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We consider relative perturbations of shift operators such that the difference between the shift
operators S and its perturbed version Ŝ is a symmetric additive term ES + SE. This means
we can write the perturbed shift operator as

Ŝ = S + ES + SE. (1)

The norm of the error matrix in (1) is a measure of how close Ŝ and S are. We have seen that
graphs that are permutations of each other are equivalent from the perspective of running graph
filters. Thus, a more convenient perturbation model is to consider a relationship of the form

PT
0 Ŝ P0 = S + ES + SE. (2)

and measure the size of the perturbation with the norm of this other error matrix E. We can
write a relationship of the form in (2) for any permutation matrix P0. Naturally, we want to
consider the permutation P0 for which the norm of the error matrix is minimized. The bounds
we will derive apply to any pair that are related as per (2). They will be tightest for the
permutation P0 for which the norm of E is smallest.

Properties of the Perturbation

There are two aspects of the perturbation matrix E in (2) that are important in seizing its effect
on a graph filter. The norm of E and the difference between the eigenvectors of S and E. As a
shorthand for the norm of E define

ε = ‖E‖. (3)

To measure the difference between eigenvectors we consider the eigenvector decomposition of the
shift operator S = VΛVH and the eigenvector decomposition of the error matrix E = UMUH.
We then define the eigenvector misalignment constant as

δ =

[(∥∥U−V
∥∥ + 1

)2

− 1

]
. (4)

If the eigenvectors of S and its perturbation E are the same, we have U = V and δ = 0. As
the eigenvectors grow more dissimilar, the misalignment constant grows.

An important ancillary remark is that since the matrices V and U are unitary, their norms
are at most 1. Thus, the constant δ must satisfy, δ ≤ 8. It is never too large. The reason for
defining this constant is that it has an effect on the stability bounds we are about to derive.
We want to have a concrete handle to understand the effect of perturbations when eigenvectors
are known to be close to each other.

Integral Lipschitz Filters

As we will see, we can’t allow for arbitrary filters if we are to have stability to perturbations.
The restriction we impose is that our filters be Integral Lipschitz. Specifically, we require that
for any pair of values λ1 and λ2

|h(λ2)− h(λ1)| ≤ C
|λ2− λ1|
|λ1 + λ2| / 2

. (5)

The constant C in (5) is the integral Lipschitz constant of the filter. The condition in (5) can
be read as requiring the filter’s frequency response to be Lipschitz in any interval (λ1, λ2) with
a Lipschitz constant that is inversely proportional to the interval’s midpoint |λ1 + λ2|/2.

To understand this condition better, recall that the filters we are working with are analytic.
They are, in particular, differentiable. The condition in (5) implies that the derivative of the
frequency response must be such that ∣∣λh′(λ)

∣∣ ≤ C. (6)

Thus, filters that are integral Lipschitz must have frequency responses that have to be flat for
large λ but can vary very rapidly around λ = 0. We restrict our filters to be integral Lipschitz.



Stability to Relative Perturbations

Theorem 1 Let S and Ŝ be shift operators related as in (2). For Integral Lipschitz
filters with constant C, the operator distance modulo permutation between filters H(S)
and H(Ŝ) satisfies

‖H(S)−H(Ŝ)‖P ≤ 2C
(
1 + δ

√
n
)
ε +O(ε2). (7)

where ε = ‖E‖ is the norm of its error matrix,δ = [(‖U−V‖+1)2−1] is the eigenvector
misalignment constant defined in (4), and n is the number of nodes of the graph.

Theorem 1 shows that filters are Lipschitz stable with respect to relative perturbations of the
graph with stability constant 2C(1 + δ

√
n). This stability constant is affected by the filter’s

integral Lipschitz constant C. This is a value that is controllable through filter design. Stability
is also affected by a term that involves the eigenvector misalignment, (1 + δ

√
n). This term

depends on the structure of the perturbations that are expected in a particular problem but it
cannot be affected by judicious filter choice.

Proof of Stability Theorem

The proof of Theorem 1 uses the GFT representation of graph filters. In doing so, we will
encounter the products Evi between the error matrix E and the eigenvectors vi of S. The
following section introduces a lemma that provides a characterization of these products.

Eigenvector Perturbation Lemma

Lemma 1 Given error matrix E and shift operator S consider the i-th eigenvector
of S, denoted as vi and the i-th eigenvalue of E denoted as mi. Define Ei such that

Evi = mivi + Eivi. (8)

The matrix Ei has a norm that can be bounded by the product∥∥Ei

∥∥ ≤ ε δ, (9)

between the norm ‖E‖ = ε and the misalignment δ = [(‖U−V‖ + 1)2− 1] in (4).

Proof: : The lemma follows from some simple algebraic manipulations. Define the matrix
Ei = E−VMVH so that we can write

E = VMVH + Ei. (10)

The matrix VMVH has the eigenvectors of S and the eigenvalues of E. Since vi is the i-th
column of V, it follows that VMVHvi = mivi, where mi is the i-th eigenvalue of E. We
substitute this expression in (10) to write

Evi = mivi + Eivi. (11)

We note that (11) and (8) are the same. Thus, the result follows if we show that the norm
‖Ei‖ is bounded by the product εδ. To show that this is true use the eigenvector decomposition
E = UMUH to write the matrix Ei as

Ei = E−VMVH = UMUH −VMVH. (12)

Add and subtract (U−V)M(U−V)H in the right hand side so that (12) reduces to

Ei = (U−V)M(U−V)H + VM(U−V)H + (U−V)MVH. (13)

Taking norm on this equality, using the triangle inequality, and the submultuplicative property
of the operator norm we obtain

‖Ei‖ ≤ ‖U−V‖‖M‖‖U−V‖ + 2‖V‖‖M‖‖U−V‖. (14)

In (14) we have ‖M‖ = ‖E‖ = ε because M is the eigenvalue matrix of E and ‖V‖ = 1
because this is an orthonormal matrix with VVH = I. We then have

‖Ei‖ ≤ ε
[
‖U−V‖2 + 2‖U−V‖

]
. (15)

The factor between square brackets is an alternative form of the eigenvector misalignment
constant δ defined in (4). �

Lemma 1 decomposes the product Evi in two terms. One of the terms, the first term mivi
is aligned with the eigenvector vi. This represents a perturbation of the eigenvalue λi of S.
The second term is the part that is not aligned with vi. This represents a perturbation of the
eigenvector vi itself. Both are small, since they are of order ε. The eigenvector perturbation is
further multiplied by δ given the claim ‖Ei‖ ≤ εδ in (9).



From Shift Perturbations to Filter Perturbations

Starting with the proof proper, our first task is to translate a shift operator perturbation into
a filter output perturbation. We do this in this section. There are no steps here that are
conceptually challenging. It is just a matter of performing the right algebraic manipulations.

Our first action is to replace the operator distance modulo permutation between the two filters
H(Ŝ) and H(S) with the regular operator distance between operators PT

0 H(Ŝ) P0 and H(S)∥∥∥H(Ŝ)−H(S)
∥∥∥
P
≤
∥∥∥PT

0 H(Ŝ) P0−H(S)
∥∥∥. (16)

We can do this because the operator distance modulo permutation is a minimum over all
permutation matrices. It has to be smaller than the regular operator distance attained by P0.

We now recall that since the filter H(Ŝ) is permutation equivariant, the permutation and the
shift operator can exchange places. Therefore we can further bound the operator distance
modulo permutation as∥∥∥H(Ŝ)−H(S)

∥∥∥
P
≤
∥∥∥PT

0 H(Ŝ) P0−H(S)
∥∥∥ =

∥∥∥H
(

PT
0 Ŝ P0

)
−H(S)

∥∥∥ (17)

Thus, to prove the theorem it suffices to compare the filters H(PT
0 ŜP0) and H(S).

Further note that in the definition of the distance between S and Ŝ we have that PT
0 ŜP0 =

S + ES + SE. We can therefore write

H(PT
0 ŜP0)−H(S) = H(S + ES + SE)−H(S). (18)

It then suffices to bound the norm of the filter difference H(S + ES + SE)−H(S). Using the
filter’s definition as a polynomial on the shift operator we have

H(S + ES + SE)−H(S) =

∞∑
k=0

hk

[
(S + ES + SE)k − Sk

]
. (19)

To move forward we need to expand the matrix power (S + ES + SE)k. We do so to first order
on E, namely, by considering only the terms that are linear on E and grouping all other terms
in a matrix Ok(E). We then have

(S + ES + SE)k = Sk +

k−1∑
r=0

[
SrESk−r + Sr+1ESk−(r+1)

]
+ Ok(E). (20)

Substituting (20) into (19) the terms Sk cancel out and we are left with

H(S + ES + SE)−H(S) =

∞∑
k=0

hk

k−1∑
r=0

[
SrESk−r + Sr+1ESk−(r+1)

]
+ O(E). (21)

The term O(E) =
∑∞

k=0 hkOk(E) is of second order because the filter’s frequency response is
an analytic function. That is, the following limit is finite

0 < lim
‖E‖→0

‖O(E)‖
‖E‖2

< ∞. (22)

This means that the norm of O(E) is of order O(‖E‖2). Thus, the theorem follows if we prove
that the first term in the right hand side of (21) is bounded as in the statement of the theorem.

Indeed, define the filter perturbation

∆(S) =

∞∑
k=0

hk

k−1∑
r=0

[
SrESk−r + Sr+1ESk−(r+1)

]
. (23)

And substitute back from (23) into (21), (18) and (17) to conclude that

‖H(Ŝ)−H(S)‖P ≤ ‖∆(S)‖ + ‖O(E)‖. (24)

The term O(E) is of order O(‖E‖2) = O(ε2).We will show that ‖∆(S)‖ ≤ 2C(1 + δ
√
n)ε to

conclude the proof.



Shifting to the GFT Domain

It is the time for us to shift the analysis into the GFT domain. Recall then that we are using
vi to denote the eigenvectors of S. From the definition of the iGFT we know that we can write
the input signal as x =Vx̃ =

∑n
i=1 x̃ivi. From here we can write ∆(S)x =

∑n
i=1 x̃i∆(S)vi

and further using the definition of ∆(S) in (23) yields

∆(S)x =

n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
SrESk−r + Sr+1ESk−(r+1)

]
vi. (25)

This expression looks complicated. But only because it has several terms. We just use the GFT
to write the product ∆(S)x =

∑n
i=1 x̃i∆(S)vi and replace ∆(S) for its expression in (23)

Considering that vi is an eigenvector of S, we have that Sk−rvi = λk−ri vi and, likewise, that

Sk−(r+1)vi = λ
k−(r+1)
i vi. Using these facts we simplify (25) to

∆(S)x =

n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Evi. (26)

We now use the same decomposition we studied in the eigenvector perturbation Lemma in (26)
to separate the product Evi in the two terms Evi = mivi + Eivi

∆(S)x =

n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi (27)

+

n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi. (28)

The first term is relatively easy. We will show that the following fact holds.

Fact 1 Let ∆1(S)x represent the term in (27). Its norm can be bounded as

∥∥∥∆1(S)x
∥∥∥ ≤

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi

∥∥∥∥∥∥ ≤ 2Cε, (29)

for any vector x that has unit norm ‖x‖ = 1.

The second term is a little more difficult. We will prove the following fact.

Fact 2 Let ∆2(S)x represent the term in (28). Its norm can be bounded as

∥∥∥∆2(S)x
∥∥∥ =

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi

∥∥∥∥∥∥ ≤ 2Cδ
√
nε, (30)

for any vector x that has unit norm ‖x‖ = 1.

Putting Fact 1 and Fact 2 Together

The difficult part is proving Fact 1 and Fact 2. Assuming they hold, the rest of the proof of the
Theorem is about putting pieces in place. We had already proven in (23) that

‖H(Ŝ)−H(S)‖P ≤ ‖∆(S)‖ + ‖O(E)‖. (31)

We have also seen that ‖O(E)‖ is of order O(ε2) in (22). We can now use Fact 1 and Fact 2 to
bound the norm ‖∆(S)‖. To that end use the definition of the operator norm to write

‖∆(S)‖ = max
‖x‖=1

‖∆(S)x‖. (32)

Further use the expresion for ∆(S)x in (27)-(28) along with the triangle inequality to write

‖∆(S)‖ ≤ max
‖x‖=1

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi

∥∥∥∥∥∥ (33)

+max
‖x‖=1

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi.

∥∥∥∥∥∥ (34)

We use Fact 1 to bound (33) and Fact 2 to bound (34). The result is

‖∆(S)‖ ≤ 2Cε + 2Cδ
√
nε = 2C(1 + δ

√
n)ε. (35)

Substitute the bound in (35) into (31). Recall that ‖O(E)‖ is of order O(ε2) as stated in (21).
The proof is complete. �



Proof of Fact 1

Proving Fact 1 and Fact 2 are the key steps in the proof. This is where we are going to use
the integral Lipschitz conditions to bound error terms. Of the two facts, Fact 1 is the easier to
prove. We repeat the satatement here for ease of reference.

Fact 1 Let ∆1(S)x represent the term in (27). Its norm can be bounded as

∥∥∥∆1(S)x
∥∥∥ ≤

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi

∥∥∥∥∥∥ ≤ 2Cε, (36)

for any vector x that has unit norm ‖x‖ = 1.

Notice first that mi is a scalar that can change places with powers of S. We now use again the
fact that vi is an eigenvector of S to write Srvi = λrivi and Sr+1vi = λr+1

i vi. When we do
that, the innermost sum in (36) reduces to,

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi = mi

k−1∑
r=0

[
λk−ri λri + λ

k−(r+1)
i λr+1

i

]
vi. (37)

This step has produced a remarkable simplification because inside the sum we have λk−ri λri = λki
and λ

k−(r+1)
i λr+1

i = λki for all r. Thus, all the terms in the sum are raised to the power of k
irrespectively of r. We therefore have k terms all equal to λki + λki and can reduce (37) to

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi = mi

(
2k λki

)
vi. (38)

We substitute the expression in (38) into the middle sum in (36) and reorder terms to write.

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi =

∞∑
k=0

hkmi

(
2k λki

)
vi = 2mi

∞∑
k=0

hk k λ
k
i vi.

(39)

The manipulations started in (37) and about to complete are the key steps in proving Fact 1.

We have ended up with an expression that is unexpectedly simple and suspiciously similar
to the derivative of the frequency response of the filter. Indeed, since the filter’s response is
h(λi) =

∑∞
k=0 hkλ

k
i , its derivative satisfies the relationship

λi h
′(λi) = λi

∞∑
k=0

k hk λ
k−1
i =

∞∑
k=0

k hk λ
k
i . (40)

This allows for the reduction of (39) to

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
mivi = 2mi

(
λih
′(λi)

)
vi. (41)

This ends the core of the proof of Fact 1. The rest is just algebra.

Substitute (41) in the outermost sum of (36) and compute its norm squared. Since the eigen-
vectors vi are orthonormal, Pythagoras’s theorem holds. This means we simplify the squared
norm of the resulting sum as the sum of the squares of the individual terms

∥∥∥∆1(S)x
∥∥∥2

=

∥∥∥∥∥
n∑
i=1

2x̃imi

(
λih
′(λi)

)
vi

∥∥∥∥∥
2

=

n∑
i=1

[
2x̃imi

(
λih
′(λi)

) ]2

. (42)

Observe now that the eigenvalues of the error matrix satisfy mi ≤ ‖E‖ ≤ ε for all i. This is the
definition of a norm. Further note that |λih′(λi)| ≤ C. This is the integral Lipschitz hypothesis
on the frequency response of the filter. We can therefore bound the term in (36) as

∥∥∥∆1(S)x
∥∥∥2

=

n∑
i=1

4x̃2
i m

2
i

(
λih
′(λi)

)2

≤ 4ε2C2
n∑
i=1

x̃2
i . (43)

To conclude the proof of Fact 1, recall that the GFT preserves energy. Thus,
∑n

i=1 x̃
2
i = ‖x̃‖2 =

‖x‖2 = 1. Take square root on both sides. �

Notice how working with energies here instead of norms is crucial in obtaining a bound that does
not depend on the number of nodes n. We could had used the triangle inequality in (42) but
that would had prevented us from taking advantage of the orthogonality of the eigenvectors vi.
We took advantage of that by working with squared norms and invoking Pythagoras’s theorem.
This observation is not crucial to understand the proof, but it is interesting nevertheless. It is
also a significant difference with the proof of Fact 2, where we have to resort to the use of the
triangle inequality and we end up with a

√
n [cf. (56) - (57)].



Proof of Fact 2

We move on to the proof of Fact 2. We repeat it here for ease of reference.

Fact 2 Let ∆2(S)x represent the term in (28). Its norm can be bounded as

∥∥∥∆2(S)x
∥∥∥ =

∥∥∥∥∥∥
n∑
i=1

x̃i

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi

∥∥∥∥∥∥ ≤ 2Cδ
√
nε, (44)

for any vector x that has unit norm ‖x‖ = 1.

Focus on the innermost two sums. Write the eigenvector decomposition S = VΛVH and bring
the eigenvector matrix V to the front of the sum,

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi

= V

[ ∞∑
k=0

hk

[
λk−ri Λr + λ

k−(r+1)
i Λr+1

] ]
VHEivi. (45)

The term in brackets nested between V and VH is a diagonal matrix. Being the sum of
the diagonal matrices Λr and Λr+1 multiplied by scalars. Since this matrix depends on the
eigenvalue λi we will denote it as Gi. We write its definition here for reference

Gi =

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Λr + λ

k−(r+1)
i Λr+1

]
. (46)

Using this definition of the matrix Gi in (45) we rewrite its right hand side as

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri Sr + λ

k−(r+1)
i Sr+1

]
Eivi = VGiV

HEivi. (47)

The key step on the proof of Fact 2 is to manipulate the entries of Gi to show that they reduce
to expressions that are simple and that can be bounded with the integral Lipschitz condition.
To do that, we write the diagonal entries of Gi explicitly as,

(
Gi

)
jj

=

∞∑
k=0

hk

k−1∑
r=0

[
λk−ri λrj + λ

k−(r+1)
i λr+1

j

]
. (48)

Recall that since Gi is diagonal these are the only nonzero entries this matrix has. To obtain
(48) from (46) we replace Λ by λj, because we are considering the j-th diagonal entry of Gi

To continue processing the entries of Gi, we differentiate the cases j = i and j 6= i.

For the case of j = i we have λk−ri λrj = λki and λ
k−(r+1)
i λr+1

j = λki for all r. Thus, as in the case
of the proof of Fact 1 [cf. (40)], the derivative of the frequency response makes an appearance,

(
Gi

)
ii

= 2

∞∑
k=0

khkλ
k
i = 2λi

∞∑
k=0

khkλ
k−1
i = 2λi h

′(λi). (49)

For the case j 6= i, the innermost sums in (48) are geometric sums. This allows for its compu-
tation in closed form. The resulting value of the sum is

k−1∑
r=0

[
λk−ri λrj + λ

k−(r+1)
i λr+1

j

]
=
λi + λj
λi− λj

(
λki − λkj

)
. (50)

Using this explicit form back in (48) we end up with sums that make the frequency response of
the filter appear. They are the terms h(λi) =

∑∞
k=0 hkλ

k
i and h(λj) =

∑∞
k=0 hkλ

k
j . Thus,

(
Gi

)
jj

=

∞∑
k=0

hk
λi + λj
λi− λj

(
λki − λkj

)
=
λi + λj
λi− λj

(
h(λi)− h(λj)

)
. (51)

The integral Lipschitz hypothesis, applies to both, (49) and (51). Therefore, the norm of the
matrix Gi, which, being diagonal, is the absolute value of its largest entry, is bounded by 2C,

‖Gi‖ ≤ max
j

∣∣∣ (Gi

)
jj

∣∣∣ ≤ 2C. (52)

This completes the core of the proof of Fact 2. The rest is some simple algebra of matrix norms.



To implement this algebra, take norms in (47) and leverage the submultiplicative property of
the operator norm to write∥∥VGiV

HEivi
∥∥ ≤ ‖V‖ × ‖Gi‖ × ‖VH‖ × ‖Ei‖ × ‖vi‖. (53)

In (53) the norms of V and vi are units. The norm of Gi is bounded by (52), and the norm of
Ei is bounded by the eigenvector perturbation Lemma. We therefore reduce (53) to∥∥VGiV

HEivi
∥∥ ≤ 1× 2C × 1× δε× 1. (54)

At this point we must recall that we had been concentrating in the two innermost sums in (44).
Adding back the sum over GFT indexes, our manipulations have led us to

‖∆2(S)x‖ ≤

∥∥∥∥∥
n∑
i=1

x̃iVGiV
HEivi

∥∥∥∥∥ (55)

Use the triangle inequality to write the norm of the sum as a sum of norms. We end up with
terms that have the form that appears in (54). Using the bound leads to

‖∆2(S)x‖ ≤
n∑
i=1

x̃i
∥∥VGiV

HEivi
∥∥ ≤ n∑

i=1

|x̃i|2Cδε (56)

The sum of GFT components is the 1-norm
∑n

i=1 |x̃i| = ‖x̃‖1. The 1-norm of a vector is
bounded by its 2-norm multiplied by the square root of the dimension. Thus, we can bound
the 1-norm of the GFT in (56) with its two norm by writing ‖x̃‖1 ≤

√
n‖x̃‖. This is where the√

n term appears. We then obtain

‖∆2(S)x‖ ≤ 2Cδε‖x̃‖1 ≤ 2Cδε
√
n‖x̃‖. (57)

Recall now that the GFT preserves energy and that the signal x under consideration has unit
energy. Thus ‖x̃‖ = ‖x‖ = 1. �


