
Time, Images and Graphs

Alejandro Ribeiro

We can define convolutions for time signals, convolutions for images, and
convolutions on graphs. The latter is the one that is of interest to us and
is defined as

y = ∑
k

Skx , (1)

where x is an input signal, y is an output signal, the hk are filter coef-
ficients, and S is a matrix representation of the graph. In this post, we
explore connections between (1) and the usual definitions of convolutions
for time signals and images.

1 Convolutions in Time and on Graphs

The convolution in time, as usually defined in signal processing courses,
is equivalent to the graph convolution when particularized to a line
graph. To see that this is true, let x = [x0; . . . ; xN−1] be an input signal
and y = [y0; . . . ; yN−1] the output of a convolutional filter with coeffi-
cients hk applied to input x. As per the usual definition of convolution,
the output signal y is the one with entries

yn = ∑
k

hkxn−k , (2)

where we adopt the convention xn−k = 0 if the index n− k is outside the
range of valid indexes {0, N − 1}.

1



An alternative way of writing (2) is to define a time shift operator S . This
is a linear operator that when applied to signal x produces the signal Sx
with entries

(Sx)n = xn−1 . (3)

Adopting the convention that S k denotes composition of the operator S ,
we can write xn−k = (S kx)n. Substituting this fact into (2) yields

yn = ∑
k
(S kx)n . (4)

The beauty of (4) is that it is an elementwise relationship. The nth com-
ponent of the vector y is related to the nth component of the vector S kx.
We can therefore just write

y = ∑
k
S kx . (5)

To go from (5) to the definition of convolutions on graphs, we just need
to instantiate the operator S as the adjacency matrix S of a directed line
graph. That is, we just have to note that if we multiply x with the ad-
jacency matrix of a line graph we produce a signal with components
[Sx]n = xn−1. Thus, we can equivalently write (5) as

y = ∑
k

Skx , (6)

which is the definition of a graph convolution.

All of this is a little pedantic. It is, for the most part, a matter of defi-
nitions. At the end of the day, the only point that matters to show the
equivalency of (2) and (6) is that the product Sx is such that [Sx]n = xn−1

when S is the adjacency matrix of a line graph.

For those of you that know representation theory, this pedantry should
sound interesting. It tells you that graph signal processing is deeply re-
lated to representation theory. The expressions in (5) and (6) are different
instantiations of the algebra of polynomials on the vector space of signals.

2



2 Convolutions on Images and Graphs

The convolution on images, as usually defined, is not equivalent to the
graph convolution particularized to a grid graph. There is an interesting
connection, however. Let x be an input image with pixels xmn and y be
the output of a convolution whose pixels we denote as ymn. An image
convolution requires filter coefficients hkl with two indexes and is given
by

ymn = ∑
k,l

hklx(m−k)(n−l) , (7)

where we adopt the convention x(m−k)(n−l) = 0 if either the index m− k
or the index n− l is outside the range of valid indexes {0, N − 1}. This
is straightforward generalization of (2) to two dimensions. Given that
we can move in the vertical and horizontal directions, we incorporate
shifting in the vertical and horizontal direction.

It is ready to see that we can repeat the steps in (3)-(5) if we define two
shift operators instead of one. To make this clear let Q be a vertical
shift operator and R a horizontal shift operator. These operator produce
images whose pixels are shifted in the respective directions

(Qx)mn = x(m−1)n , (Rx)mn = xm(n−1) . (8)

We can now rewrite shifting using these operators and conclude that the
image convolution in (7) is equivalent to

y = ∑
k,l

hklQkRlx . (9)

This form of the image convolution is not much different from (4). The
difference is that (4) is a polynomial of a single variable, the operator S ,
whereas (9) is a polynomial on two variables, the operators Q and R.
This is as it should be, since we have two different ways of doing shifting
on images.

The challenge in drawing a connection to (1) is that we cannot pigeonhole
the 2-variable polynomial in (9) into the 1-variable polynomial in (1).
Thus, we cannot write arbitrary image convolutions as convolutions on

3



graphs. This can be done if we restrict the filter coefficients hkl in (7) to
have some specific form. In whch case we will end up with a convolution
on a grid graph. But this is besides the point here.

The interesting point we can make is that our three definitions of convo-
lutions, namely, the graph convolution in (1), the time convolution in (5)
and the image convolution in (9) are all polynomials on linear operators.
This suggests that there is a more abstract formulation of convolutional
filters that encompasses the three of them. This is true and it is called an
Algebraic filter. For those of you versant in representation theory, convo-
lutions in time and convolutions on graphs are generated by the algebra
of single variable polynomials. Convolutions on images are generated by
the algebra of two variable polynomials. The incompatibility of image
convolutions with graph convolutions stems from the fact that the alge-
bra of two variable polynomials contains two generators (that we map to
Q and R), whereas the algebra of single variable polynomials contains
one generator (that we map to S or S depending on the application).

We may get to talk about Algebraic convolutions and Algebraic neural
networks at the end of the term. They are an interesting abstraction that
encompasses some other architectures. They’re practical applicability,
beyond times, graphs, and groups has not been explored much1.

1Parada-Mayorga, Ribeiro, “Algebraic Neural Networks: Stability to Deformations” 2020
(arxiv.org/abs/2009.01433).

4

https://arxiv.org/abs/2009.01433

	Convolutions in Time and on Graphs
	Convolutions on Images and Graphs

