Learning with Graph Signals

» Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals



Empirical Risk Minimization

» In this course, machine learning (ML) on graphs = empirical risk minimization (ERM) on graphs.
» In ERM we are given:

= A training set 7 containing observation pairs (x,y) € 7. Assume equal length x.y, ¢ R".
= A loss function £(y, §) to evaluate the similarity between y and an estimate §

= A function class C

» Learning means finding function ®* € C that minimizes loss E(y, <1>(x)) averaged over training set

®" = argmin Z E(y, ,)

deC (xy)ET

» We use ®*(x) to estimate outputs § = ®*(x) when inputs x are observed but outputs y are unknown



Empirical Risk Minimization with Graph Signals

» In ERM, the function class C is the degree of freedom available to the system’s designer

®* = argmin Ly, d(x)
gmin 3 ((y0)

» Designing a Machine Learning = finding the right function class C

» Since we are interested in graph signals, graph convolutional filters are a good starting point




Learning with a Graph Convolutional Filter

» Input / output signals x / y are graph signals supported on a common graph with shift operator S

K—1
» Function class = graph filters of order K supported on S = ®(x) = Z hS*x = d(x;S,h)
k=0

w4 z=®(x;S,h)
x z= Z hy Sk x —
k=0

» Learn ERM solution restricted to graph filter class = h™ = argmin Z Z(y, d(x; S, h))
(x,y)eT

= Optimization is over filter coefficients h with the graph shift operator S given



When the Output is Not a Graph Signal: Readout

» QOutputs y € R” are not graph signals = Add readout layer at filter's output to match dimensions
P y grapn sig

K—1
» Readout matrix A € R™*" yields parametrization = A x ®(x;S,h) = A x heS*x
y
k=0

K=t z=®(x;S,h A x ®(x; S,h)
— z= Z By S* x ( ) A >
k=0

» Making A trainable is inadvisable. Learn filter only. = h™ = argmin Z E(y, A X O(x; S,h))
(x,y)eT

» Readouts are simple. Read out node i = A = e/. Read out signal average = A =17,



Graph Neural Networks (GNNs)




Pointwise Nonlinearities

» A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries
x1 o(x1)
. o . X2 a(x2)
» The result of applying pointwise o to a vector x is = (r[x] =0 | . = .
Xn o(xn)
» A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector
> ReLU: o(x)=max(0, x). Hyperbolic tangent: o(x)=(e* —1)/(e* +1). Absolute value: o(x)=|x|.
» Pointwise nonlinearities decrease variability. = They function as demodulators.



Learning with a Graph Perceptron

» Graph filters have limited expressive power because they can only learn linear maps

K—1
> A first approach to nonlinear maps is the graph perceptron = ®(x) = a[ Z hkSkx] = ®(x; S,h)
k=0

X1 o(x1)
K—1 ®(x;S, h X o(x2)
x;) z:thSkx z o’[z] —(> ) U[X]:U . =
k=0 :
Perceptron Xn J(X")

» Optimal regressor restricted to perceptron class = h™ = argmin Z E(y, d(x; S, h))
(xy)ET

= Perceptron allows learning of nonlinear maps = More expressive. Larger Representable Class



Graph Neural Networks (GNNs)

» To define a GNN we compose several graph perceptrons = We layer graph perceptrons
» Layer 1 processes input signal x with the perceptron hy = [hio, ..., hi k—_1] to produce output x;
K-1
X1 :O'|:21:| = O'|:Z hlkSkx]
k=0

» The Output of Layer 1 x; becomes an input to Layer 2. Still x; but with different interpretation

> Repeat analogous operations for L times (the GNNs depth) =- Yields the GNN predicted output x;



Graph Neural Networks (GNNs)

» To define a GNN we compose several graph perceptrons = We layer graph perceptrons

» Layer 2 processes its input signal x; with the perceptron hy = [hoo, ..., ho k1] to produce output x»

K-1
X2 :a[zz] —0|:Z thSkxl]

k=0
» The Output of Layer 2 x, becomes an input to Layer 3. Still x, but with different interpretation

> Repeat analogous operations for L times (the GNNs depth) =- Yields the GNN predicted output x;



The GNN Layer Recursion

» A generic layer of the GNN, Layer ¢, takes as input the output x,_1 of the previous layer (£ — 1)

> Layer ¢ processes its input signal x,—1 with perceptron hy = [ho, ..., he,k—1] to produce output x,

K—1
Xp = U[Zz} = 0'|:Z hzkskle]

k=0
» With the convention that the Layer 1 input is xg = X, this provides a recursive definition of a GNN
» If it has L layers, the GNN output = x; = d>(x; S, hl,...,hL) = ¢(X; S, H)
» The filter tensor H = [h1,..., h.] is the trainable parameter. The graph shift is prior information



GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= hy sk x Al g = U[Zl}
k=0
Layer 1
x1
» Feed input signal x = xp into Layer 1 X1
K—1
K-1 k 2
2 = hyy S” x1 X3 =02
xla[zl]a[z hlkst0:| kz:o [ }
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x;S, H)
K—1
23
] 13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)



GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= 3 hyShx z g = U[Zl}
k=0
Layer 1
X1
» Feed Layer 1 output as an input to Layer 2 X1
K—1
K—1 k 2
7 = hoy S” x1 X2 = 0|22
X2U[Z2]U|:Z thSkX1:| kz:o [ }
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x; S, H)
K—1 -
13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)



GNN Block Diagram

» lllustrate definition with a GNN with 3 layers 2= hy sk x Al g = U[Zl}
k=0
Layer 1
x1
» Feed Layer 2 output as an input to Layer 3 X1
K—1
K—1 2
o] o[ ] Ene [ et
3k 2 k=0
k=0 Layer 2
X2
X2
» Last layer output is the GNN output = ®(x;S, H)
K—1 o
13:2 hgkskxz x;.;:o-[z_a,}
= Parametrized by filter tensor H = [hy1, hy, h3] k=0

L Layer 3
X3 = ®(x; S, H)



Some Observations about Graph Neural Networks




The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

» A composition of L layers. Each of which itself a...

= Compositions of Filters & Pointwise nonlinearities

Xp = X

|

K—1 71
11:Zh1k5kx XIIO’I:ZI}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)



The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

> Filters are parametrized by...

= Coefficients hy, and graph shift operators S

Xg = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)



The Components ot a Graph Neural Network

> A GNN with L layers follows L recursions of the form

K—-1
Xy :U[Zg] —O'|:Z hgkstg_1:|

k=0

» Output x; = ®(x; S, H) parametrized by...

= Learnable Filter tensor H = [hy, ..., h/]

Xp = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0
L Layer 3
x3 = ®(x; S, H)



Learning with a Graph Neural Network

» Learn Optimal GNN tensor H* = (h},h}, h}) as

H* = argmin Z E(Cb(x;S,H),y)
(x,y)eT

> Optimization is over tensor only. Graph S is given

= Prior information given to the GNN

Xp = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
k 3
13:2113;(5 X2 X3 = [23}
k=0
L Layer 3
x3 = ®(x; S, H)



Graph Neural Networks and Graph Filters

» GNNSs are minor variations of graph filters

» Add pointwise nonlinearities and layer compositions
= Nonlinearities process individual entries

= Component mixing is done by graph filters only

» GNNs do work (much) better than graph filters
= Which is unexpected and deserves explanation

= Which we will attempt with stability analyses

Xg = X

|

K—1
7 = Z hyg skx
k=0

1

X] =0 [11 }
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)



Transference of GNNs Across Graphs

Xp = X

|

K—1
z) = Z hyg skx
k=0

1

X1 = o’[zl}
Layer 1
» GNN Output depends on the graph S. e
x1
X1
» Interpret S as a parameter
o ) K—1 o
= Encodes prior information. As we have done so far = hysx X2 = 0[22}
k=0
Layer 2
X1
X1
K—1
z3
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)



Transference of GNNs Across Graphs

» But we can reinterpret S as an input of the GNN
= Enabling transference across graphs
o(x;S,H) = d(x; S, H)
= Same as we enable transference across signals
®d(x;S,H) = d(X;S,H)

» A trained GNN is just a filter tensor H*

Xg = X

|

K—1 71
zlzzhlkskx xlza[zl}
k=0
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=0[22}
k=0
Layer 2
X1
X1
K—1
k 23
13:2113;(5 x2 x3 = [23}
k=0
L Layer 3
x3 = ®(x; S, H)



CNNs and GNNs

» There is no difference between CNNs and GNNs

» To recover a CNN just particularize the shift operator
the adjacency matrix of the directed line graph

» GNNs are proper generalizations of CNNs

Xp = X

|

K—1
7 = z hyg skx
k=0

z1

x| =0 [11 }
Layer 1
X1
X1
K—1
2
Z2=Z hszkxl x2=o'[22}
k=0
Layer 2
X1
X1
K—1
23
13:2 h3kSkx2 X3:o'[23}
k=0

L Layer 3
x3 = ®(x; S, H)



Fully Connected Neural Networks




The Road Not Taken: Fully Connected Neural Networks

» We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals
» We argued this is a good idea because they are generalizations of convolutional filters and CNNs

» We can explore this better if we go back to the road not taken = Fully connected neural networks




Learning with a Linear Classifier

> Instead of graph filters, we choose arbitrary linear functions = ®(x) = ®(x; H) = Hx

—> z=Hx

z = ®(x; H)

» Optimal regressor is ERM solution restricted to linear class = H™ = argmin Z E(d)(x; H),y)

(xy)eT



Learning with a Linear Perceptron

> We increase expressive power with the introduction of a perceptrons = ®(x) = ®(x; H) = U[HX]

z=Hx

7]

Perceptron

®(x; H)

» Optimal regressor restricted to perceptron class = H" = argmin Z €(¢(x; H),y)

(xy)eT



Fully Connected Neural Networks (FCNN)

> A generic layer, Layer ¢ of a FCNN, takes as input the output x,—1 of the previous layer (¢ — 1)

» Layer / processes its input signal x,—1 with a linear perceptron H; to produce output x,
Xy = 0'|:Zg:| = O'|:H5X¢,1:|
» With the convention that the Layer 1 input is xg = X, this provides a recursive definition of a GNN

» If it has L layers, the FCNN output = x;, = ¢(X;H17...,HL> = CD(X;H)

» The filter tensor H = [Hi,...,H,] is the trainable parameter.



Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed input signal x = xp into Layer 1
zy = Hyxp 22 x2=o'[22}
X1 = o[zl] = O'[HlkXO]
X2
X2
» Output ®(x; #) Parametrized by 7 = [H1, Ho, H3] 25 = Hsx z3 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)



Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed Layer 1 output as an input to Layer 2
zy = Hyxp 22 x2=o'[22}
Xy = 0[22] = U[ngl]
X2
X2
> Output ®(x; H) Parametrized by H = [H1, Ha, H3] 25 = Hsx 23 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)



Fully Connected Neural Network Block Diagram

Xg = X
z; = Hpx £L xlza[zl}
> lllustrate definition with an FCNN with 3 layers
x1
X1
» Feed Layer 2 output as an input to Layer 3
zy = Hyxp 22 x2=o'[22}
X3 = 0[23] = U[H3X2]
X2
X2
» Output ®(x; #) Parametrized by 7 = [H1, Ho, H3] 25 = Hsx z3 x5 = 0[23}

|->X3 = O(x; H

Layer 1

Layer 2

Layer 3

)



Neural Networks vs Graph Neural Networks




Which is Better: A Graph NN or a Fully Connected NN?

» Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

m|n Z ( )g mq_iLn Z Z(tb(x;S,H),y)

(xy)eT (x.y)eT

» The fully connected NN does better. But this holds for the training set

» In practice, the GNN does better because it generalizes better to unseen signals

= Because it exploits internal symmetries of graph signals codified in the graph shift operator



Generalization with a Neural Network

» Suppose the graph represents a recommendation system where we want to fill empty ratings
» We observe ratings with the structure in the left. But we do not observe examples like the other two

» From examples like the one in the left, the NN learns how to fill the middle signal but not the right




Generalization with a Graph Neural Network

» The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

» The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal




Permutation Equivariance of Graph Neural Network

» The GNN exploits symmetries of the signal to effectively multiply available data

» This will be formalized later as the permutation equivariance of graph neural networks




Graph Filter Banks

» Filters isolate features. When we are interested in multiple features, we use Banks of filters



Graph Filter Banks

» A graph filter bank is a collection of filters. Use F to denote total number of filters in the bank

> Filter f in the bank uses coefficients h” = [hf;...; hfc_;] = Output z* is a graph signal

=
L
=
L
=
L

z' = h,{Skx zZ:thSkx e o o ZF = hfSkx
k=0 k=0 k=0
zlJ ZZJ ° ° ‘ ZFJ
» Filter bank output is a collection of F graph signals = Matrix graph signal Z = [zl., . ,zF]



Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components Xx;.
» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node.
ng X40 X6° :
X3° X5° X7‘ )

31



Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components x;.
» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node. Columns of Z are graph signals z.

1 f F
z23 zf zg’ T A | 7
2 2 2
z5 z; z;
1 1 1
4 3 — 1 —
,7 : ,% Z=| gz Z; Zj =
z Z .
1A 198 X : . .
5 ‘ K ‘ . : : -
3 3 3 o 1 .. f . F z,
>3 2 %5 Y27 Zn Z, Z,
z5 z z
173 177

31




Filter Bank Outputs: Multiple Features

» The input of a filter bank is a single graph signal x. Rows of x are signals components x;.

» Output matrix Z is a collection of signals z'. Rows of which are components z/.

» Vector z; supported at each node. Rows of Z are node features z;
4 d o Af] ra
5 2y b23 . . .
Z= Z,-l B Z,-f - ziF = z;
z; zg . . .
z} z,: z: Zn

SR
z3 z5 z7
‘ ° ‘ =z - L ... F]

31




Output Energy of a Graph Filter in the GFT Domain

Theorem (Output Energy of a Graph Filter)
Consider graph filter h with coefficients hx and frequency response 71()\) = Z A\ . The energy
k=0

of the filter's output z = Z hS*x is given by
k=0

2P =3 (Ao %)’

i=1

where ); are eigenvalues of symmetric S and % are components of the GFT of x, X = Vx is



Proof of Output Energy Theorem

Proof: The GFT is a unitary transform that preserves energy. Indeed, with z = V"z we have
H
|z =2"2 = (V'2) " (V"2) = "Wz =2"1z= ||z |

» We know that graph filters are pointwise in the frequency domain = z = Fl(/\,-)f(,-

n n

2| =2"2=>#= (/"f(/\,)fq)2

i=1 i=1
» We have the energy expressed in the form we want. Except that it is in the frequency domain.
n

> But we have just seen the GFT preserves energy = ||z H2 =z ||2 = Z (IN1()\,-) >”<,-)2 [ ]
i—1



Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

A1 A2 An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z



Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

al rIIIr.ee

A1 A2 Ai An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z



Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

-.!TIIII‘Tf..---- ol

A1 A2 An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z



Filter Banks in the Graph Frequency Domain

» The energy that graph filters let pass is a sort of “area under the frequency response curve.”

» Graph Filter banks are helpful in identifying frequency signatures of different signals

oA

A1 A2 Ai An

> Filter banks scatter the energy of signal x into the signals z" at the output of the filters.

= Different signals concentrate energy on different outputs z



Filter Banks as Transforms

» The filter bank isolates groups of frequency components

s n . s
= Energy of bank output z' = Z hiS¥x is area under the curve = ||z’ H2 = Z (hf(/\;))?;>
k=0 i1

i IN

» We use the filter bank to identify signals with different spectral signatures.

)\1 )\2 >\i

35



Energy Conservation in Filter Banks

» The GFT preserves energy = It scatters information. But it doesn’t loose information

F
> A filter bank is a frame if there exist constants m < M = m ||x||2 < Z ”sz2 <M Htz
f—1

F
> A filter banks is a tight frameif m=M=1 = Hx“zzz ||zf||2
F=1

» No signal is vanquished by a frame. Energy is preserved by a tight frame



Frames in the Graph Frequency Domain

F
N 2
» Because filters are pointwise in the GFT domain, a frame must satisfy = m < E [hf()\)] <M
=1

. 2
> All frequencies A must have at least one filter h with response m < [hf(A)]




Tight Frames in the Graph Frequency Domain

F
. 2
> Likewise, a tight frame must be such that for all A = Z [hf()\)} =1
=1

» A Sufficient condition is that all frequencies accumulate unit energy when summing across all filters

| L t |
A1 A2 Ai An

» We will not design filter banks. We will learn them. But keeping them close to frames is good.



Multiple Feature GNNs

» We leverage filter banks to create GNNs that process multiple features per layer



Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node

K—1 K—1 K—1
2= h,l(Skx 2= E hiSkx 2f = E hfSkx

k=0 k=0 k=0

le z2l ZFJv

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.



Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.

40




Multiple Feature (Matrix) Graph Signals

» Filter banks output a collection of multiple graph signals = A matrix graph signal Z = [zl, . 7z'E]

» The F graph signals z' represent F features per node. A vector z; supported at each node
22‘ 240 Zﬁ°

Zse
13° Zse 170

» We would now like to process multiple feature graph signals. Process each feature with a filterbank.

Z1

40



Multiple-Input-Multiple-Output (MIMO) Graph Filters

K—1
> Each of the F features x” is processed with G filters with coefficients h = u® = Z h s* x"
k=0

l L ]

K—1 K—1 K—1
f1 f1 gk f2 2 gk G G gk
uzghka uzzhka u=Ehka
k=0 k=0 k=0

o i i

u

41




Multiple-Input-Multiple-Output (MIMO) Graph Filters

» This Multiple-Input-Multiple-Output Graph Filter generates an output with F x G features

T T
1
x | | |
; L 1 ; L 1 P — K—1
X [ x X
K—1 K—1 K—1
X X X
K—1 K-1 K—1
12 ok 16 16 ok
u'l = g h}(lskx u'? = E hS" x ul = E h,” S" x
k=0 k=0 k=0
u u }I
N .
! u? 2G
u't u'? ul®
2 =ul+ut 4+ .. +uft 22 =u?+u? 4. . +u" 22 =0 4 . e



Multiple-Input-Multiple-Output (MIMO) Graph Filters




MIMO Graph Filters with Matrix Graph Signals

» MIMO graph filters are cumbersome, not difficult. Just F x G filters. Or F filter banks.

> Easier with matrices = G x F coefficient matrix H, with entries (Hk> = h
fg

x
L

Z = S¥ x X x Hy

,r
Il
S)

» This is a more compact format of the MIMO filter. It is equivalent

11 1g 16

Wl RE . pl

K—1 : : :

[zl - 8 . ZG] = Zsk X [xl -oxf xF] X At h,’:g - h€
k=0 : : :

F1 Fg FG

REL o hE . A



MIMO GNN / Multiple Feature GNN

» MIMO GNN stacks MIMO perceptrons = Compose of MIMO filters with pointwise nonlinearities
» Layer ¢ processes input signal X;—1 with perceptron Hy = [Hyo, ..., H/ k—1] to produce output X,
K—1
XZ = O'|:Ze:| = O'|:Z SkX[,l HU(:|
k=0
» Denoting the Layer 1 input as Xo = X, this provides a recursive definition of a MIMO GNN

> If it has L layers, the GNN output = X, = ¢(x; s, H1,...,HL) - ¢(x; s, 7-[,)
» The filter tensor H = [Hi,...,H,] is the trainable parameter. The graph shift is prior information



MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed input signal X = Xj into Layer 1

K—-1
Xlza[zl] —0'|:Z SkXOHlk:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H, H3]

Xo = X

!

Z;

K—1
7= s XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)



MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed Layer 1 output as an input to Layer 2

K—-1
X2 :U[ZQ] —0'|:Z Skxl H2k:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H2, H3]

Xo = X

!

Z;

K—1
7= s¥XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)



MIMO GNN Block Diagram

» We illustrate with a MIMO GNN with 3 layers

» Feed Layer 2 output as an input to Layer 3

K—-1
X3 :U[Zg] —0'|:Z SkX2 H3l<:|

k=0

» Last layer output is the GNN output = ®(X;S, H)

= Parametrized by trainable tensor H = [Hi, H2, H3]

Xo = X

!

Z;

K—1
7= s¥XHy, Xlza[Zl]
k=0
Layer 1
X1
X1
K—1 p 22
Z,= 3 s¥XyHy Xz—a[Zz]
k=0
Layer 2
X2
Xz
K—1 o Z3
Z3= > sKXoHy X3:o‘[23]
k=0
L Layer 3
X3 = ®(X; S, H)
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