
Additive Perturbations of Graph Filters

I We define additive perturbations of the graph support
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A Graph Filter can be Perturbed in Three Ways but Only One is Interesting

I Graph filter H(S) is a polynomial on shift operator S with coefficients hk . Outputs given by

H(S) x =
K−1∑
k=0

hkSkx

I Perturbations of the input ⇒ The filter is linear in x. Scale error by filter’s norm.

I Perturbations of the coefficients ⇒ Filter is linear in hk . Plus, hk is a design parameter.

I Perturbations of the shift operator S ⇒ It is not easy (nonlinear). And it is necessary.

⇒ The graph is estimated (recommendation systems). The graph changes (distributed systems)

⇒ Quasi-symmetries in graphs that are quasi-invariant to permutations
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Perturbations of Graph Filters

I Apply the same filter h to the same signal x on different graphs shift operators S and Ŝ

H(S) x =
K−1∑
k=0

hkSkx H(Ŝ) x =
K−1∑
k=0

hk Ŝkx

I Filter H(S) x ⇒ Coefficients hk . Input signal x. Instantiated on shift S

I Filter H(Ŝ) x̂ ⇒ Same Coefficients hk . Same Input signal x. Instantiated on perturbed shift Ŝ

I We investigated scalings Ŝ = (1 + ε)S are an example. But we are after more generic models.
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Additive Perturbation

I Additive perturbation model ⇒ Ŝ = S + E .

I Error matrix E = Ŝ− S exists for any pair S, Ŝ. ⇒ It’s norm ‖E‖ quantifies their difference

I A flaw ⇒ Graphs S and Ŝ = PTSP are the same (relabeling). Yet we may not have ‖E‖ = 0.

I We know better ⇒ Operator distances modulo permutation
∥∥ Ŝ− S

∥∥
P = min

P

∥∥ ŜPT − PTS
∥∥
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Additive Perturbation Modulo Permutation

I We need a concrete handle on the error matrix. Start from set of symmetric error matrices

E(S, Ŝ) =
{

Ẽ : PT Ŝ P = S + Ẽ , P ∈ P
}

I For each permutation P ∈ P we have a different error matrix Ẽ = PT ŜP− S in the set E(S, Ŝ)

I Error matrix modulo permutation is the one with smallest norm ⇒ E = argmin
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Rewrite the distance modulo permutation as ⇒ d(S, Ŝ) = ‖E‖ = min
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Error norm ‖E‖ = d(S, Ŝ) measures how far S and Ŝ are from being permutations of each other
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Eigenvector Misalignement Constant

I Consider eigenvector decompositions of the shift S = VΛVH and the error E = UMUH

I Define the eigenvector misalignment between the shift operator S and the error matrix E as

δ =
(∥∥U− V

∥∥+ 1
)2
− 1

I Since U and V are unitary matrices ‖U‖ = ‖V‖ = 1 ⇒ δ ≤ 8 = [(2 + 1)2 − 1]

⇒ The eigenvector misalignment δ is never large. It can be small. Depending on the error model.
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Stability of Lipschitz Filters to Additive Perturbations

I We show that Lipschitz filters are stable to additive perturbations of the graph support.
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Lipschitz Filters are Stable to Additive Perturbations

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) Shift operators S and Ŝ are related by PT ŜP = S + E with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The filter h is Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

8



Parse the Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I If shifts S and Ŝ are ε-close the filters H(S) and H(Ŝ) are ε-close. Modulo permutation

I Proportional to the Lipschitz constant of the filter’s frequency response. Not integral Lipschitz

I Proportional to (1 + δ
√
n). Not great for large graphs. Unless misalignement decreases with n.

I Growth with n is at most (1 + 8
√
n) ≥ (1 + δ

√
n). Because δ ≤ 8. Not that bad
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Stability is Stronger than Continuity

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Filter perturbations are first order Lipschitz continuous with respect to the perturbation’s size ε

⇒ With Lipschitz constant ⇒ C
(

1 + δ
√
n
)

I Stronger than plain continuity. Which would say “output changes are small if input changes are”
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Universality of the Stability Bound

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound is universal for all graphs with a given number of nodes n. Bound depends on:

⇒ A property of the filter’s frequency response. The filter’s Lipschitz constant C

⇒ And properties of the perturbation E. The eigenvector misalignement δ and the norm ‖E‖ = ε

I There is no constant in the bound that depends on the graph shift operator S. Save for n.
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The Filter’s Lipschitz Constant is a Controllable Design Parameter

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I The filter’s Lipschitz constant C is a parameter that we can affect with judicious filter choice

I Discriminability / stability tradeoff. Larger C improves discriminability at the cost of stability
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The Eigenvector Misalignment is an Uncontrollable Property of the Perturbation

Theorem (Lipschitz Filters are Stable to Additive Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ C

(
1 + δ

√
n
)
ε + O(ε2).

I Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

⇒ Not very relevant in studying stability / discriminability tradeoffs of different filters.

I Meaningless asymptotically on n. Don’t know much about perturbations in the limit of large n
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Lipschitz Filters are Good News

I Stability to additive perturbations requires Lipschitz filters. Not integral Lipschitz as with scalings

I Genuine stability / discriminability tradeoff ⇒ Larger C tradeoffs stability for discriminability

I We can always discriminate, regardless of frequency, if we tolerate enough discriminability.

λ

h̃(λ)
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Relative Perturbations of Graph Filters

I Proved enticing stability properties with respect to additive perturbations. Alas, not meaningful

I We switch focus to relative perturbations. Which tie perturbations to the graph structure
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Limitations of Additive Perturbations

I Additive perturbations are not meaningful

PT ŜP = S + E

I With w � 1�W .

⇒ Is this perturbation small or large?

I Edges with small weights w can change a lot

because other edges have large weights W
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Relative Perturbations are Meaningful

I Relative perturbations are more meaningful

PT ŜP = S + E = S + εIS

I With w � 1�W and ε� 1

⇒ Is this perturbation small or large?

I It’s small. Edges with small weights change

little. Edges with large weights change more
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Relative Perturbations Modulo Permutations

I Relative perturbation model ⇒ Ŝ = S + ES + SE. We must account for permutations (relabeling)

I Set of relative error matrices modulo permutation. Matrices Ẽ are symmetric, Ẽ = ẼT

E(S, Ŝ) =
{

Ẽ : PT ŜP = S + ẼS + SẼ , P ∈ P
}

I Relative error matrix modulo permutation is the one with smallest norm ⇒ E = argmin
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Define relative distance modulo permutation as ⇒ d(S, Ŝ) = ‖E‖ = min
Ẽ∈E(S,Ŝ)

‖Ẽ‖

I Norm ‖E‖ = d(S, Ŝ) is a relative measure of how far Ŝ is from being a permutation of S

18



Relative Perturbations are Tied to the Local Structure of the Graph

I Relative perturbations tie changes in the edge weights to the local structure of the graph

I Compare edge weights in the given matrix S and the permuted version of the perturbations Ŝ

(
PT ŜP

)
ij

= S ij +
(

ES
)
ij

+
(

SE
)
ij

= S ij +
∑
k∈n(j)

EikSkj +
∑
k∈n(i)

SikEkj

I Edge changes are proportional to the degree of the incident nodes. Scaled by entries of error matrix

I Parts of the graph with weaker connectivity see smaller changes than parts with stronger links

I In generic additive perturbations weights can change the same regardless of local connectivity
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Stability of Integral Lipschitz Filters to Relative Perturbations

I We show that integral Lipschitz filters are stable to relative perturbations of the graph support.
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Integral Lipschitz Filters are Stable to Relative Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

Consider graph filter h along with shift operators S and Ŝ having n nodes. If it holds that:

(H1) S and Ŝ are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) Error matrix has norm ‖E‖ = ε and eigenvector misalignment constant δ relative to S

(H3) The filter is integral Lipschitz with constant C

Then, the operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).
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Of Relative and Additive Perturbations

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Save for the 2 factor, it is the same bound we have for the case of additive perturbations.

I The difference is in hypotheses (H1) and (H3). Hypothesis (H2) does not change

(H1) The perturbation is relative. ⇒ PT ŜP = S + ES + SE. Not additive.

(H3) The filter is integral Lipschitz with constant C . Not regular Lipschitz.
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Parse the bound

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I If S and Ŝ are ε-close in relative terms, the filters H(S) and H(Ŝ) are ε-close. Modulo permutation

I Proportional to the integral Lipschitz constant of the filter’s frequency response.

I Proportional to (1 + δ
√
n). Not great for large graphs. Unless the misalignment decreases with n.
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Stability is Stronger than Continuity

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) satisfies

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Filter perturbations are first order Lipschitz continuous with respect to the perturbation’s size ε

⇒ With Lipschitz constant ⇒ 2C
(

1 + δ
√
n
)

I Stronger than plain continuity. Which would say “output changes are small if input changes are”

I Input perturbation measure is relative ⇒ Norm ‖E‖ = ε in mulitplicative perturbation ES + SE
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Universality of the Stability Bound

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound is universal for all graphs with a given number of nodes n. Bound depends on:

⇒ A property of the filter’s frequency response. The filter’s integral Lipschitz constant C

⇒ And properties of the perturbation E. The eigenvector misalignement δ and the norm ‖E‖ = ε

I There is no constant in the bound that depends on the graph shift operator S. Save for n.
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The Eigenvector Misalignment is an Uncontrollable Property of the Perturbation

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Eigenvector misalignment δ is a property of the perturbation matrix. Independent of filter choice

I Meaningless asymptotically on n. Growth is not terrible. It is at most 1 + 8
√
n
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Filter’s are Required to be Integral Lipschitz

Theorem (Integral Lipschitz Filters are Stable to Relative Perturbations)

The operator distance modulo permutation between filters H(S) and H(Ŝ) is bounded by

∥∥H(Ŝ)−H(S)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
ε + O(ε2).

I Bound depends on integral Lipschitz constant C . Very different from Lipschitz constant

I Can decrease C to increase stability. But effect on Discriminability depends on the frequency.

⇒ Discriminative at low frequencies regardless of C

⇒ Non-discriminative at high frequencies regardless of C
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Integral Lipschitz Filters are Not Good News

I Stability to relative perturbations requires integral Lipschitz filters. As in the case of dilations

I No stability vs discriminability tradeoff ⇒ Stability and discriminability are incompatible

I No discriminability for large λ. Regardless of how much instability we tolerate by increasing C .

λ

h̃(λ)
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Stability Properties of Graph Neural Networks

I The stability properties we studied for graph filters are inherited by GNNs
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Integral Lipschitz Filters are Stable to Dilations

I We proved that integral Lipschitz filters are stable to dilations of the shift operator

Theorem (Integral Lipschitz Graph Filters are Stable to Scaling)

Given graph shift operators S and Ŝ = (1 + ε) S and an integral Lipschitz filter with constant C .

The operator norm difference between filters H(S) and H(Ŝ) is bounded as

∥∥H(Ŝ)−H(S)
∥∥ ≤ C ε + O(ε2).
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GNNs with Integral Lipschitz Layers are Stable to Dilations

I And that GNNs with integral Lipschitz layers inherit the stability of the filters to these dilations

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators S and Ŝ = (1 + ε) S and a GNN operator Φ(·; S,H) with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with constant

C . The nonlinearity σ is normalized Lipschitz. Then

∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥ ≤ C L ε + O(ε2).
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GNNs Inherit Any Stability Properties that Filters May Have

I The proof has nothing that is specific to dilations

⇒ Any stability property that a class of graph filters has is inherited to a respective GNN

Theorem (Integral Lipschitz GNNs are Stable to Scaling)

Given shift operators S and Ŝ = (1 + ε) S and a GNN operator Φ(·; S,H) with L single-feature

layers. The filters at each layer have unit operator norms and are integral Lipschitz with constant

C . The nonlinearity σ is normalized Lipschitz. Then

∥∥Φ(·; Ŝ,H)− Φ(·; S,H)
∥∥ ≤ C L ε + O(ε2).
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GNNs Inherit Any Stability Properties that Filters May Have

I Lipschitz filters are stable to additive deformations of the shift operator

⇒ GNNs with Lipschitz layers are stable to additive deformations of the shift operator

I Integral Lipschitz filters are stable to relative deformations of the shift operator

⇒ GNNs with integral Lipschitz layers are stable to relative deformations of the shift operator
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Normalizations

I Reminders and precision are redundant but not unnecessary. Normalize filters and nonlinearities.

I At each layer of the GNN, the filters have unit operator norm ⇒
∥∥H`(S)

∥∥ = 1

⇒ Easy to achieve with scaling ⇒ Equivalent to max
λ

h̃`(λ) = 1

I The nonlinearity σ is Lipschitz and normalized so that ⇒
∥∥σ(x2)− σ(x1)

∥∥ ≤ ∥∥ x2 − x1

∥∥
⇒ Easy to achieve with scaling. True of ReLU, hyperbolic tangent, and absolute value

I Joining both assumptions ⇒ If input energy is ‖x‖ ≤ 1, all layer outputs have energy ‖x`‖ ≤ 1
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Stability of GNNs to Additive Perturbations

Theorem (GNN Stability to Additive Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + E. With P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ C

(
1 + δ

√
n
)
Lε + O(ε2).
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The GNN Inherits the Stability of Lipschitz Filters

Theorem (GNN Stability to Additive Perturbations)

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·; S, h)
∥∥
P ≤ C

(
1 + δ

√
n
)
L ε + O(ε2).

I It is essentially the same bound we have for the case of Lipschitz filters. Propagated over L layers

I A GNN in which layers are made up of Lipschitz inherits the stability of the Lipschitz filter class

I The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).
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The GNN Inherits the Stability of Integral Lipschitz Filters

Theorem (Single Feature GNN Stability to Relative Perturbations)

The operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ, h)−Φ(·; S, h)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
L ε + O(ε2).

I It is essentially the same bound we have for integral Lipschitz filters. Propagated over L layers

I A GNN in which layers are integral Lipschitz inherits the stability of integral Lipschitz filters

I The nonlinearity is pointwise ⇒ Graph deformations have no effect on its action
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GNNs Inherit the Stability Properties of Graph Filters

I Let’s do the proof for relative perturbations and integral Lipschitz filters.

I But this time we pay attention to the fact that steps apply to any stability claim on any filter class.

I And take the chance to discuss how GNNs inherit their stability properties from graph filters
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Stability of GNNs to Relative Perturbations

Theorem (GNN Stability to Relative Perturbations)

Consider a GNN operator Φ(·; S,H) along with shifts operators S and Ŝ having n nodes. If:

(H1) Shift operators are related by PT ŜP = S + ES + SE with P a permutation matrix

(H2) The error matrix E has norm ‖E‖ = ε and eigenvector misalignement δ relative to S

(H3) The GNN has L single-feature layers with integral Lipschitz filters with constant C

(H4) Filters have unit operator norm and the nonlinearity is normalized Lipschitz

Then, the operator distance modulo permutation between Φ(·; S,H) and Φ(·; Ŝ,H) is bounded by

∥∥Φ(·; Ŝ,H)−Φ(·; S,H)
∥∥
P ≤ 2C

(
1 + δ

√
n
)
Lε + O(ε2).
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Relative Perturbations Proof, Step 1: Eliminating the Pointwise Nonlinearity

Proof: Let x` be the Layer ` output of GNN Φ(x; S,H). Input signal x with ‖x‖ = 1

Let x̂` be the Layer ` output of GNN Φ(x; Ŝ,H). Input signal x with ‖x‖ = 1

I Layer ` is a perceptron with filter H` ⇒
∥∥ x̂` − x`

∥∥ =

∥∥∥∥σ[H`(Ŝ)x̂`−1

]
− σ

[
H`(S)x`−1

] ∥∥∥∥
I Nonlinearity is normalized Lipschitz ⇒

∥∥ x̂` − x`
∥∥ ≤ ∥∥∥H`(Ŝ)x̂`−1 −H`(S)x`−1

∥∥∥
I This is the critical step of the proof. The rest of the proof is just algebra.
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Relative Perturbations Proof, Step 2: Implementing Norm Manipulations

I In last bound, add and subtract H`(Ŝ)x`−1. Triangle inequality. Submultiplicative property of norms∥∥∥ x̂` − x`
∥∥∥ ≤ ∥∥∥H`(Ŝ)x̂`−1 − H`(S)x`−1 + H`(Ŝ)x`−1 − H`(Ŝ)x`−1

∥∥∥
≤
∥∥∥H`(Ŝ)−H`(S)

∥∥∥× ∥∥∥ x`−1

∥∥∥+
∥∥∥H`(Ŝ)

∥∥∥× ∥∥∥ x̂`−1 − x`−1

∥∥∥
I Since filters are normalized ⇒ Filter norm

∥∥H`(Ŝ)
∥∥= 1. Signal norm ⇒

∥∥ x`−1

∥∥≤ 1

I Relative perturbations and integral Lipschitz ⇒
∥∥H`(Ŝ)−H`(S)

∥∥ ≤ 2C
(
1 + δ

√
n
)
ε + O(ε2)

I Put all bounds together ⇒
∥∥ x̂` − x`

∥∥ ≤ 2C
(
1 + δ

√
n
)
ε × 1 + 1 ×

∥∥ x̂`−1 − x`−1

∥∥ + O(ε2)

I Apply recursively from Layer L back to Layer 1. The L factor appears �
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GNNs Inherit the Stability of Graph Filters

GNNs Inherit the Stability of Graph Filters

Since Stability is inherited from graph filters, mutatis mutandis, the same observations hold here.

I We claim stability. Which is stronger than continuity.

I The stability bounds are universal for all graphs with a given number of nodes

I Bounds depend on filter’s Lipschitz constant C and the number of layers L. Which we control.

I And the eigenvector misalignment constant. Which we don’t control. Depends on the perturbation.
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GNNs and Additive Perturbations

I GNNs whose layers are made up of Lipschitz graph filters are stable to additive deformations

I This is good news ⇒ We have a genuine stability vs discriminability tradeoff

I Alas, a bit of a mirage ⇒ Graph perturbations are more naturally measured in relative tems

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

I Integral Lipschitz filters have to be flat at high frequencies. ⇒ They can’t discriminate

I It is impossible to separate signals with high frequency features and be stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I Meaningful stability claims with respect to relative perturbations require integral Lipschitz filters.

I On the flip side, integral Lipschitz filter can be very sharp at low frequencies

I We can be very discriminative at low frequencies. And at the same very stable to deformations

λ

h̃(λ)
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The Stability / Discriminability Tradeoff of GNNs

I GNNs use low-pass nonlinearities to demodulate high frequencies into low frequencies

I Where they can be discriminated sharply with a stable filter at the next layer

I Thus, they can be stable and discriminative. Something that linear graph filters can’t be

λ

h̃(λ)
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