
Lecture 3 Script 

Graphs 
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● To understand graph neural networks, we need to introduce graphs, graph 
signals, and graph convolutional filters. Let us begin by discussing graphs. This 
is mostly about the introduction of notation. 
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● A graph G is a triplet made up of a set of vertices V, a set of edges E, and a set 
of weights W.  

● Vertices, or nodes, are simply a set of n labels, where n represents the total 
number of nodes in the graph. Typically, labels are the natural numbers from one 
through n, 

● Like in this figure where nodes are labeled 1 through 8 

● Edges are ordered pairs of labels of the form i comma j. Where, we emphasize, 
the ordering is important. In graph signal processing, we interpret the presence of 
the edge ij in the edge set as a statement that node i can be influenced by node j.  

● We denote this influences with pointed arrows. For instance, node 2 can 
influence node 1 and node 1 has influence over node 3. 

● Weights W_ij are numbers that are associated to edges. The weights are 
interpreted as a representation of the strength of the influence that node j can 
have on node i. The larger the weight, the larger the influence. 



● In the diagram, this is represented with numbers associated to each edge. If 
w_12 is larger than w_31, it means that the influence 2 has on 1 is larger than 
the influence 1 has on 3. Only edges have weights associated. There are no 
weights w_ij if the pair (i,j) is not present in the edge set. 
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● Let me repeat that the edge (i,j) is graphically represented by an arrow that 
points from node j into node i. And that this arrow stands in for the fact that node j 
can have some influence on node i. 

● I am repeating this because it is the opposite convention that is common in graph 
theory. This convention simplifies notation when we define graph shift operators.  

● Graphs are classified as directed or symmetric depending on the symmetry of the 
edge and weight sets. In a directed graph, the edge (i,j) is different from the edge 
(j,i). It is also possible to have (i,j) be part of the edge set, whereas (j,i) is not part 
of the edge set. 

● For instance, in the figure below there are arrows pointing from node 2 into 4 and 
from node 6 into 4, but there are no arrows pointing from 4 into either 2 or 6.  

● If both edges are part of the edge set, it is still possible to have a difference in the 
weights. That is, if (i,j) and (j,i) are both in the edge set, we can have W_ij and 
W_ji be different. In this example graph, we have arrows connecting 3 to 5 in 
both directions and we also have arrows connecting 5 to 7 in both directions. If 
the graph is directed, the weight that connects 3 to 5 can be different from the 
weight that connects 5 to 3. The same holds true for the weights that connect 5 
and 7. They can be different as well. 
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● When there is no directionality on edges or weights the graph is said to be 
symmetric. For this to happen the edge and weight sets must be symmetric to 
index transpositions. 



● More precisely, edges must come in pairs. Whenever we have (i,j) being part of 
the edge set, we must have that (j,i) is also part of the edge set.  

● In this representative graph, having an arrow pointing from 3 to 5  

● Implies that we must have the opposite arrow pointing from 5 into 3.  

● In addition to edges being symmetric, weights have to be symmetric as well. We 
must have that W_ij and W_ji are the same.  

● In this particular graph, the weight W_53. 

● Must be equal to the weight W_35.  

● This is something that we can signify with a double pointed arrow and a single 
weight.  

● If all edges are connected in both directions with all weights being symmetric,  as 
is shown here, the graph is symmetric. 
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● Weights are not always necessary. When a graph doesn’t have weights, we say 
that it is unweighted.  

● Sometimes it is convenient to equivalently interpret an unweighted graph as one 
in which the weights are units, that is, one in which W_ij is 1 for all edges in the 
edge set.  

● Unweighted graphs can also be directed, as the one we are showing below. 

● Or undirected, as the one we are showing now.  
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● Graphs can be directed or symmetric. and they can be weighted or unweighted. 
These are separate classes. The four combination are possible. 

● Most of the graphs that we encounter in practice are symmetric and weighted. 
This will be the case in the problems we will study in the labs. 

Graph Shift Operators 
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● It is standard to represent graphs with adjacency and Laplacian matrices. In the 
context of graph signal processing, these matrix representations of a graph are 
called graph shift operators.  
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● The adjacency matrix of a graph G, is the sparse matrix A whose non-zero 
entries record the weights of the graph.  

● Specifically, the i comma j entry of A is non-zero if and only if (i,j) is an edge of 
the graph. In which case, the value of the entry is the weight W_ij.  

● In the example we have a symmetric graph. The weights on the edges that 
connect 1 and 2 are recorded in the corresponding entries of the adjacency 
matrix. They are row-one-column-two as well as row-two-column-one.  

● Likewise, the weights in the edges that connect 1 and 3 are recorded in the 
entries of the adjacency matrix that correspond to row-one-column-three as well 
as to row-three-column-one.  

● The remaining non-zero weights are recorded in the corresponding row and 
column of the adjacency matrix A.  

● And the rest of the matrix is filled with zeros.  



● When the graph is symmetric, the adjacency matrix is symmetric as well.  

● That is, the adjacency matrix and its transpose coincide.  

● As is the case of the adjacency matrix we have covered in this example. 
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● For the particular case of unweighted graphs, we recall that weights can be 
interpreted as units. Therefore, the i comma j entry of the adjacency matrix A, is 1 
whenever the corresponding edge (i,j) belongs to the edge set. We show here an 
unweighted version of the graph we have just seen. The node set and the edge 
set are the same, but the weights are 1 in all edges. The adjacency matrix has 
the same sparsity pattern as before, except that now all non-zero entries are 1.  

● For instance, the edges connecting 1 and 2 generate entries in A, in row one 
column two and row two column one. These entries are units 

● The edges connecting 1 and 3 generate entries in A corresponding to row one 
column three and row three column one. These entries are units as well 

● The remaining edges generate the remaining non-zero entries of the adjacency 
matrix A. 
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● The edge set of a graph can be described in terms of neighborhoods to 
emphasize the locality of influence. The neighborhood of node i is the set of 
nodes that are sources of arrows that point into node i. Or more formally, the set 
of nodes j for which (i,j) is part of the edge set.  

● In the example, the neighborhood of node 1 is made up of nodes 2 and 3.  

● We also define the degree of a node. The degree of node i is denoted as d sub i, 
and is given by the sum of the weights in all of its incident edges. Namely, the 
sum of the weights in all of the edges that connect i from some of its neighbors. 



In the example, the degree of node 1 is the sum of the weights W_12 and W_13, 
which connect node 2 into 1 and node 3 into node 1.  
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● We group the degrees of all nodes into the degree matrix. This is a diagonal 
matrix D, whose i diagonal entry is the degree of node i. 

● In the example, we have an unweighted, symmetric graph. The degree of node 1 
is 2 because it has 2 incident edges. This is recorded in the first diagonal entry of 
the degree matrix D. The degree of node 2 is 3 because it has 3 incident edges, 
and this is recorded in the second diagonal entry of the degree matrix D. 

● The degree matrix D can be written in terms of the adjacency matrix A. The 
diagonal of D corresponds to the sum of the rows of the adjacency matrix A, 
which we can obtain by multiplying A by an all one vector.  
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● Having defined the adjacency and degree matrices, we can now introduce the 
Laplacian matrix of a graph. This is the matrix L given by the difference between 
the degree matrix D and the adjacency matrix A. 

● Alternatively, the Laplacian can be written explicitly in terms of the weights of the 
graph.  

● Indeed, since the degree matrix D is diagonal, the off-diagonal entries are simply 
given by the opposite values of the corresponding entries of the adjacency 
matrix. Which are simply the opposite values of the corresponding weights of the 
graph. In the Example shown, all the weights are 1. Thus, all of the nonzero 
diagonal entries of the Laplacian, which match the placement of the nonzero 
diagonal entries of the adjacency, are negative 1 



● As for the diagonal entries, assuming the graph has no self loops, the diagonal  
entries of the adjacency matrix A are null. Therefore the diagonal entries of the 
Laplacian are simply the diagonal entries of the degree matrix D.  
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● Normalized versions of the adjacency and Laplacian matrices are also utilized as 
matrix representations of graphs.  

● The normalized adjacency is defined by pre and post multiplication by the inverse 
square root of the degree matrix. The resulting entries divide graph weights by 
the square root of the degrees of the incident nodes. The interpretation is that 
weights are re-expressed relative to the degrees of their incident nodes. 

● The normalization is such that if the graph is symmetric, the normalized 
adjacency matrix is symmetric. The normalization has been chosen to have this 
property. This is why we pre- and post- multiply by the degree matrix. 
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● The normalized Laplacian is defined in the same manner by pre and post 
multiplication by the inverse square root of the degree matrix D. As in the case of 
the adjacency, weights end up expressed relative to the degrees of their incident 
nodes.  

● Indeed, given the definitions of the normalized operators and the definition of the 
Laplacian as the subtraction of the degree matrix from the adjacency matrix, it 
follows that the normalized Laplacian can be written as the difference between 
the identity matrix and the normalized adjacency.  

● Thus, off-diagonal entries are the opposite of the off-diagonal entries of the 
normalized adjacency. More importantly, since the diagonal components are an 
identity matrix, the normalized adjacency and the normalized Laplacian are 
essentially the same linear transformation. There is no substantial difference 
between A bar times x and L bar times x. 



● The value of normalized operators lies in that they are more homogeneous 
representations when we consider heterogenous graphs where different nodes  
differ substantially in their respective degrees. The sum of the values contained 
in each row and column of the normalized operators are more similar across 
different indexes. When these differences are undesirable, normalized operators 
are useful. 
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● The Graph Shift Operator S is a stand in for any of the matrix representations of 
the graph.  

● We can make it equal to the adjacency matrix,  

● Equal to the Laplacian matrix,  

● Or the normalized adjacency,  

● Or the normalized Laplacian.  

● And, of course, if the graph is symmetric, the shift operator S is symmetric as 
well.  

● The reason for defining the shift operator is that a specific choice matters in 
practice, but most results and analysis hold for any choice of tests. A different 
version of this statement is that we don’t have to worry about the choice of shift 
operator during our mostly analytical lectures. Although you will have to worry 
about that in your practical implementations during labs.We will therefore use a 
generic shift operator S, in our definitions of graph convolutions and graph neural 
networks. 

Graph Signals 
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● Graph signals are the objects we process with graph filters and graph neural 
networks 
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● Begin with a graph G having n nodes and shift operator S. 

● A graph signal is a vector, which also has n components and in which we 
associate component x_i to the i-th node of the graph. In the diagram, we show a 
graph with eight nodes supporting a graph signal with eight components. 
Different components of the signal are associated to different nodes of the 
graph,. Something that we represent by scaling the size of the nodes.  

● Although a graph signal is just a vector, the shift operator is considered intrinsic 
to the signal. When we want to emphasize this fact, we write the signal as a pair 
made up of the shift operator and the signal itself.  

● The graph is an expectation of proximity or similarity between the components of 
the signal x and the objective of graph signal processing is to leverage this prior 
information in the processing of the signal.  
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● Multiplication of a graph signal by a shift operator implements a diffusion of the 
signal over the graph. 

● More formally, define a diffused signal y as the product of the graph shift operator 
with a given graph signal x.  

● Because of the sparsity pattern of S, the i-th component of the diffused signal, 
which we denote by y_i, is affected only by the components that we denote by 
x_j for j in n of i. These are the values of the input signal x that are supported on 
adjacent nodes j that belong to the neighborhood of i. In a normal matrix 
multiplication we would sum over all j indexes. But only the weights in the 
neighborhood of i are nonzero in the product S times x. 



● In the illustration, we have an input graph signal with components x_i and we 
highlight the input value at node 2. The result of the diffusion operation at this 
node is affected only by the values of the input signal x_j at the neighboring 
nodes that we highlight in green. The diffusion value y_2 is affected by the input 
value x_4. But it is not affected by x_8. 

● Notice that the converse of this influence statement dictates that the value of the 
input x_i associated with node i affects the values of the diffused signal y_j only 
for the indexes j that correspond to neighboring nodes. In the example here, the 
value x_2 of the input signal at node 2 affects the values of the diffused signal y_j 
only at those nodes j that are neighbors of i which we highlight in green. The 
input value x_2 affects the output value y_4. But it does not affect y_8 

● Further observe that stronger weights contribute more to the output of the 
diffusion. Thus, the locality of the diffusion manifests also on the strength of the 
influence that node j has on node i. This is important when graphs are not that 
sparse but have dominant weights. 

● We summarize these observations by saying that diffusion is a local operation 
whereby signal components are mixed with signal components of neighboring 
nodes. This is a property that is natural to leverage in the processing of the signal 
x. And it also plays an important role in the use of diffusions in distributed 
systems.  
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● The diffusion operator can be composed with itself to produce the diffusion 
sequence.  

● We formally define this sequence through recursive multiplication by the shift 
operator S. Element 0 is the signal itself. And subsequent components are such 
that k plus first element of the diffusion sequence is the product of S and the k-th 
element of the diffusion sequence.  

● To be more clear, the zeroth entry of the diffusion sequence is the graph signal 
itself.  



● Element one is the diffusion of element 0. This is the diffused signal Sx we have 
just discussed. 

● Element two of the diffusion sequence is the diffusion of element 1. This is the 
diffusion of the diffused signal. 

● Element three of the diffusion sequence is the diffusion of element 2. The 
diffusion of the diffusion, of the diffusion. If you want to keep track.  

● Alternatively, we can unroll the recursion and simply write the kth entry of the 
diffusion sequence as the k-th power of the graph shift operator S applied to the 
input graph signal x. 

● Entry zero of the diffusion sequence is the multiplication of the shift operator 
raised to the power of 0 with the graph signal. This is the graph signal itself. 

● Entry one of the diffusion sequence is the product of S raised to the power of 1 
with x. This is the diffused signal. 

● Entry two is obtained by premultiplying the signal x with the shift operator S 
raised to the power of 2. 

● And entry three two is obtained by premultiplying the signal x with the shift 
operator S raised to the power of 3. 
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● Some observations are in order. 

● The diffusion sequence embeds the trade off between local and global 
information. As we can see from the their definitions, and perhaps more clearly 
from the figures, the k-th element of the diffusion sequence diffuses information 
to and from k-hop neighborhoods. Thus, for low values of k the entries of the 
diffusion sequence represent local information only. Whereas, for large values of 
k, the entries of the diffusion sequence represent global information.  



● This trade off between locality and globality is a characteristic of convolutions. 
We know already, and we are going to see it again in the next video, that the 
diffusion sequence is used in the definition of graph filters. This is one reason 
why. Not the only. But certainly one. 

● There are two equivalent versions of the diffusion sequence. One recursive, and 
one using powers of the shift operator S. 

● Be warned to always use the recursive version in implementations. This warning 
bears repetition. Always. I repeat. Always, use the recursive definition of the 
diffusion sequence. There are dramatic differences in computational cost. 
Incidentally, when we consider distributed systems, this is the only version that 
can be utilized. 

● The power version is the one we will use for analyses.  

Graph Convolutional Filters 
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● Graph convolutional filters are the tool of choice for the linear processing of 
graph signals.  
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● Given a graph shift operator S and a possibly infinite set of coefficients h_k, a 
graph filter is defined as a polynomial on the shift operator with coefficients h_k. 
Or a series, if you want to be precise when the number of coefficients is infinite. 
The resulting graph filter is a matrix that we denote by H of S.  

● Applying the filter to a graph signal x entails multiplication of the signal x with a 
graph filter H of S to produce the output signal y.  



● We group the coefficients h_k in a sequence we call h. We then say that y is the 
graph convolution of the filter h with the graph signal x. We use the familiar 
convolution notation annotated with a sub index S to indicate the use of the shift 
operator in its definition. 
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● Perspicacious listeners may have noticed the appearance of the diffusion 
sequence in the definition of graph convolutional filters. They will therefore not be 
surprised to see us highlighting the fact that graph convolutions aggregate 
information growing from local neighborhoods into global neighborhoods. Which  
as we have said several times already, is an important property of convolutions.  

● To revisit this important point, consider a signal x, supported on a graph with shift 
operator S. Along with a filter h with coefficients h_k. The filer contains K taps. 
From 0 to K-1. 

● For this given signal, graph and filter, we undertake the computation of the output 
of the convolution of h with x on the graph S. 

● We begin with an illustration of the graph on which the signal components are 
supported on individual nodes.  

● To compute the output of the graph convolution we begin with the graph signal x 
itself, which we scale with coefficient h zero. We highlight the signal value at 
node 4. 

● To the signal x we add the diffusion S times x, which we scale with coefficient h 
one. This results in the convolution output at node 4 being affected by all of its 
one-hop neighbors.  

● To the resulting sum we add the product of S raised to the power of two with x 
scaled by coefficient h_2. This represents a diffusion of the diffused signal. 
Adding this term to the convolution results in the value at node 4 being affected 
by all of its two-hop neighbors. 



● We then add the product of S raised to the power of three with the signal x 
modulated by coefficient h_3. This is the third component of the diffusion 
sequence which we know aggregates information from 3-hop neighbors. 

● To complete the graph convolution we keep adding components of the diffusion 
sequence scaled by their respective filter coefficients until we reach the order of 
the filter. The last entry, is the capital K minus 1 element of the diffusion 
sequence scaled by coefficient capital K-1. 
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● A separate important property of graph convolutions is that the same filter can be 
executed in multiple different graphs. This is because the graph filter and the shift 
operator are separate from each other in the definition of the graph filter. They 
have to be designed jointly, of course, but the coefficients h_k do not depend on 
the shift S afterwards.  

● We say that we can transfer the filter across graphs. 

● To illustrate this point consider a signal supported on a graph. The same one we 
consider a minute ago.  

● And a different signal supported on a different graph. 

● To write the convolutions output we proceed as before. 

● We start with the signal x scaled by coefficient h_0. This is the same operation on 
both graphs. 

● We then add the diffusion S times x modulated by coefficient h_1. The resulting 
operations are different in different graphs. Because the graph neighborhoods 
are different. This is highlighted for node 4 in both graphs. 

● The same is true of element 2. The same notation, namely, the shift S raised to 
the power of two multiplying x and the result scaled by h_2, represents different 
operations when instantiated in different graphs. 



● And the same holds for element 3 of the diffusion sequence. Same abstract 
operation. Different instantiated results.  

● Upon completing the execution of the filter, the convolutions could be quite 
different. Because the graphs are different. But it is nevertheless possible to 
move the filter from one graph to another. This is true no matter how different the 
graphs are. They can have different neighbors. Different weights. Different 
numbers of nodes, even. 

● I don’t want to make too much of a big deal of this. I am just saying that the 
output of a graph convolution depends on the filter coefficients and the shift 
operator S and that these two can be chosen separately. But the ability to 
transfer a filter across graphs will prove to be very important to us. In both theory 
and practice. It is all but impossible to encounter the exact same graph twice. 
Our theory and practice have to account for that. 
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● A graph convolution is a weighted linear combination of the elements of the 
diffusion sequence. Which, we recall, we can compute with matrix powers or with 
recursive application of the shift operator. 

● Using the recursive definition of the diffusion sequence we end up with a shift 
register structure. Which is familiar to those of you that have studied 
implementation of graph filters. Familiar or not, the shift register is just a 
visualization of the recursive computation of the diffusion sequence. It is based 
on interpreting convolutions as a combination of scaling, shifting, and summing. 

● Start with the signal x, which we write as S to the power of 0 time x. This is the 
shifting.  

● We scale by h_0.  

● We sum towards the output. 

● We now multiply this signal by the shift operator S. This is the shifting. 



● It produces the signal S to the power of 1 times s. Element 1 of the diffusion 
sequence. 

● We scale by h_1 

● We sum towards the output. We accumulate, if you wish. 

● We multiply by S a second time. This is the shifting. 

● It produces entry 2 of the diffusion sequence. The signal S to the power of 2 
times x. 

● We scale by h_2. 

● We sum towards the output 

● We multiply by S once more. Another shift. 

● It produces entry 3 of the diffusion sequence. S to the power of 3 times x. 

● Scale by h_3. 

● And sum towards the output. 

● Since this is a filter with 4 taps, the accumulated sum is the output of the 
convolutional graph filter. This shift register structure is the one we use in the 
implementation of graph filters. We shift. We scale. We sum. 

Time Convolutions as a Particular cases of Graph Convolutions 
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● We have already seen that time convolutions are particular cases of graph 
convolutions. This is how we motivated their introduction. But now we have seen 



graph convolutions in closer detail, we can investigate their connections further. 
We will work with the shift register representation of graph filters. 
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● Time convolutional filters process signals in time by leveraging the time shift 
operator.  

● In the figure, we show a signal in which we highlight some components.  

● The time shift operator advances the signal components in time so that the 
component that used to be located at the time zero is now located at time one, 
and the component that used to be located at time one is now located at time 
two.  

● Time shifts can be composed. In the same way in which we composed graph 
shift operators. A second shift moves the signal component that used to be at the 
time zero into time two.  

● And a third shift moves the signal component that used to be located at time zero 
into time three. These time shifted signals can be added to produce the output of 
a time convolutional filter.  

● This convolution is represented by the familiar shift register structure.  

● We begin with the original unshifted signal x, which we scale by coefficient h 
zero.  

● We continue by adding a shifted copy of the original input signal x, scaled by 
coefficient h one.  

● To the resulting sum, we add the twice shifted version of the input signal, scaled 
by coefficient h two.  

● And we further add a thrice shifted version of the input scaled by h_3,  



● We keep shifting summing and scaling until the order of the filter. To have the 
time convolution of filter h with signal x written as a linear combination of time 
shifted versions of the input signal x. The coefficients of the linear combination 
are the filter taps h_k 
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● Time signals can be equivalently represented as graph signals supported on a 
line graph and time shifting as multiplication by the adjacency matrix of this 
graph. 

● To look at the details of how this is done, let’s look again at our time signal x.  

● We can reinterpret this time signal as a graph signal if we associate instants in 
time with nodes of a graph and add directed edges connecting node n to node n 
+ 1. These edges signify the proximity and causality of time. Node n + 1 can be 
influenced by node n. Node 0 influences Node 1. Node 1 influences Node 2; 
which influences 3, and so on.  

● What we have done is to rewrite our time signal as a pair S comma x, where S is 
the adjacency matrix of the line graph. This is overkill. We already know how to 
process time signals. But instructive. And also true. A time signal is a pair made 
up of the adjacency of the line graph and the signal itself. However implicit, we 
often leave the presence of the graph. 

● Using this alternative and equivalent representation of time signals, we can 
rewrite the time shift operation as a multiplication with the adjacency matrix of the 
line.  

● As we show in this equation, all of the entries of this adjacency matrix are zero. 
Except for those in the first sub diagonal which are one because the graph is 
unweighted.  

● When we premultiply the signal x with the adjacency matrix S.  



● The result is a reallocation of the components of x. They move one place down in 
their position. Save for the first and last entry, the output of the operation has the 
same components. But the entry x_i associated to index i in vector x, is now 
associated with index i + 1 in the output vector.  

● If we look at the graph representation of our time signal, the components are 
shifted to the next node of the graph. They follow the arrows, to speak informally. 
Ot they diffuse through the edges, to speak more accurately. 

● These multiplications can be composed. Begin by considering the product of S 
raised to the power of 2 with x.  

● This is equivalent to multiplying by S a second time. We therefore have to 
compute the product of S with the shifted vector S times x.  

● But we already know that the effect of this product is to shift signal components.  
To move the place of components down relative to their position in the input 
vector. But this time we are shifting an already shifted signal. We therefore end 
up with an output in which components are shifted two places. Except for the 
borders of the vector, the entry x_i associated to index i in vector x, is now 
associated with index i + 2. 

● If we look at the graph representation of the time signal, the components are 
shifted to the next node of the graph. The diffuse through the edges a second 
time. 

● We now move on to S to the power of 3 times x. 

● This can be recursively computed as the product of S with S squared times x.  

● And we know that the effect is to produce a shift of the indexes one place down. 
Which, since we are applying the shift to a twice-shifted signal, results in a thrice-
shifted signal. 

● In the graph representation of the time signal, the components diffuse one node 
up through the edges of the graph. 



● The important point to observe is that the application of subsequent powers of 
the adjacency S to the time signal x is equivalent to the subsequent application of 
time shifts. 

● We can therefore rewrite time convolutional filters as multiplications with 
polynomials of the adjacency matrix of the line graph.  
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● Indeed, let us return to our definition of the convolution as a linear combination of 
shifted versions of the input.  

● This is a structure that a few minutes ago we represented with this shift register.  

● But we now know that all of the time shifts that appear in the register are 
equivalent to multiplications with the adjacency matrix S of the line graph.  

● That is, the time signal can be written as a graph signal supported on a line 
graph and subsequent shifts can be rewritten as multiplication by its adjacency S. 
Therefore, in all of the places in which a shift operator appears in the register. 

● We can equivalently write a multiplication with a power of the adjacency matrix S.  

● This block diagram and the mathematical expression its represents is nothing but 
the expression we had before for a graph convolutional filter when we 
particularize it to the adjacency matrix of a line. Thus, as we had said at the 
beginning of this video, the time convolution operation is a graph convolution 
applied to this specific graph.  
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● We have revisited time convolutions to show that they are particular cases of 
graph convolutions. While we are here, we can take some time to see how graph 
convolutions are obtained as generalizations of time convolutions.   



● To obtain this generalization we just have to let the graph shift operator be 
arbitrary. This shift register represents a convolution in time only because the 
operator S is the adjacency of a line graph. 

● But if S denotes the adjacency of an arbitrary graph, this is an arbitrary graph 
convolution. 

● When we apply the shift operator, the signal diffuses in a different manner. Signal 
components are now following a different set of arrows. 

● But we can still compose diffusion a second 

● Or a third time. By the expedient modification of changing the graph. The shift 
register is now a representation of a graph convolution on a different graph. The 
notion of diffusion is different, but the structure of the shift register that defines 
the convolution stays the same. 

Graph Fourier Transform  
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● Fourier transforms are an important tools for analyzing information processing 
systems. In the case of graphs, the tool takes the form of the graph Fourier 
transform. 
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● We start with some preliminary assumptions. We will work with symmetric graphs 
having symmetric shift operators with S equal to S Hermitian. 

● For shift operator S we use v_i to denote its eigenvectors and lambda_i to denote 
its eigenvalues. If you need a reminder, eigenvectors are those that do not 



change direction when multiplied by S. They are just scaled. The eigenvalue is 
the scaling factor. 

● For a symmetric S, eigenvalues are real and they can be therefore be ordered. 
We assume here that increasing index represents increasing eigenvalues. 

● We group the eigenvectors as columns of the eigenvector matrix V. We group 
eigenvalues as diagonal entries of the diagonal eigenvalue matrix Lambda. 

● With these definitions we can write the eigenvector decomposition of the graph 
shift operator as the product V times Lambda times V Hermitian.  

● In this expression we have that V Hermitian times V is the identity. This is 
because the graph is symmetric. 
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● We use the eigenvector decomposition of the shift operator to define the graph 
Fourier transform. 

● For a shift operator with eigenvector matrix V. 

● The graph Fourier transform of a signal x supported on S is the signal tilde x 
given by the product of V Hermitian with x.   

● This definition says that the GFT of signal x is its projection on the eigenvector 
basis of the shift operator. We will say projection on the eigenspace to save 
words. 

● The GFT tilde x is said to be the graph frequency representation of x. And that 
tilde x is a representation in the graph frequency domain. 
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● We can also define an inverse transform.  



● For a shift operator with eigenvector matrix V. 

● The inverse graph Fourier transform of what is presumably a GFT signal tilde x is 
the signal x-double-tilde given by the product to V with tilde x. Notice that we use 
the matrix V here. Not V Hermitian as in the definition of the GFT. 

● This inverse transform is a proper inverse of the GFT because the iGFT of the 
GFT of the signal x is the signal x itself. 

● In case you have never seen a proof of this fact, write the definition of the iGFT. If  
we assume the blue signal tilde x whose inverse we are computing, is the GFT of 
signal x. 

● We can use the definition of the GFT to write it as V Hermitian time x. In this 
expression we have the product V times V Hermitian. 

● We know that this is an identity matrix. 

● And multiplying by an identity matrix is moot. 

Graph Frequency Response of Graph Filters 
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● We have defined graph convolutional filters and we have seen that they are a 
valid generalization of time convolutional filters.  

● We will see now that graph filters admit a pointwise representation when 
projected in the graph frequency domain. This is another fundamental property 
they share with time convolutional filters.  
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● The GFT can be leveraged to represent graph filters in the graph frequency 
domain. We introduce this representation as a Theorem. 

● Consider then a graph filter h with coefficients h_k. A graph signal x. And a 
filtered signal y defined as a polynomial on the adjacency matrix modulated with 
coefficients h_k. 

● If we introduce the GFTs tilde x and tilde y of the input and output signal, we can 
relate the GFTs through multiplication with a polynomial on Lambda modulated 
by coefficients h_k. That is, the GFT tilde y is the product of the polynomial we 
highlight in red with the GFT tilde y. The matrix that appears in this polynomial is 
Lambda. The diagonal matrix that contains the eigenvalues of the graph shift 
operator. 

● It is pertinent to remark that the two polynomials that appear in this theorem are 
the same but on different variables.  

● The polynomial that defines the graph filter is on S. 

● And the polynomial that defines the frequency representation is on Lambda. The 
variables are different. But their coefficients are the same. 
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● Before we elaborate more on the consequences of this theorem, let’s give a 
proof. 

● Recall that the spectral decomposition of the shift operator says that S equals V 
times Lambda times V Hermitian. It follows that S to the power of k can be written 
as V times Lambda to the power of k times V Hermitian. 

● Thus, the filter that we write here with its usual definition.  

● Can be rewritten by replacing power of S by these factors containing powers of 
Lambda 



● Multiply now on the left by V Hermitian on both sides of the equality. Doing so 
yields some familiar terms.  

● Let’s copy the expression so that we can start identifying them. 

● The product V Hermitian times y is nothing but the GFT of the output signal. We 
write this down into an equality we are building on the right side of the slide. 

● The product V Hermitian times x is nothing but the GFT of the input signal. We 
write that down on the right. 

● Among the remaining terms, look at the ones involving V Hermitian and V. These 
terms cancel out because V Hermitian times V is an identity.  

● We are left with the terms in red that we copy to the right side 

● This is the result that we wanted to prove. 
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● We have just proven that in the GFT domain, filters are diagonal. Such a 
diagonal relationship between the Graph Fourier transforms at the input and 
output of a graph filter.  

● Implies that graph convolutions are pointwise operations in the GFT domain. This 
is true because all that goes on in a multiplication by a diagonal matrix, is that  
the i-th component of the input is multiplied by the i-th diagonal entry.  

● In our particular case, we have that the i-th component of the GFT of the output . 

● Is the product between the i-th component of the GFT of the input. 

● And the corresponding diagonal element. Which is associated with the i-th 
eigenvalue of the graph shift operator.  



● This is a very simple observation. In fact, its simplicity is rather the point. But 
nevertheless one that is insightful. To explore the insights that follow from this 
observation, we define the graph frequency response of a graph filter.  

● Given a graph filter with coefficients h 

● The frequency response of the graph filter is defined as a polynomial on a scalar 
variable lambda modulated by coefficients h_k. This is the same polynomial that 
defines the filter. And the same one that represents the filter in the frequency 
domain. But the variable of this polynomial is scalar. 

● The definition of the frequency response is such that we can write the i-th 
component of the output GFT as the product between the i-th component of the 
input GFT and the graph frequency response evaluated at the corresponding 
eigenvalue lambda i.  

Slide 39 

● Some observations are in order.  

● As we have already pointed out, we emphasize that the frequency response is 
the exact same polynomial that defines the graph filter.  

● Except that instead of being a polynomial on the shift operator, it is a polynomial 
on a scalar variable lambda. 

● A second observation that follows from this one, is that the frequency response is 
independent of the graph. This is a very important observation that bears 
repetition. The graph frequency response does not depend on the specific graph.  

● It is completely determined by the filter coefficients.  

● In a graph filter, the role of the graph is to determine the eigenvalues on which 
the response is instantiated. But it doesn't play a role in the values that the graph 
frequency response itself takes.  
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● To explain this points better we show an illustration of a graph  frequency 
response. It’s just a single variable analytic function. 

● It is completely determined by the filter coefficients. The graph has nothing to do 
with it. 
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● What is then the role of the graph? 

● Well, when given a specific graph, the response is instantiated on its specific 
eigenvalues lambda_i.  

● And when we are given a different graph, the response is instantiated on a 
different set of eigenvalues hat lambda_i.  

● Thus, first and foremost, the graph determines the eigenvalues of the response 
that are instantiated when the filter is run on a particular graph. This is a deep 
observation. It allows us to study the effect of running the same filter on different 
graphs. This is how we will obtain stability and transferability results. 

● It is notable that eigenvectors do not appear here. But we have to remember that 
eigenvectors are associated to eigenvalues. Their role is to specify the 
instantiation of a frequency component.  
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