Graph Filters & Graph Neural Networks

Luana Ruiz, Damian Owerko and Alejandro Ribeiro

September 15, 2020

This lab is our first approximation at learning with graph filters and graph
neural networks (GNNs). You will learn how to train a graph filter and a
GNN. You will also see evidence that the following three facts holds:

(F1) Graph filters produce better learning results than arbitrary linear
parametrizations and GNNs produce better results than arbitrary
(fully connected) neural networks.

(F2) GNNs work better than graph filters.

(F3) A GNN that is trained on a graph with a certain number of nodes
can be executed in a graph with a larger number of nodes and still
produce good rating estimates.

Facts (F1)-(F3) support advocacy for the use of GNNs. They also spark
three interesting questions:

(Q1) Why do graph filters and GNNs outperform linear transformations
and fully connected neural networks?

(Q2) Why do GNNSs outperform graph filters?

(Q3) Why do GNN s transfer to networks with different number of nodes?

We will spend a sizable chunk of this course endeavoring to respond

Questions (Q1)-(Q3).

Throughout the lab we use source localization as an example problem.
This problems uses fake data that we generate so as to work in a con-
trolled environment. We will soon be repeating this lab in a recommen-
dation system using real data and will rediscover Facts (F1)-(F3) and rein-
troduce Questions (Q1)-(Q3). Working with real data is messier and better
relegated to a second experience.

1 Source Localization

The source localization problem consists of identifying the sources of a
graph diffusion process from an observation of the process at a given
time t = T. A practical example is trying to identify a set of malicious
agents responsible for the spread of fake news on a social network.

Consider a graph G = (V,€£,S) with node set V, |V| = N, edge set £ €

V x V and graph shift operator (GSO) S € RN*N. Let S = {sq,...,sm}

denote a set of M sources s; € V. At time t = 0, the graph signal zg € RN
is given by

z~U(ab) ifieS

[zo)i = { (@) M

0 otherwise

where U (a,b) stands for the uniform distribution on the [a,b] interval.
For t > 0, z; is the output of the diffusion of z; 1 on the graph, i.e.,

Z = SZt_l + w; (2)

where w; € RY is a Gaussian noise. Given an observation zr of this
process at time t = T, our goal is to identify the sources s; € S.

We will study the source localization problem on stochastic block model
(SBM) graphs. SBM graphs are unweighted and undirected graphs made
up of C communities. Nodes in the same community c¢; are connected
with probability pc., (called intra-community probability) and nodes in
different communities ¢;, ¢; are connected with probability pc,; (called
inter-community probability).

1.1 Graph Generation. Generate the adjacency matrix of a SBM graph
with N = 50 nodes, C = 5 communities of size N/C, intra-community

probability pc,, = 0.6 and inter-community probability pc,; = 0.2. Nor-
malize it by the eigenvalue with largest absolute value.

1.2 Data Generation. Generate 2100 samples of zg [cf. (1)] witha =0,
b = 10 and |S| = M = 10. For each sample, the M sources s; € S
should be drawn at random from V. Use these samples to generate z; for
t=1,...,4 according to (2). The Gaussian noise w; has mean # = 0 and
covariance & = 10731

1.3 Training and Test Set. In the source localization problem, the out-
put data y is given by zj and the input data x is given by z; for t = T. Fix
T = 4 and store the input samples x = z7 in a 2100 X N matrix X. Store
the output samples y = xp in a 2100 X N matrix Y. Permute the rows of
X and Y at random and split the samples between 2000 for training and
100 for testing.

2 Learning with Graph Filters

Our goal is to learn a map that will produce outputs y when presented
with inputs x. To do that we define the loss function

N . o '
((@(xH)y) = Z;([Q(X/HZ)\]; Ml)z, 5

called mean squared error (MSE) or quadratic loss. This loss is minimized
over the training samples to obtain the map ®(x;H), where the set H
groups the learnable parameters. At execution time, this map can be used
to predict the sources of graph diffusion processes x; where xg is unseen.
As we will see in this lab, successful predictions depend on the choice of
parametrization. In particular, we are interested in parametrizations that
depend on the graph through the GSO, i.e., ®(x; H) = ®(x; H, S).

A parametrization that is convenient for processing graph signals is a
graph convolutional filter. To define this operation introduce a filter or-
der K along with filter coefficients hy that we group in the vector h =
[ho, ..., hg_1]. A graph convolutional filter applied to the graph signal x

is a polynomial in the GSO S. In this case, ®(x; 1, S) is given by

K—
®(x;h,S) =H(S)x = Zl Sk x Iy 4)
k=0

where the output ®(x; h, S) is also a graph signal and the learnable pa-
rameters H are the filter coefficients /.

One advantage of graph filters is their locality. Indeed, we can define the
diffusion sequence as the collection of graph signals u; = S*x to rewrite
the filter in (4) as u = Z{f;ol ughy. It is ready to see that the diffusion
sequence is given by the recursion u; = Su;_; with up = x. Further
observing that S;; # 0 only when the pair (i, j) is an edge of the graph,
we see that the entries of the diffusion sequence satisfy

Ugi = Y Sijtg_1,). ®)
jilifee

We can therefore interpret the graph filter in (4) as an operation that
propagates information through adjacent nodes. This is a property that
graph convolutional filters share with regular convolutional filters in time
and offers motivation for their use in the processing of graph signals.

In the context of machine learning on graphs, a more important property
of graph filters is their equivariance to permutation. Use P to denote a
permutation matrix — entries P;; are binary with exactly one nonzero entry
in each row and column. The vector X = Px is just a reordering of the
entries of x which we can interpret as a graph signal supported on the
graph § = PSPT which is just a reordering of the graph S. If we now
consider the processing of X on the graph S with the graph filter h the
following holds.

Proposition 1 Graph filters are permutation equivariant,

®(%;h,S) = ®(Px;h, PSPT) = P®(x; h, S). (6)

The immediate relevance of permutation equivariance is that it shows
that processing a graph signal with a graph filter is independent of node
labeling. This is something we know must hold in several applications
but that is not true of, say, a generic linear parametrization of the signal
components at each node. There is, however, further value in permutation

equivariance. To explain this, return to the ERM problem formulation and
utilize the graph filter in (4) as a learning parametrization. This yields the
learning problem

Q

h* = argmin 1): Z(CIJ(xq; h,S), yq). ?)
h Q q:]

An important observation is that we know that ®(x; H) = Hx must yield
a function ®(x; H*) whose average loss is smaller than the average loss
attained by the function ®(x; h*, S) obtained from solving (7). This is be-
cause both are linear transformations and while ®(x; H) = Hx is generic,
the graph filter ®(x;h,S) = YK ! S¥xi belongs to a particular linear
class. This is certainly true on the training set 7, but when operating on
unobserved samples x the graph filter can and will do better because its
permutation equivariance induces better generalization.

2.1 Graph filter function. Write a function that takes as inputs a graph
shift operator S, a graph signal x and a vector of coefficients h and returns
the output of (4).

2.2 Graph filter module. Using the function from the previous item,
write a torch.nn.Module class to implement the graph filter in (4) as a
learning architecture in PyTorch.

Obs.: Every torch.nn.Module has a constructor method called init and a
method called forward which specifies the operations to be executed. The init
method takes the architecture’s hyperparameters as inputs and saves its param-
eters as attributes. In the case of the graph filter, your init function should
take the hyperparameter K and the GSO S as inputs and declare the weights
h as learnable parameters (nn.parameter.Parameter). The forward
method should take x as an input and implement equation (4) using the learn-
able parameters, the GSO and the function you wrote in item 2.1. Check the
torch.nn.Module example of a linear parametrization provided in the class
website for more details.

Like in Lab 1, we will consider batches of samples to reduce the com-
putational complexity associated with training our models. We will also

https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html

consider multiple epochs, which are full passes over the training set. Mul-
tiple epochs are necessary because, typically, neural networks have a large
number of parameters, which requires the optimization algorithm (e.g.,
SGD) to be run over a sufficient number of steps in order to converge to
a local minimum. For a training set of size Q, the number of training
steps n is determined by the batch size Q; and the number of epochs E.
Explicitly,
Q

n = E x ceil (Qt) 8)

where ceil stands for the ceiling function. In this lab, all learning archi-
tectures will be trained over E = 30 epochs with batch size Q; = 200.
Instead of SGD, we will use another stochastic optimization algorithm
called Adam! with step size € = 0.05. These hyperparameters will be the
same for all architectures you are asked to train.

2.3 Training your first model. Instantiate a graph filter with K = 8
using the module you implemented in 2.2. Use the data you generated
in Section 1 to train and test your model. Report the number of training
steps n and plot the training loss vs. the number of training steps.

Obs.: You can set aside a portion of your training set (e.g., 10% of the training
samples) for validation. Validation samples are not used for training but they are
used to test the model at reqular intervals during training. Validation is a good
practice because it allows saving the model with best performance on the vali-
dation set at any point of the training process, which helps to avoid overfitting.
For more details, check the sample code provided in the class website, where an
arbitrary linear parametrization undergoes training and validation.

3 Learning with Graph Neural Networks

Graph neural networks (GNNs) extend graph filters by using pointwise
nonlinearities which are nonlinear functions that are applied indepen-
dently to each component of a vector. For a formal definition, begin by

1Kingma, DP. and Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv:1412.6980.

introducing a single variable function ¢ : R — R which we extend to the
vector function ¢ : R” — R" by independent application to each compo-
nent. Thus, if we have u = [uy,...,u,] € R" the output vector o(u) is
such that

ou) : [o(w)], = o(m). o)
Le., the output vector is of the form o(u) = [0(uq),...,0(uy)]. Observe

that we are abusing notation and using ¢ to denote both the scalar func-
tion and the pointwise vector function.

In a single layer GNN, the graph signal u = H(S)x is passed through a
pointwise nonlinear function satisfying (9) to produce the output

k=0

®(x;h,S) =0(u) =c(H(S)X) =0 (Ki Skxhk> . (10)

We say that the transform in (10) is a graph perceptron. Different from
the graph filter in (4), the graph perceptron is a nonlinear function of the
input. It is, however, a very simple form of nonlinear processing because
the nonlinearity does not mix signal components. Signal components are
mixed by the graph filter but are then processed element-wise through
0. In particular, (10) retains the locality properties of graph convolutional
filters as well as their permutation equivariance (cf. Proposition 1).

Note that the nonlinearity does not add any learnable parameters and,
like in the graph filter, the learnable parameters H are the coefficients h.

3.1 Graph perceptron. Using the graph filter module from 2.2 and the
ReLU for o, implement the graph perceptron in (10) and instantiate it
with K = 8. Use the data you generated in Section 1 to train and test your
model. Plot the training loss vs. the number of training steps.

Obs.: You can implement the graph perceptron either as a torch.nn.Module
class or by using torch.nn. Sequential, which allows stacking modules in
a sequential way.

Graph perceptrons can be stacked in layers to create multi-layer GNNS.
This stacking is mathematically written as a function composition where
the outputs of a layer become inputs to the next layer. For a formal defi-
nitionlet ¢ =1,..., L be a layer index and h; = {hgk}f:_ol be collections of

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html

K graph filter coefficients associated with each layer. Each of these sets of
coefficients define a respective graph filter ®(x;h;, S) = Zf;ol SFxhy. At
layer ¢ we take as input the output x,_; of layer £ — 1 which we process

with the filter ®(x; hy, S) to produce the intermediate feature

K-1
w = Hi(S)xq = Y S xp 1l 1)
k=0

where, by convention, we say that xg = x so that the given graph signal
x is the GNN input. As in the case of the graph perceptron, this feature
is passed through a pointwise nonlinear function to produce the ¢th layer
output

K-1
Xy = 0’(114) = 0’(Z Skxl_lhgk>. (12)

k=0

After recursive repetition of (11)-(12) for £ = 1,...,L we reach the Lth
layer whose output x|, is not further processed and is declared the GNN
output y = x;. To represent the output of the GNN we define the filter
tensor H := {h,}}_, grouping the L sets of filter coefficients at each layer,
and define the operator ®(-;H, S) as the map

®(x;H,S) = x;. (13)

We repeat that in (13) the GNN output ®(x;H,S) = x follows from
recursive application of (11)-(12) for £ = 1,...,L with xg = x. Observe
that this operator notation emphasizes that the output of a GNN depends
on the filter tensor H and the graph shift operator S. We also emphasize
that, similar to the case of the graph filters in (4), the optimization is over
the filter tensor H with the shift operator S given. Finally, note that since
each perceptron is permutation equivariant, the whole GNN also inherits
the permutation equivariance of graph filters.

3.2 Multi-layer GNN. Implement the multi-layer graph perceptron as
defined in (12) and instantiate it with L = 2 layers, K; = 8 and K; =1
(i.e., 8 and 1 filter taps in the first and second layers respectively). Use
the data you generated in Section 1 to train and test your model. Plot the
training loss vs. the number of training steps.

4 Multiple Feature Filters and GNNs

To further increase the representation power of multi-layer GNNs, we
incorporate multiple features per layer that are the result of processing
multiple input features with a bank of graph filters. Let F, be the number
of input features and F,,;: be the number of output features. Define the
feature matrix X € RN*fin as

X = [xl,xz,. ..,xFin]. (14)

We have that X € RN*fin and interpret each column of X as a graph
signal. For a compact representation of a filterbank made up of F, X Fout
filters, consider coefficient matrices H, € Rfin*fout, The filterbank is
defined as

K-1
®(X;H,S) =) skxH; (15)
k=0

where the tensor H groups the filter coefficients Hy, H = {Hy}. Each
of the Fou columns of the matrix ®(x; H, S) € RN *fout is a separate graph
signal. We say that (15) represents a multiple-input-multiple-output graph
filter since it takes F, graph signals as inputs and yields Fou graph signals
at its output.

Note that filter banks can also be cascaded to obtain a layered linear archi-
tecture. Denoting the graph filter coefficients at layer ¢ by Hy, € RF>*Fi-1,
the /th layer of a L-layer filterbank is given by

K-1
Uy =) S"U. Hy. (16)
k=0
The output of this filterbank is ®(X; H,S) = Up with Uy = X, and H is
given by H = {Hy }¢x. Given that they are simply parallel and sequential
compositions of graph filters, layered filter banks as the one in (16) inherit
the locality and permutation equivariance properties from graph filters.

4.1 Multi-feature graph filter. Modify the graph filter function and the
graph filter module you implemented in 2.1 and 2.2 to take the number
of input features F, and the number of output features F,. as hyperpa-
rameters and to process signals with multiple features. Then, use this

module to instantiate a graph filter with L = 2 layers, K; =8, K, = 1 and
F; = 32 features in the first layer. Use the data you generated in Section
1 to train and test your model. Plot the training loss vs. the number of
training steps.

In their most general form, GNNs consist of compositions of filter banks
as in (15) with pointwise nonlinearities . Explicitly, let F; be the number
of features at layer ¢ and define the feature matrix X, as

F,
X, = [x},x%,...,xﬂ. 17)

We have that X, € RN* where each column is a graph signal. The
outputs of layer £ — 1 are inputs to layer ¢ where the set of F,_; features
in X,_1 are processed by a filterbank made up of F,_; x F; filters (cf. (15))
to obtain the intermediate feature matrix
K-1
U, = Y S*X, 1 Hy. (18)
k=0

As in the case of the single feature GNN (cf. (12)) — and the graph percep-
tron in (10) — the intermediate feature Uy is passed through a pointwise
nonlinearity to produce the ¢th layer output

K-1
X; = o(Uy) = o(Y S X ka)- (19)
k=0

When ¢ = 0 we convene that Xp = X is the input to the GNN which is
made of Fy graph signals. The output Xy of layer L is also the output
of the GNN which is made up of F; graph signals. To define a GNN
operator we group filter coefficients Hyy in the tensor H = {Hy }, and
define the GNN operator

®(X;H,S) = X,. (20)

If the input is a single graph signal as in (10) and (13), we have Fy = 1
and Xg = x € R". If the output is also a single graph signal — as is also
the case in (10) and (13) — we have F;, = 1 and X; = x; € RN.

Each layer of the GNN is made up of filter banks which are permuta-
tion equivariant. Since pointwise nonlinearities do not mix signal com-
ponents, each individual layer is permutation equivariant. It follows that
the GNN, being a composition of permutation equivariant operators, is
also permutation equivariant.

10

4.2 2-layer GNN. Use the multi-feature graph filter model from item 4.1
to implement the GNN as defined in (19). Then, instantiate a GNN with
L = 2 layers, K; = 8, K = 1 and F; = 32 features in the first layer. Use
the data you generated in Section 1 to train and test your model. Plot the
training loss vs. the number of training steps.

4.3 3-layer GNN. Instantiate a GNN with L = 3 layers, K; = K, = 5,
Ks; =1and F; =16, F, = 4 (i.e., 16 and 4 features in the first and second
layers respectively). Use the data you generated in Section 1 to train and
test your model. Plot the training loss vs. the number of training steps.

5 Generalization and Transferability

In the previous section, we went over linear and nonlinear graph parametriza-
tions of the learning model ®(x; #), but there are several other possible
choices of parametrization. For instance, we could choose ®(x;) to be a
simple linear transform (i.e., a N X N matrix) or a fully connected neural
network (FCNN). This raises the question of why we favor graph filters,
and even more so GNNSs, over linear transforms and FCNNs. We start to
answer this question by comparing generic linear transforms with graph
filters and FCNNs with GNNs. Then, we will compare graph filters with
GNNE.

5.1 Linear parametrization vs. graph filter. Implement a generic lin-
ear parametrization (i.e., a matrix mapping N nodes to N nodes) to solve
the source localization problem. Train and test this parametrization and
a graph filter with same hyperparameters as in 4.1 on 10 random real-
izations of the data and of the graph. Report the number of parameters
of both models the mean error achieved by each of them. What do you
observe?

Hint: Check torch.nn.Linear.

11

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

5.2 FCNN vs. GNN. Implement a FCNN with 2 layers and 25 hidden
units in the first layer to solve the source localization problem. Train and
test this parametrization and a GNN with same hyperparameters as in
4.2 on 10 random realizations of the data and of the graph. Report the
number of parameters of both models the mean error achieved by each of
them. What do you observe?

5.3 Graph filter vs. GNNs. Train and test a graph filter with same
hyperparameters as in 4.1 and GNNs with same hyperparameters as in
4.2 and 4.3 on 10 random realizations of the data and of the graph. Report
the number of parameters of both models and the mean error achieved
by each of them. What do you observe?

In applications where graphs are large or dynamic, it is sometimes im-
practical to train the GNN on the full network or to re-train it every time
the graph changes. This is the case, e.g., of source localization for fake
news detection on social networks, which are large and dynamic graphs.
In general, we want to be able to train GNNs on moderately sized graphs
and apply them to similar graphs that are large and/or dynamic. Ex-
plicitly, given a GNN @(x; H,S;) trained on the graph S; € RN>*N,
we want to make predictions on the graph S, € RM*N2 using the GNN
®(xp; H, Sy), i.e,, a GNN with same parameter tensor H but with different
GSO. It is then important that to assess whether GNNs can retain good
performance when they are transferred between graphs.

5.4 Adapting the GNN model. Adapt your GNN model by writing a
method that takes a new GSO as input and replaces the old GSO with the
new GSO.

5.5 Training the GNN on a small graph. Train and test GNNs with
same hyperparameters as in 4.2 and 4.3 using the graph and the data you
generated in Section 1. Report the test error achieved by each model and
save both models.

12

5.6 Transferability to N, = 500. Repeat item 1.1 to build a SBM graph
S; with N, = 500 nodes, C = 5 communities of size N»/C, pc,c; = 0.6 and
Peie; = 0.2. Use the method you implemented in 5.4 to change the GSO of
the models you saved to Sy. Repeat step 1.2 to generate 100 input-output
graph diffusion samples with |S| = M = 100 sources on the graph Sp.
Test both GNNs on this dataset and report the errors achieved by each of
them. How do these errors compare with the errors you obtained in 5.5?

5.7 Transferability to N3 = 1000. Repeat item 1.1 to build a SBM graph
S3 with N3 = 1000 nodes, C = 5 communities of size N3/C, p¢,; = 0.6
and p¢e; = 0.2. Use the method you implemented in 5.4 to change the
GSO of the models you saved to S3. Repeat step 1.2 to generate 100 input-
output graph diffusion samples with |S| = M = 200 sources on the graph
S3. Test both GNNs on this dataset and report the errors achieved by each
of them. How do these errors compare with the errors you obtained in
5.5 and 5.6? Which GNN transfers better?

13

6 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to items we ask. Specifically, give us the following:

Item Report deliverable

Item 1.1 Do not report.

Item 1.2 Do not report.

Item 1.3 Do not report.

Item 2.1 Do not report.

Item 2.2 Do not report.

Item 2.3 Number of training steps. Training loss plot.

Item 3.1 Training loss plot.

Item 3.2 Training loss plot.

Item 4.1 Training loss plot.

Item 4.2 Training loss plot.

Item 4.3 Training loss plot.

Item 5.1 Number of parameters. Loss over test set. Comment.
Item 5.2 Number of parameters. Loss over test set. Comment.
Item 5.3 Number of parameters. Loss over test set. Comment.
Item 5.4 Do not report.

Item 5.5 Loss over test set.

Item 5.6 Loss over test set. Comment.

Item 5.7 Loss over test set. Comment.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 16% of your
final grade.

14

	Source Localization
	Learning with Graph Filters
	Graph filter function
	Graph filter module
	Training your first model

	Learning with Graph Neural Networks
	Graph perceptron
	Multi-layer GNN

	Multiple Feature Filters and GNNs
	Multi-feature graph filter
	2-layer GNN
	3-layer GNN

	Generalization and Transferability
	Linear parametrization vs. graph filter
	FCNN vs. GNN
	Graph filter vs. GNNs
	Adapting the GNN model
	Training the GNN on a small graph
	Transferability to N2=500
	Transferability to N3=1000

	Report

