
Recommendation Systems

Luana Ruiz and Alejandro Ribeiro

October 7, 2020

In a recommendation system, we want to predict the ratings that cus-
tomers would give to a certain product using the product’s rating history
and the ratings that these customers have given to similar products. Col-
laborative filtering solutions build a graph of product similarities using
past ratings and consider the ratings of individual customers as graph
signals supported on the nodes of the product graph. The underlying as-
sumption is that there exist an underlying set of true ratings or scores as
shown in Figure 1-(a), but that we only observe a subset of those scores as
in Figure 1-(b). The set of scores that are not observed can be estimated
from the set of scores that have been observed. This problem can thus
be seen as an ERM problem, and our goal will be compare the ability of
several learning parametrizations to solve it.

1 Data generation

To illustrate the problem of recommendation systems with a specific nu-
merical example, we use the MovieLens-100k dataset. This dataset’s zip
folder can be downloaded from the class website and a description of the
files is provided here. The MovieLens-100k dataset consists of 100,000
ratings given by U = 943 users to M = 1682 movies. The existing movie
ratings are integer values between 1 and 5.

1

https://gnn.seas.upenn.edu/wp-content/uploads/2020/09/ml-100k.zip
https://grouplens.org/datasets/movielens/100k/

1
x1

2
x2

3
x3

4
x4

5
x5

6
x6

7
x7

8
x8

9
x9

10
x10

11
x11

12
x12

1
x1

2
x2

3
x3

4
x4

5
x5

6
x6

7
x7

8
x8

9
x9

10
x10

11
x11

12
x12

1
x1

2
x2

3
x3

4
x4

5
x5

6
x6

7
x7

8
x8

9
x9

10
x10

11
x11

12
x12

(a) (b) (c)

Figure 1. The graph represents product similarity in a recommendation system.
If we are given samples (a) for training, any reasonable parametrization learns
to complete the rating of node 3 when observing the signal in (b). Notably, the
graph filter parametrization also generalizes to predicting the rating of node 6 in
(c) when observing the signal in (b). This is true because of permutation equiv-
ariance. Graph neural networks inherit this generalization property from graph
filters.

1.1 Loading the data
1.1 Loading the data. Download the MovieLens-100k dataset and store
the movie ratings in a U ×M numpy matrix X where [X]um = xum is the
rating given by user u to movie m. If user u has not rated movie m, set
xum = 0.

1.2 Data clean-up
1.2 Data clean-up. To make the data more meaningful, we will only
consider movies rated by 150 or more users. Remove the columns of X
with less than 150 nonzero entries. Record the new column index of the
movie “Contact”, which has index 257 in the original matrix (note that
indices start at 0). Obs.: There should be no rows of all zeros, i.e., no
users with empty rating entries in the “cleaned-up” matrix. If there were
empty rows, we’d make sure to remove them as well.

The first step to building our recommendation system is to use the rating
history of all movies to compute a graph of movie similarities, in which
edges represent a similarity score between different movies. Recall that
xum is the rating that user u gives to movie m. Typically, movie m has
been rated by a subset of users which we denote Um. We consider the
sets of users U`m = U` ∩ Um that have rated movies ` and m and compute

2

correlations

σ`m =
1
|U`m| ∑

u∈U`m

(xu` − µ`m)(xum − µm`), (1)

where we use the average ratings µ`m = (1/|U`m|)∑u∈U`m
xu` and µm` =

(1/|U`m|)∑u∈U`m
xum. The movie graph used in collaborative filtering is

the one with normalized weights

w`m = σ`m

/√
σ``σmm . (2)

An important point to note is that the movie similarity graph should
only be built from training data. In order to do this, we split the users
between a training and a test set and only use the ratings of the users in
the training set to calculate the correlations σ`m following (1).

1.3 Movie similarity graph
1.3 Movie similarity graph. Randomly permute the rows of the rating
matrix X (i.e., the users) and split them between 90% for training and
10% for testing. Make sure to save the indices of the users in the training
and test sets. Using only the rows of X corresponding to the users in the
training set, generate the adjacency matrix W following (1) and (2). Set
the diagonal elements of W to zero. What is the number of nodes N of
the movie similarity graph?

1.4 Sparsifying and normalizing the graph
1.4 Sparsifying and normalizing the graph. Sparsify the matrix W by
only keeping the 40 largest entries of each row and zero-ing out all other
entries. This makes it so that each node is only connected to its 40 nearest-
neighbors. Calculate the eigendecomposition of the matrix W and nor-
malize it by the eigenvalue with largest absolute value.

The next step is to build the input-output samples of the training and test
sets. Define the vector xu = [xu1; . . . xuN] where xum is the rating that user
u gave to movie m, if available, or xum = 0 otherwise. Further denote as
Mu the set of movies rated by user u. Let m ∈ Mu be a movie rated by
user u and define the sparse vector yum whose unique nonzero entry is

3

[yum]m = xum. With these definitions we construct the training set

T =
⋃

u,m∈Mu

{
(xum, yum) : xum = xu − yum

}
. (3)

This process is repeated for all the movies in the setMu and for all users
u.

In this lab, we will focus on predicting the ratings given to the movie
Contact. Therefore, we only consider graph signals xu corresponding to
users u who have rated Contact.

1.5 Training data
1.5 Training data. Remove the users who have not rated Contact from
the training set defined in 1.3. Then, generate the training data accord-
ing to (3), i.e., construct input-output pairs (xum, yum) for users u in the
training set. How many samples are there in the training set?

1.6 Test data
1.6 Test data. Remove the users who have not rated Contact from the
test set defined in 1.3. Then, generate the test data according to (3), i.e.,
construct input-output pairs (xum, yum) for users u in the test set. How
many samples are there in the test set?

2 Learning to predict ratings

Our goal is to learn a map that will produce outputs yum when presented
with inputs xum. E.g., in the case of Figure 1 we want to present Figure
1-(b) as an input and fill in a rating of movie m = 3 equal to the rating of
movie m = 3 in Figure 1-(a). To do that we define the loss function

`
(
Φ(xum;H), yum

)
=

1
2

(
eT

mΦ(xum;H)− eT
myum

)2
, (4)

where the vector em is the mth entry of the canonical basis of Rn. Since
multiplying with eT

m extracts the mth component of a vector, the loss in
(4) compares the predicted rating eT

mΦ(xum;H) = [Φ(xum;H)]m with the
observed rating eT

myum = [yum]m = xum. At execution time, this map can

4

be used to predict ratings of unrated movies from the ratings of rated
movies. If we encounter the signal in Figure 1-(b) during execution time,
we know the prediction will be accurate because we encountered this
signal during training. If we are given the signal in Figure 1-(c), successful
rating predictions depend on the choice of parametrization. Similarly to
what we did in Lab 2, we will implement several parametrizations of
Φ(xum;H) and compare their ability to accurately predict ratings for the
movie Contact.

2.1 Loss function
2.1 Loss function. Write a function that computes the loss defined in (4)
for a specific movie index (in our case, this index will correspond to “Con-
tact”). Hint: you can instantiate the PyTorch class torch.nn.MSELoss
to compute the mean squared error.

While you have the option to use the modules you implemented in Lab
2, in this lab we recommend that you use the learning architectures from
the Alelab GNN library. This is an extensive PyTorch library with faster
implementations of several graph neural network architectures. A par-
ticularly useful module for this lab is the class LocalGNN, which can be
found under Modules/architectures.py. Check its documentation
to understand how it works. Also check Utils/graphML.py, which
contains all the graph machine learning modules (filters, pooling opera-
tors, and nonlinearities) that can be used to parametrize the LocalGNN.

An important point to note is that in the LocalGNN we distinguish be-
tween two types of layers: graph convolutional layers and readout lay-
ers. Each graph convolutional layer consists of an arbitrary multi-feature
graph filter followed by a pointwise nonlinearity. In contrast, readout
layers consists of a graph filter (or graph filter bank) in which K (the
number of filter taps) is necessarily 1. Therefore, readout layers only mix
the feature values of each individual node, i.e., they do not carry out local
exchanges between neighboring nodes. Any number of graph convolu-
tional and readout layers can be defined (including none), but the readout
layers must always succeed the graph convolutional layers.

In the following experiments, we ask that you train all architectures using
ADAM with step size ε = 0.005, E = 40 epochs and batch size Qt = 5.

5

https://github.com/alelab-upenn/graph-neural-networks

2.2 Linear parametrization vs. graph filter
2.2 Linear parametrization vs. graph filter. Implement a generic linear
parametrization (i.e., a matrix mapping N nodes to N nodes) to solve the
recommendation problem. Then, use the LocalGNN class to instantiate a
graph filter consisting of 1 convolutional layer with F1 = 64 and K1 = 5,
and of 1 readout layer with F2 = 1. Train and test both parametrizations
on 5 or more random realizations of the training-test split. Report the
number of parameters of both models and the mean RMSE achieved by
each of them. What do you observe?

2.3 FCNN vs. GNN
2.3 FCNN vs. GNN. Implement a FCNN with 2 layers and 64 hidden
units in the first layer to solve the recommendation problem. Then, use
the LocalGNN class to instantiate a GNN consisting of 1 convolutional
layer with F1 = 64, K1 = 5 and ReLU nonlinearity, and of 1 readout layer
with F2 = 1. Train and test both parametrizations on 5 or more random
realizations of the training-test split. Report the number of parameters of
both models and the mean RMSE achieved by each of them. What do you
observe?

2.4 Graph filter vs. GNNs
2.4 Graph filter vs. GNNs. Use the LocalGNN class to instantiate a
GNN consisting of 2 convolutional layers with F1 = 64, F2 = 32, K1 =
K2 = 5 and ReLU nonlinearity, and of 1 readout layer with F2 = 1. Train
and test this GNN, the GNN from 2.3 and the graph filter from 2.2 on 5 or
more random realizations of the training-test split. Report the number of
parameters of all models and the RMSE achieved by each of them. What
do you observe?

3 Transferring recommendation systems

In most practical scenarios in which recommendation systems are used,
the product portfolio is constantly changing. An example is the Netflix
movie catalog, which gets new movie and TV shows added to it every
month. As discussed in Lab 2, when graphs are dynamic it is sometimes
impractical to re-train the GNN every time the graph changes. If the
product portfolio is too large, it may also be too costly to train the GNN
on the full product graph. In general, we want to be able to train GNNs

6

(a) (b)

Figure 2. Movie networks built from the ratings of 100 (a) ad 400 (b) movies in the
MovieLens 100k dataset. The signals on these graphs correspond to the ratings
given by user 1. The darker the node, the higher the rating, and the darker the
edge, the higher the rating difference between the endnodes.

on moderately sized graphs and apply them to similar graphs that are
large and/or dynamic without much performance degradation. It turns
out that this is possible in graphs such as the movie graphs in Figure 2
where, even if nodes are added or removed, a certain overall structure
is preserved. This transference property of GNNs, also known as trans-
ferability, has already been illustrated in the synthetic source localization
example of Lab 2. Here, we analyze how it holds up in the more realistic
scenario of movie recommendation.

3.1 Training the GNN on a small graph
3.1 Training the GNN on a small graph. Train and test one and two-
layer GNNs with same hyperparameters as in 2.4 using the graph and
the data you generated in Section 1. For 5 or more realizations of the
train-test split, report the test RMSE achieved by each model and save
both models.

3.2 Large graph
3.2 Large graph. Repeat item 1.2 to consider movies rated by at least 50
users and store the data in a matrix X2. Then, repeat items 1.3–1.4 using
X2 and the training and test set user indices you saved in 1.3 to generate
the new adjacency matrix W2. What is the new number of nodes N2?

7

3.3 Transferability to large graph
3.3 Transferability to large graph. Use the function changeGSO of
LocalGNN to change the GSO of the GNNs trained in 3.1 to W2. Re-
peat item 1.6 to generate the new test data from X2 for each data split.
Test the GNNs on this new test data and report the RMSEs for 5 or more
realizations of the train-test split. What do you observe?

3.4 Larger graph
3.4 Larger graph. Repeat item 1.2 to consider movies rated by at least 10
users and store the data in a matrix X3. Then, repeat items 1.3–1.4 using
X3 and the training and test set user indices you saved in 1.3 to generate
the new adjacency matrix W3. What is the new number of nodes N3?

3.5 Transferability to larger graph
3.5 Transferability to larger graph. Use the function changeGSO of
LocalGNN to change the GSO of the GNNs trained in 3.1 to W3. Repeat
item 1.6 to generate the new test data from X3 for each data split. Test
the GNNs on this new test data and report the RMSEs for 5 or more
realizations of the train-test split. What do you observe?

8

4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to items we ask. Specifically, give us the following:

Item Report deliverable

Item 1.1 Do not report.

Item 1.2 Do not report.

Item 1.3 Number of nodes of the graph.

Item 1.4 Do not report.

Item 1.5 Number of training samples.

Item 1.6 Number of test samples.

Item 2.1 Do not report.

Item 2.2 Number of parameters. Average RMSEs. Comment.

Item 2.3 Number of parameters. Average RMSEs. Comment.

Item 2.4 Number of parameters. Average RMSEs. Comment.

Item 3.1 RMSEs.

Item 3.2 Number of nodes of the graph.

Item 3.3 RMSEs. Comment.

Item 3.4 Number of nodes of the graph.

Item 3.5 RMSEs. Comment.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 16% of your
final grade.

9

	Data generation
	Loading the data
	Data clean-up
	Movie similarity graph
	Sparsifying and normalizing the graph
	Training data
	Test data

	Learning to predict ratings
	Loss function
	Linear parametrization vs. graph filter
	FCNN vs. GNN
	Graph filter vs. GNNs

	Transferring recommendation systems
	Training the GNN on a small graph
	Large graph
	Transferability to large graph
	Larger graph
	Transferability to larger graph

	Report

