλjλj λ̂j
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Stability vs Discriminability Tradeoff of GNNs

Fact: It is possible to discriminate high frequency components with a stable GNN

A GNN can be discriminative. And it can be stable. Stability and discriminability are compatible

I Stable layers can’t discriminate high frequency components. They must use integral Lipschitz filters

I But nonlinearities are low pass ⇒ They demodulate high frequencies into low frequencies

⇒ ReLU: max(0, x). Absolute value: |x |. Hyperbolic tangent: (e2x − 1)/(e2x + 1).

I Where a deeper layer can discriminate them with a stable filter
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Equivariance, Stability, and Transference
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Good and Bad Questions

I Some questions are good. Some questions are bad. Some are so bad they don’t even have an answer

I Does this work and should this work are not scientific questions. They can’t be proven or disproven

⇒ The questions are so bad they don’t even have an answer

I The theorems we have proven make scientific predictions. Which we can validate experimentally
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Permutation Equivariance: Predictions

Theorem: Graph filters are equivariant to permutations of the shift operator

Theorem: GNNs are equivariant to permutations of the shift operator

Prediction: Graph filters outperform generic linear regression

Prediction: GNNs outperform generic fully connected neural networks (FCNNs)
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Permutation Equivariance: Experiment 1

I Graph filters outperform linear regression when learning rating predictions in recommendation systems
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Permutation Equivariance: Experiment 2

I GNNs outperform FCNNs when learning rating predictions in recommendation systems
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I Permutation equivariance of the task is crucial. You can’t use a GNN just because you have a graph
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Stability to Deformations: Prediction

Theorem: Graph filters are stable to graph deformations if they are integral Lipschitz

Theorem: GNNs made up of integral Lipschitz layers are stable to graph deformations

Prediction: GNNs outperform graph filters

They are equality stable but better at discriminating high frequency components
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Stability to Deformations: Experiment

I GNNs outperform graph filters when learning rating predictions in recommendation systems
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I The difference is small ⇒ Rating prediction is largely a low frequency problem
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An Orphan Experiment

I It is possible to transfer a GNN to a graph with a (much) larger number of nodes
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I This child need a mom ⇒ We study transference with graphon filters and graphon neural networks
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