
Training Models with Pytorch

Luana Ruiz, Juan Cerviño and Alejandro Ribeiro

We consider a learning problem with input observations x ∈ Rn and out-
put information y ∈ Rm. We use a linear learning parametrization that
we want to train to predict outputs as ŷ = Hx that are close to the real y.
The comparison metric between y and ŷ is the squared Euclidean error
`(y, ŷ) = ‖y− ŷ‖2. We use a dataset with Q samples of the form (xq, yq),
which leads us to the empirical risk minimization (ERM) problem

H∗ = argmin
H∈Rm×n

1
Q

Q

∑
q=1

`(y, ŷ) = argmin H ∈ Rm×n 1
Q

Q

∑
q=1

1
2
‖yq −Hxq‖2

2.

(1)

This is not a particularly good learning parametrization, but it is the
simplest possible and therefore good to illustrate ideas. We introduced
this problem in Lab 1.

A challenge in solving (1) is that algorithms for ERM are finicky. The
workhorse method is stochastic gradient descent (SGD) which can be
quite sensitive to the choice of parameters such as step and batch sizes;
see Videos 2.5 and 2.6 in Lecture 2.

A perhaps more daunting challenge is the computation of derivatives.
The model in (1) is simple and you can easily compute the derivative of
the loss with respect to H. But when we start looking at neural networks,
with several layers and filters per layers, we don’t want to go through the
trouble of computing derivatives by hand. We want them to be computed
automatically.

A third challenge is taking full advantage of computational resources in

1

https://gnn.seas.upenn.edu/labs/lab1/
https://gnn.seas.upenn.edu/lectures/lecture-2/

your computer, which may entail offloading operations into your graph-
ics processing unit (GPU).

For these reasons it is convenient to use packages that implement the
minimization of (1). In this post we illustrate the use of Pytorch.

1 Classes and Objects

Using Pytorch is easy but it can look complicated because it requires that
you either learn or remember that Python is an object oriented language.
To implement an algorithm that solves (1) it is not as easy as calling
a function that performs the minimization. You have to create objects
that instantiate classes where you specify the operations that are to be
performed. This results in code that can look weird and complicated but
that is easier to modify. And while it may look complicated, it is not, in
reality complicated.

1.1 Classes: Attributes and Methods

The first concept to understand is the difference between a class and an
object. A class in an abstract entity that contains atrtibutes and methods
and an object is a specific instance of a class. This is easiest explained
with an example. Suppose that we are interested in linear functions of
the form y = Ax with A being a matrix with m rows and n columns. We
therefore create a class LinearFunction defined as follows

class LinearFunction:

def __init__(self, m, n, A)
self.m = m
self.n = n
self.A = A

def evaluate(self, x)
y = np.matmul(x,A)
return y

2

https://pytorch.org

The class definition contains two methods. The method init plays a
special role in the creation of objects which we will explain soon. At this
point, observe how it specifies the attributes that are part of the class. In
this specific example, the class contains three attributes, the dimensions
m and n and the matrix A. When you define a class, the init
function has to be specified always and self has to always be the first
parameter of the init method.

The other function evaluate is a function proper, which in object ori-
ented programming we call a method. This method takes a variable x
as an input and returns the matrix product y = np.matmul(x,A) as
an output. Observe that the matrix A is not an input to this function.
The matrix A is an attribute that belongs to the class. Further notice that
self is the first parameter of the evaluate method. Any method that
is defined in a class has to take self as the first parameter.

1.2 Objects: Concrete Instances of Abstract Classes

The class is an abstract object with methods that specifies how to ma-
nipulate its attributes. If we want to actually process data, we create a
specific instance. This is an object. For example, if we want a linear
transformation specified by a matrix A with 42 rows, 71 columns, and
random binary entries that are equally likely to be 0 or 1, we create the
object BernoulliMap as an instance of the class LinearFunction ,

m = 42
n = 71
A = np.random.binomial(n=1, p=0.5, size=(m, n))
BernoulliMap = LinearFunction(m, n, A)

When we create the object BernoulliMap we implicitly call the method
LinearFunction. init . In doing so we instantiate the attributes
that belong to the object. Whenever the object BernoulliMap is refer-
enced in the code, we are referring to the linear transformation associated
with the specific matrix A that we passed during the creation of the ob-
ject. If we wanted to have a different random Bernoulli map, we could
do so by instantiating another object of the LinearFunction class,

3

AnotherA = np.random.binomial(n=1, p=0.5, size=(m, n))
AnotherBernoulliMap = LinearFunction(m, n, AnotherA)

If we now want to implement the products of matrices A and AnotherA
with a vector x we use the method evaluate that we defined in the
class LinearFunction . This method is separately instantiated in each
of the two objects BernoulliMap and AnotherBernoulliMap . As-
suming that we generate x with a Bernoulli distribution, we have

x = np.random.binomial(n=1, p=0.5, size=(n, 1))
y = BernoulliMap.evaluate(x)
Anothery = AnotherBernoulliMap.evaluate(x)

If this looks like a lot of trouble for a matrix product it is because it is a lot
of trouble; indeed. However, suppose that you now find a more efficient
algorithm for implementing matrix computations. Perhaps because you
have decided to take advantage of a GPU. You go into the definition
of the LinearFunction class and update the evaluate method. The
change is now implemented in the hundreds of places in your code where
you had used matrix multiplication.

1.3 Inheritance

A third concept of object oriented programming we have to introduce
is inheritance. This is the possibility of defining a “child” subclass that
inherits methods from a “parent” class. As an example, suppose that you
intend to create several random Bernoulli maps. Instead of generating the
matrix and passing it as an argument in the creation of the object, it is
more convenient to encapsulate the generation of the Bernoulli matrix in-
side of an object. To do that, create a class LinearBernoulliFunction
which we define as a child of the LinearFunction class,

class LinearBernoulliFunction(LinearFunction):

def __init__(self, m, n)
self.m = m

4

self.n = n
self.A = np.random.binomial(n=1, p=0.5, size=(m, n))

Observe that the specification of LinearBernoulliFunction as a child
of LinearFunction is done by making the latter an argument in the
class statement. The use of inheritance allows us to reuse our hard
work in the creation of the LinearFunction class. We do not need to
specify the evaluate function for the LinearBernoulliFunction
because we are reusing from the parent class LinearFunction . We are
inheriting, to use the more technical term. If at some point in the future
we update the evaluate method in the LinearFunction class, that
updated method is automatically inherited by the child class.

With this new class, the creation of random Bernoulli maps simplifies to
the code

m = 42
n = 71
BernoulliMap = LinearBinomialFunction(m, n)
AnotherBernoulliMap = LinearBernoulliFunction(m, n)

The code for the evaluation of the linear functions is still the same be-
cause it has been inherited. The most important advantage of defining a
new class is that modifications to the class will now propagate to all the
places where a Bernoulli map is defined. If, say, we decide that a proba-
bility p = 0.3 for drawing ones is more appropriate, it’s just a matter of
changing the definition of the LinearBernoulliFunction. init
method. The change will propagate to all the places where we instantiate
an object belonging to the LinearBernoulliFunction class.

2 A Simple Training Loop

The reason why training with Pytorch may look complicated is that part
of the operations are encapsulated in an object that inherits methods from
a parent class. Having developed an understanding of the encapsulation
of operations inside of objects, it is now easy to understand how to write

5

a training loop in Pytorch.

In this section we focus on the problem in (1). In which the loss associated
to individual observations is the mean squared cost `(y, ŷ) = ‖y− ŷ‖2

and the learning parametrization is the linear function ŷ = Hx.

2.1 The Parametrization Class

Our first task is to specify the learning parametrization that we will use.
We do that by creating a class – which we will instantiate later – that we
will call Parametrization . This class must have an init method,
as all classes do, and a method called forward . Most importantly, the
class must inherit from the Module class that is part of the torch.nn
library. This is what will allow its use in a training loop. To describe this
in more detail, here is a minimal code that define a Parametrization
class for estimates ŷ = Hx,

import torch
import torch.nn as nn

class Parametrization(nn.Module):

def __init__(self, n, m):
super().__init__()
self.H = nn.parameter.Parameter(torch.zeros(n, m))

def forward(self, x):
yHat = torch.matmul(x,H)
return yHat

The definition of the class Parametrization specifies that nn.Module
is a parent of the class. This allows Parametrization to inherit meth-
ods from nn.Module . Most notable among these inherited methods are
those related to the computation of gradients, which we will use in the
training loop below.

Asides from that, we specify the init method and the forward
method. The init method is mostly formulaic. The first line of the

6

method initializes the parent and the second line of the method speci-
fies that the variable self.H is a parameter. This means exactly what
you think it means. Is is indicating that self.H is a variable that we
will train. A fact that has to be specified for gradients to be computed
correctly. The Parametrization class could include other parameters
that are not trained. The specification of self.H further states that this
variable is a torch.Tensor with m rows and n columns. This is just
a specification of a matrix.

The forward method is where the parametrization is specified. It says
that when given an input x , the Parametrization class is to pro-
duce estimates according to yHat = torch.matmul(x,H) . This is
the line of the code that we have to change if we want to use a differ-
ent parametrization. To illustrate ideas, suppose we want to change the
parametrization to the perceptron y = σ(Hx), with σ(Hx) = max Hx, 0
representing a rectified linear unit (relu). We can do this by simply re-
defining the forward function as follows,

def forward(self, x):
z = torch.matmul(x,H)
sigma = nn.ReLU
yHat = sigma(z)
return yHat

This is a good moment to appreciate the advantage of using objects.
The parametrization is encapsulated inside of the Parametrization
class. Once we write a training loop, this training loop can be used for
any parametrization. We can experiment with different versions of the
forward function without having to meddle with the training loop.

2.2 The Training Loop

The training loop is going to contain the instructions you expect it to
contain. We read the dataset, we compute gradients and we update the
parameters. The computation of the gradients is going to have a form
that may look a little strange and that is the part we will explain here.

7

The following code trains the linear model that we encapsulated in the
Parametrization class defined in Section 2.1,

import torch
import torch.optim as optim

estimator = Parametrization(n, m)
optimizer = optim.SGD(estimator.parameters(), lr=eps, momentum=0)

iter = 0
while iter < nIters

x, y = getBatch(batchSize, xTrain, yTrain)
estimator.zero grad()
y = estimator.forward(x)
loss = torch.mean((yHat-y)**2)
loss.backward()
optimizer.step()
iter += 1

The first line after the import commands in the code above instantiates
estimator as an object belonging to class Parametrization . This
object is essentially a matrix. It is not really a matrix. It is an object of
class Parametrization , which inherits from class nn.Module . This
endows it with methods which allow the computation of gradients. But
this is transparent to us. All that matters is that estimator is a matrix
that we are learning. If we want to access the actual matrix we have to
call estimator.H .

The second line specifies the optimization method, which we choose to
be SGD. In the specification of the optimization method, the important
argument is the passing of estimator.parameters(). This is telling
the optimizer which are the variables that have to be updated, or trained.
If we recall the definition of the Parametrization class, we see that it
contains a command in the init method that specifies the trainable
parameters. That command says that the trainable parameter is the at-
tribute H . When we pass estimator.parameters() to the optimizer,
we are therefore telling the optimizer that it has to update the variable
H.

The loop iterates for nIters iterations. In each iteration there are three

8

separate actions: (i) We access a batch using the getBatch(batchSize)
function (ii) we compute stochastic gradients. (iii) We perform a SGD
step by calling optimizer.step() . The computation of gradients is
undertaken by the 4 commands that begin and end in a row that is high-
lighted in red.

The command estimator.zero grad() acts in tandem with the com-
mand loss.backward() . Their combined effect is to compute the
gradient of all the operations that are contained within. In this partic-
ular case, the instruction yHat = estimator.forward(x) calls the
forward method of the estimator object – which we defined in the
Parametrization class – and applies it to the input x we read from
the batch. The instruction loss = torch.mean((yHat-y)**2) com-
pute the mean squared loss. Although the operations are somewhat hid-
den, the resulting effect of these two operations is to compute the loss
averaged over the training set. Making an indefensible, yet didactic use
of mathematical notation, the combined effect of these two commands is
to perform the operations

loss =
1

batchSize ∑
Batch

∥∥y[i,:] − H*y[i,:] ‖2
2 (2)

When we call the function loss.backward() we evaluate the gradient
of loss with respect to the parameters of the estimator object. This a
quantity that is stored within the estimator object and that optimizer
can therefore access when we invoke optimizer.step() to perform
an SGD step.

The mechanics of how gradients are computed are fascinating and worth
learning. But you don’t need to know them to run training loops. Begin-
ners don’t even need to modify the training loop. They just modify the
Parametrization class. That suffices to train a different system. The
explanations here are enough to make us Intermediate users. These are
the facts we have learned:

(L1) We have to instantiate a Parametrization class that inherits
from nn.Module . These creates an estimator object.

(L2) We instantiate an optimizer from the optim.SGD class. This op-

9

timizer needs access to the trainable parameters of estimator ,
which we pass by invoking the parameters() method of the
Parametrization class.

(L3) The zero.grad() method of the estimator object in conjunc-
tion with the backward method of the loss object implement
the computation of gradients. When we call loss.backward()
we initiate a backward chain of gradient computations that stops at
the most recent call of estimator.zero grad() .

(L4) The loss.backward() call computes gradients with respect to
all the objects that are involved. These gradients are stored in the
proper object. Among these gradients, we calculate the gradient
with respect to estimator.parameters() .

(L5) This gradient is accessed by the optimizer object to update the val-
ues of estimator.parameters() .

We will revisit these learned facts by discussing the training of a Neural
Network in the next section.

3 Training a Neural Network

Suppose that we are interested in another type of parameterization. To
be concrete, suppose you want to use a fully connected neural networks
(NN) with two layers. In this case the learning parametrization is re-
placed by the following composition of linear transformations and point-
wise nonlinearities,

ŷ = H2z = H2

(
σ
(

H1x
))

, (3)

where the matrix H1 is h × n and the matrix H2 is m × h. The scalar
constant h is the number of hidden units.

If we keep using the squared Euclidean error loss `(y, ŷ) = ‖y − ŷ‖2,
the ERM problem we want to solve is obtained by substituting the linear

10

parametrization ŷ = Hx used in (1) by the NN parametrization in (3).
This yields the ERM problem

H∗ = argmin
H∈Rm×n

1
Q

Q

∑
q=1

1
2

∥∥∥ yq −H2

(
σ
(
H1xq

)) ∥∥∥2

2
. (4)

To implement SGD we need to compute gradients of the summands of
(4) with respect to H1 and H2. This is painful. Lucky for us, we have
access to automatic differentiation in Pytorch.

To use pytorch to train (4) the training loop doesn’t have to change.
All we have to do is replace the Parametrization class by the class
TwoLayerNN that implements the parametrization in (3). This class has
an init method and a forward method and is defined as follows,

import torch
import torch.nn as nn

class TwoLayerNN(nn.Module):

def __init__(self, n, m, h):
super().__init__()
self.H1 = nn.parameter.Parameter(torch.rand(n, h))
self.H2 = nn.parameter.Parameter(torch.rand(h, m))

def forward(self, x):
sigma = nn.ReLU()
z = sigma(torch.matmul(x,self.H1))
yHat = torch.matmul(z,self.H2)
return yHat

The init method initializes two different parameters H1 and H2 .
This is because we have two parameters defining the NN. We also ini-
tialize them at random. Just to illustrate a different way of initializing
parameters. The forward method is a straightforward implementation
of the NN parametrization in (3). We compute the intermediate output
as z = sigma(torch.matmul(x,self.H1)) and we follow with the
NN output computation yHat = torch.matmul(z,self.H2).

We have said that the training loop does not change. This is true except
that when we instantiate the estimator object we need to instantiate it

11

as member of the TwoLayerNN class. For completeness, we rewrite the
training loop here with that modification highlighted,

import torch
import torch.optim as optim

estimator = TwoLayerNN(n, m, h)
optimizer = optim.SGD(estimator.parameters(), lr=eps, momentum=0)

iter = 0
while iter < nIters

x, y = getBatch(batchSize, xTrain, yTrain)
estimator.zero grad()
y = estimator.forward(x)
loss = torch.mean((yHat-y)**2)
loss.backward()
optimizer.step()
iter += 1

The only difference between this training loop and the training loop for
linear parametrizations is the use of a different class for the estimator ob-
ject. In this loop, the combined calls to estimator.zero grad() and
loss.backward() result on computations of gradients with respect to
the NN parameters H1 and H2 . The call of the step optimizer.step()
results in a stochastic gradient update of these parameters. These changes
are implemented by the expedient action of replacing the definition of the
estimator object. If we want to train a graph neural network, we just
need to define a proper class and instantiate a proper object. The training
loop remains unchanged.

4 Code links

The implementation of the basic training loop with the linear parametriza-
tion can be found in the folder code simple loop.zip. This folder contains
the following files:

• main training.py : This is the main script, which implements
the training loop for a simple linear parametrization.

12

https://gnn.seas.upenn.edu/wp-content/uploads/2020/09/code_simple_loop.zip

• data.py : This script contains the function dataLab1, which gen-
erates the data samples, and the function getBatch, which splits
the data in batches.

• architectures.py : This script contains the Parametrization
class, which specifies a simple linear parametrization.

The implementation of the basic training loop with a two-layer fully con-
nected neural network can be found in the folder code simple loop nn.zip.
This folder contains the following files:

• main training.py : This is the main script, which implements
the training loop for a simple linear parametrization.

• data.py : The same file used in the linear parametrization case.

• architectures.py : This script contains the TwoLayerNN class,
which specifies a two-layer fully connected neural network.

5 A More Comprehensive Learning Loop

Section 2 described a basic training loop. In this section, we introduce
and discuss techniques that can be used to improve it in order to learn
better representations.

5.1 Validation

Before we train a model, there are a number of hyperparameters — i.e.,
fixed value parameters — that we need to set. For instance, in a fully
connected neural network, it is necessary to define the number of layers
and the number of hidden units at each layer. Since hyperparameters are
not learned, they have to be chosen carefully because a poor choice of
hyperparameters causes models to be over or underparametrized. This,
in turn, can lead to over or underfitting the training data. These issues
can be addressed with validation.

13

https://gnn.seas.upenn.edu/wp-content/uploads/2020/09/code_simple_loop_nn.zip

Validation consists of setting aside a portion of the training samples (usu-
ally 10-20%) to evaluate the model every few training steps. Therefore,
validation samples are not used for training. The main benefit of vali-
dation is that it allows comparing the training and validation losses to
assess the suitability of the hyperparameters. E.g., a training loss that is
much smaller than the validation loss indicates that the model is overfit-
ting the training data and, thus, that the number of learnable parameters
should be decreased.

Another advantage of validation is allowing to keep track of the best
model to date at any point of the training process, which is done by
monitoring the smallest loss realized in the validation set and storing the
parameters of the model that achieved that loss. This is helpful because
it reduces the uncertainty around the number of training steps necessary
for convergence, i.e., it allows setting the number of training steps to a
very large number as we are certain to always keep the best model. In
these situations, validation can also be used for early stopping, which
consists of halting the training process when the validation loss has not
decreased after a certain number of validation steps.

5.2 Testing

The objective of learning is to obtain a model that generalizes well to
unseen input data. The ability of a model to generalize is measured by
the generalization error, which is the expectation of the error realized by
the model on an unseen input. In order to approximate it, we need to
observe the error realized on data drawn from the same distribution as
the training data, but which is not used for training. This is the test set.

Unlike the validation set used to tune the hyperparameters and keep
track of the best model, the samples in the test set are only accessed once
the training loop is over. The learned model is run on these samples
to compute the test error, which provides a measure of how well the
model generalizes to unseen data. In particular, for a good model the
gap between the training and the test error should be small. A large gap
usually indicates that the model has overfitted the training data.

14

5.3 Splitting the Dataset

In Lab 1, the input data is generated synthetically by sampling a nor-
mal distribution to obtain i.i.d. samples. Therefore, the training and test
data can be generated separately and are automatically randomized. In
contrast, in real-world scenarios we are usually given a chunk of data
consisting of all the available samples, which then have to be split be-
tween the training and test sets.

In most train-test splits, the largest portion of the data (80-90%) is used
for training and the rest for testing. The validation set is obtained by
setting aside a small fraction of the training data. Before splitting the data
between the training and test sets, the samples are randomized. This is
an important step because in real-world scenarios we don’t usually know
whether the available samples are random or ordered in some way. In
practice, randomizing the samples is also necessary to assess the quality
of the model parametrization independently of the quality of a particular
train-test split. This is done by running Monte-Carlo experiments, where
estimators are trained on multiple train-test splits to compute the average
test error realized by models with a given parametrization.

5.4 Epochs and Batches

In the basic training loop, the samples of a batch are selected at random
from the training set in each training step. If the number of training steps
is large enough, this is not an issue as it is highly likely that all training
samples have been included in a batch — and therefore used to train
the model — at least once. However, the randomness of this approach
might make it so that some samples are selected multiple times before
the dataset is considered in full. This affects the gradient descent path
and, if the number of training steps is not chosen judiciously, it can have
a negative effect on the resulting model.

To address this, we can train the model in epochs, which are full passes
over the dataset. In each epoch, the samples are permuted and parti-
tioned in fixed-size batches covering the entire dataset in order to use

15

every training sample an equal number of times. Training in epochs is
helpful because epochs are more interpretable than training steps — it
makes more sense to specify the number of full passes over the data than
the total number of steps. Given a certain number of epochs and the
size of a batch, the number of training steps is calculated as the number
of epochs multiplied by the number of batches necessary to cover the
training set.

5.5 Code links

Implementations of the more comprehensive training loops described in
this section with a simple linear parametrization can be found in the
folder code comprehensive loops.zip. This folder contains the following
files:

• main validation.py : This is the main script modified to in-
clude validation.

• main testing.py : This is the main script modified to include
validation and testing.

• main random splits.py : This is the main script modified to
include validation, testing and a random split of the data.

• main epochs.py : This is the main script modified to perform
training in epochs and include validation, testing and a random
split of the data.

• data.py : This script contains the function dataLab1, which gen-
erates the data samples, and the function getBatch, which splits
the data in batches.

• architectures.py : This script contains the Parametrization
class, which specifies a simple linear parametrization.

To use these more comprehensive loops to train different architectures, it
suffices to instantiate the estimator object from a different class.

16

https://gnn.seas.upenn.edu/wp-content/uploads/2020/09/code_comprehensive_loops.zip

	Classes and Objects
	Classes: Data and Methods
	Objects: Concrete Instances of Abstract Classes
	Inheritance

	A Simple Training Loop
	The Parametrization Class
	The Training Loop

	Training a Neural Network
	Code links
	A More Comprehensive Learning Loop
	Validation
	Testing
	Splitting the Dataset
	Epochs and Batches
	Code links

