
Empirical Risk Minimization

Alejandro Ribeiro and Juan Cerviño

September 11, 2020

We formulate Artificial Intelligence (AI) as the extraction of information
from observations. Mathematically, we have an observation vector x ∈ Rn

out of which we want to extract information in the form of a vector y ∈
Rm. Observations and vectors are related by the probability distribution
p(x, y). The AI is a function Φ(x) that when given an input x makes a
prediction ŷ = Φ(x) about the value y that is likely to be the one that was
generated by nature according to the distribution p(x, y). In Figure 1 we
are given a picture of a stern-looking man as an input. The AI processes
this observation to extract some information out of it. In this case, that
this is Prof. Alejandro.

1 Statistical Risk Minimization

We can think of AI as a process of imitating nature. In Figure 1 there is
a natural association between the image and the name. The AI is trying
to imitate this natural association. To measure the accuracy of the pre-
dictions of the AI we consider a loss function `(y, ŷ) to measure the cost
of making prediction ŷ when the actual value produced by nature is y.
This leads to the definition of the optimal estimator as the solution of the
statistical risk minimization problem (SRM),

Φ∗S = argmin
Φ

Ep(x,y)[`(y, Φ(x))]. (1)

The process of finding the optimal estimator Φ∗S is the process of learning
– or training. After the AI is trained we evaluate the optimal classifier to

1



Artificial Intelligence Professor Alejandro

Figure 1. An artificial intelligence (AI) extracts information from observations. In
this example, the observation is a picture, from which the AI extracts as informa-
tion the name of the author.

predict output ŷ = Φ∗S(x) whenever we encounter observations x. If the
AI has been well trained, these predictions should be close the natural
value y.

The training process is illustrated in Figure 2. Given inputs x nature pro-
duces outputs y. For the same input, the AI produces outputs ŷ = Φ(x).
These two outputs are compared using the loss function `(y, Φ(x)). We
search for the function Φ∗S with minimum cost averaged over the proba-
bility distribution p(x, y) as dictated by (1).

Linear model. For an example model, consider observations x ∈ Rn that
are related to information y ∈ Rm according to a linear transformation.
To that end, let p(x) be the probability distribution of the input vector x
and let w ∈ Rm be a random noise vector with mean E(w) = 0 drawn in-
dependently from x. Further introduce the matrix A ∈ Rm×n and assume
the relationship between x and y follows the model

y = Ax + w. (2)

The relationship in (2) implicitly defines a joint probability distribution
p(x, y) which we can write down explicitly if we know the probability
distributions of the noise vector w and the input vector x.

Sign model. Another example model is a step version of (2) in which
we pass the output through a sign function resulting in an input-output
relationship of the form

y = sign
(
Ax + w

)
. (3)

2



Learning / Training

x Φ
(

x ) ŷ = Φ(x)

x p(x, y) y

argmin
Φ

E
[
`
(

y, Φ(x)
)]

Φ∗S

Figure 2. Mathematically, an artificial intelligence (AI) tries to imitate nature. Na-
ture associates observation x to information y according to p(x, y). The AI pro-
duces an estimate ŷ = Φ(x). During training, we search for the optimal estimator
function Φ∗(x) that minimizes the statistical loss defined in (1). After training,
the AI predicts information ŷ = Φ∗(x), whenever it encounters observation x.

The outputs in (3) are either plus or minus one depending on whether
Ax + w is positive or negative.

Squared norm loss. For an example loss, consider the squared 2-norm
`(y, ŷ) = (1/2)‖y− ŷ‖2

2. With this loss function the optimal SRM prob-
lem in (1) reduces to

Φ∗S = argmin
Φ

Ep(x,y)

[
1
2

∥∥y−Φ(x)
∥∥2

2

]
. (4)

In the following questions we consider the linear model in (2) along with
the squared norm cost in (4).

1.1 Optimal statistical estimator. In general, the SRM formulation in
(4) is something that we just solve numerically. But in this particular
case it has a well-known closed form solution. Give an expression for the
function Φ∗S of (4). Observe that in (4), Φ(x) is a variable. This is weird but
inconsequential. If you think the answer to this question is ridiculously
simple, you are right. We are just getting started.

1.2 Model Generator Function. Write down a function that takes as
input the input and output dimensions n and m and returns a matrix A
according to the following model:

3



(M1) Inputs x are drawn from a normal distribution with mean E(x) = 0
and energy E(‖x‖2|) = 1/2. Components of x are independent and
identically distributed.

(M2) Noise vectors w are drawn from a normal distribution with mean
E(w) = 0 and energy E(‖w‖2|) = 1/2. Components of w are
independent and identically distributed.

(M3) Entries of A are binary, i.e. (A)ij ∈ {0, 1}. They are drawn indepen-
dently and identically distributed.

(M4) The energy of the output is E(‖y‖2|) = 1.

This is busy work. We will use this function later.

1.3 Linear Model Sample Generator Function. Write a function that
takes as input the matrix A of Question 1.2 and a number of samples
Q. The function returns Q pairs of samples (xq, yq) generated according
to (2). Inputs x and noise w satisfy model conditions (M1) and (M2) in
Question 1.2. More busy work. We will use this function later.

1.4 Sign Model Sample Generator Function. Write a function that
takes as input the matrix A of Question 1.2 and a number of samples
Q. The functions returns Q pairs of samples (xq, yq) generated according
to (3). Inputs x and noise w satisfy model conditions (M1) and (M2) in
Question 1.2. More busy work. We will use this function later.

2 Empirical Risk Minimization

Solving (1) has varying degrees of challenge depending on the complexity
of the loss function `(y, ŷ) and the distribution p(x, y). But before we
face that challenge, we need to consider a more basic problems, which is
the availability of the probability distribution itself. Indeed, to solve (1)
we need to know the probability distribution p(x, y) relating inputs and
outputs. This may be known, as we assumed in Question 1.1, but it very
often is not. In the example in Figure 1, for instance, there is no known

4



law governing the relationship between the space of face images and the
names of different people.

Approximating distributions with data. When a model is not available,
we resort to the acquisition of data. Formally, we consider availability of
Q pairs (xq, yq) which are drawn independently from the distribution
p(x, y). These are grouped in what we call a training set T which we
write here for future reference,

T =
{
(x1, y1), . . . , (xQ, yQ)

}
, s. t. (xq, yq) ∼ p(x, y). (5)

With samples available, it is possible to approximate the statistical loss
that appears in (1) using the law of large numbers to write

Ep(x,y)[`(y, Φ(x))] ≈ 1
Q

Q

∑
q=1

`(yq, Φ(xq)). (6)

The sum in the right hand side of (6) is called the empirical risk. Un-
der mild conditions, (6) is a good approximation for the statistical risk,
provided the number of sampes Q is sufficiently large.

Empirical Risk Minimization. Given the approximation in (6) we can
now think of replacing the SRM problem in (1) with the empirical risk
minimization (ERM) problem

Φ∗E = argmin
Φ

1
Q

Q

∑
q=1

`(yq, Φ(xq)). (7)

We illustrate ERM in Figure 3. The block diagram is similar to the SRM
problem in Figure 2 except that we replace the probability distribution
block with a a data sample block. We don’t have a model of nature, but
we can sample nature. Changing the model for samples, also requires
that we change the expected risk by the empirical risk in the minimization
block.

The ERM problem in (7) is easier to solve than it may seem at first look.
We ask that you do that in the following questions.

5



Learning / Training

xq Φ
(

xq ) ŷq = Φ(xq)

xq (xq , yq) ∈ T yq

argmin
Φ

1
Q

Q

∑
q=1

`
(

yq , Φ(xq)
)

Φ∗E

Figure 3. Solving the problem in Figure 2 requires access to the probability dis-
tribution p(x, y). When this model is not available, we resort to data. Instead
of operating with the probability distribution p(x, y) we operate with samples
(xq, yq) that we acquire from nature. As good as this idea is, it does not work
unless we restrict the function Φ(x) to a particular class, as we do in Figure 4.

2.1 Optimal empirical estimator. Consider an arbitrary loss function
`(y, ŷ) with the condition that `(y, ŷ) ≥ 0 and `(y, ŷ) = 0 when y = ŷ.
The problem in (7) admits multiple solutions. Give one such solution. Or,
alternatively, give a condition that all such optimal solutions must satisfy.

2.2 The problem defined in (7) is nonsensical. Your answer to Ques-
tion 2.1 implies that solving (7) gives you no idea on how to predict out-
puts Φ(x) for any x that is not part of the training set T . In turn, this
implies that (7) is a nonsensical formulation of AI. Explain.

3 Learning Parametrizations

We have seen that the ERM problem in (7) in not a workable solution to
learning with data. This is surprising in light of (6), which we know is
true. The reason why we end up with a nonsensical problem when we
go from (6) to (7) is that in the latter we are given excessive freedom in
the choice of Φ. The solution is to take that freedom away. We therefore
introduce a function class C and require that the function Φ belongs to this

6



Learning / Training

xq Φ
(

xq ) ∈ C ŷq = Φ(xq)

xq (xq , yq) ∈ T yq

argmin
Φ∈C

1
Q

Q

∑
q=1

`
(

yq , Φ(xq)
)

Φ∗

Figure 4. The empirical risk minimization problem in Figure 3 is nonsensical
unless we introduce a function class C to restrict the variability of the function Φ.
This block diagram is the true formulation of AI. The diagrams in Figures 2 and
3 are for motivation and contrast.

class. The ERM problem in (7) is therefore replaced by the optimization

Φ∗ = argmin
Φ∈C

1
Q

Q

∑
q=1

`(yq, Φ(xq)). (8)

In introducing a function class, the idea is to force inputs x that are similar
to inputs xq of the training set to yield outputs Φ(x) that are similar to
the output Φ(xq). This is what we mean by “taking freedom away” from
the set of possible functions Φ. The crucial word in this paragraph is
“similar.” an obvious way to define “similar” is to evaluate the distances
‖xq − yq‖. But in this course we will see that much richer definitions of
what similar means are necessary.

Parametrized empirical risk minimization From a practical perspective
we often prefer to make the parametrization more concrete. To that end,
introduce a parameter H ∈ Rp so that different choices of H produce
different functions Φ(x; H) within the class C. We can then rewrite the
ERM problem in (8) as

H∗ = argmin
H∈Rp

1
Q

Q

∑
q=1

`
(

yq, Φ(xq; H)
)

. (9)

For future reference, observe that in (9) the training set T is given and the
optimization is over parameters H. This motivates definition of the loss

7



function

L(H) :=
1
Q

Q

∑
q=1

`
(

yq, Φ(xq; H)
)

, (10)

which is the objective we are trying to minimize. We say that L(H) is the
average loss function. When we want to emphasize the difference with
`(y, ŷ) we will call the latter, the pointwise loss function.

Linear learning parametrization. As an example, consider the class of
linear functions so that Φ(x) = Hx for matrices H ∈ Rm×n = Rp with
p = m× n. Using this particular class in (9) we end up with the program

H∗ = argmin
H∈Rm×n

1
Q

Q

∑
q=1

`(yq, Hxq). (11)

This parametrization is not a particularly good and it works well only in
simple problems. We are using it to illustrate ideas.

Artificial Intelligence. The similarity between the ERM formulation in
(7) and the parametrized ERM formulation in (8) is misleading. For once,
(8) is a sensical solution of AI because we can use the solution of (8) to
predict outputs associated with inputs x that are not necessarily part of
the training set. Once we have solved (9) and are in possession of the
optimal parameter H∗ we can predict Φ(x) = Φ(x; H∗) whether x is part
of the training set of not. For instance, if we use class of linear functions
as in (12), we can predict Φ(x) = H∗x for any x.

The formulation in (8) is illustrated in Figure 4. It differs from Figure 3
in that Φ is restricted to belong to a certain function class. It differs from
Figure 2 in that we use data sampled from nature – as we did in Figure
3 – instead of the distribution model p(x, y). This is the true formulation
of AI. The block diagrams in Figures 2 and 3 were introduced for mo-
tivation and contrast. Henceforth, when we speak of AI we refer to the
parametrized ERM problem in (8). We will may also call (8) the machine
learning (ML) problem.

Model are Necessary in Machine Learning It is important to remark
that adding a learning parametrization as in (8) is not something that we

8



do for convenience. It is a necessity. ML does not make sense without the
introduction of a function parametrization. It is also important to remark
that as per (8), the design of an ML system is tantamount to the design
of the parametrization. For once, the choice of C is the only degree of
freedom that is available to the system’s designer. More importantly, the
choice of C determines how we generalize from inputs xq we have seen
in the training set to inputs x we have not seen in training set. It defines,
as we said before, what it means for inputs x and xq to be similar and for
outputs y and yq to be similar.

In going from (1) to (8) we do away with the data model p(x, y). This
leads to an interpretation of ML as being model free. This perspective is
incomplete. ML needs a model. Except that instead of making an explicit
model of the data, we make a model of the family of functions to which
the input-output relationship belongs. This is very important for us, be-
cause it is the reason why ML on graphs is different from ML on, say,
time signals or images. These signals have different underlying models
and they therefore require that we utilize different parametrizations. The
meaning of inputs x and xq or outputs y and yq being similar, is different.

We illustrate these point in the following questions.

3.1 A good model. Suppose we use a linear parametrization as in (12)
and the loss function is `(y, ŷ) = (1/2)‖y − ŷ‖2

2. We are thus left with
the ERM problem

H∗ = argmin
H∈Rm×n

1
Q

Q

∑
q=1

1
2
‖yq −Hxq‖2

2 (12)

Further restrict attention to the linear model in (2). We typically solve
these problems numerically. But in this case there is a well known closed
form solution. Find it.

Set n = m = 102 and Q = 103. Use the function in Question 1.2 to
generate a matrix A and the function in Question 1.3 to generate a training
set T with Q samples that follow the model in (2) for this particular A.
Use the samples to find the function H∗ that solves (12) for this particular
choice of A. Evaluate the loss `(x, y) = ‖y −H∗x‖2

2 averaged over this
training set. This should be good. Why?

9



Use the function of Question 1.3 to generate a testing set T ′ of Q =
103 samples. Evaluate the loss `(x, y) = ‖y−H∗x‖2

2 averaged over this
training set. This should be good as well. Why?

3.2 A bad model. Consider the ERM formulation in (12). Further re-
strict attention to the sign model in (3). Find the solution of the resulting
ERM problem. There’s no trick here. The solution is what you think it is.

Set n = m = 102 and Q = 103. Use the function in Question 1.2 to gen-
erate a matrix A and the function in Question 1.4 to generate Q samples
that follow the model in (3) for this particular A. Use the samples to find
the function H∗ that solves (12) for this particular choice of A. Evaluate
the loss `(x, y) = ‖y−H∗x‖2

2 averaged over this training set. This should
be bad. Why?

Use the function of Question 1.4 to generate a testing set T ′ of Q =
103 samples. Evaluate the loss `(x, y) = ‖y−H∗x‖2

2 averaged over this
training set. This is still bad. Why?

3.3 An insufficient model. Consider the ERM formulation in (12). Fur-
ther restrict attention to the linear model in (2). You have already found
the solution to this problem in Question 3.1.

Set n = m = 104 and Q = 103. Use the function in Question 1.2 to
generate a matrix A and the function in Question 1.3 to generate a training
set T with Q samples that follow the model in (2) for this particular A.
Use the samples to find the function H∗ that solves (12) for this particular
choice of A. Evaluate the loss `(x, y) = ‖y −H∗x‖2

2 averaged over this
training set. This should be good. Why?

Use the function of Question 1.3 to generate a testing set T ′ of Q =
103 samples. Evaluate the loss `(x, y) = ‖y−H∗x‖2

2 averaged over this
training set. This should be bad. Why?

3.4 A reflection. The following statements are true

• In Question 3.1 the loss is small over the training set T and the test

10



set T ′. This is because the model is accurate and we have sufficient
data.

• In Question 3.2 the loss is large over the training set T and the test
set T ′. This is because the model is inaccurate.

• In Question 3.3 the loss is small over the training set T but it is large
oved the test set T ′. This is because the model is accurate but we
don’t have sufficient data.

Explain. In large scale problems where either n or m or both are large, we
never have sufficient data. This is the problem that in the case of ML on
graphs we will solve with graph filters and GNNs.

4 Stochastic Gradient Descent

In Section 3 we used linear parametrizations and quadratic costs. This is
one of the few examples in which it is possible to find the optimal esti-
mator H∗ in closed form. Throughout this course we will use numerical
optimization to find optimal classifiers. To that end, consider the average
loss function L(H) defined in (10) in which H is the parameter we want
to learn in (9). We can compute gradients of this loss function as

∇L(H) =
1
Q

Q

∑
q=1
∇H`

(
yq, Φ(xq; H)

)
. (13)

Equipped with gradients it is possible to define a gradient descent method.
Introduce then an iteration index t, a step size ε, and an initial iterate H0.
Gradient descent produces a sequence of iterates Ht that follow the re-
cursion

Ht+1 = Ht − ε∇L(H) = Ht −
ε

Q

Q

∑
q=1
∇H`

(
yq, Φ(xq; H)

)
. (14)

As t grows, iterates Ht approach a local minimum of the loss function
L(H) if the step size ε is small enough.

11



Stochastic Gradients. The challenge with implementing (14) is that the
gradients in (13) are an average over the training set T . When the num-
ber of samples Q is large, the cost of computing a gradient can become
prohibitive. More important, the cost of computing gradients is also un-
necessary because gradients need not be computed with accuracy. It is
therefore better to compute stochastic gradients and implement stochastic
gradient descent (SGD). In SGD we consider batches of samples that we
draw from the training set. At iteration t we consider a batch set Tt made
of Qt � Q elements of the training set. With this subset of samples we
compute the stochastic gradients

∇̂L(H) =
1

Qt
∑

(xq ,yq)∈Tt

∇̂H`
(

yq, Φ(xq; H)
)

, (15)

which differ from (13) in that the sum is over a subset of the training
set. SGD is obtained by replacing the gradients in (14) with stochastic
gradients,

Ht+1 = Ht − ε∇̂L(H) = Ht −
ε

Qt
∑

(xq ,yq)∈Tt

∇̂H`
(

yq, Φ(xq; H)
)

. (16)

In SGD the sample set Tt chosen at each iteration is randomly chosen
at each iteration. If the samples are independently chosen at each itera-
tion, SGD converges to a local minimum of the loss function L(H); same
as gradient descent. An alternative implementation of SGD is to draw
batches in a cyclic pattern. This also converges to a local minimum.

Some remarks on stochastic gradient descent We will not study SGD
in this course. We will just use it. But I want you to be aware of some
facts. We have said that convergence of SGD requires that the step size
be sufficiently small, but this is not entirely accurate. There are caveats to
what convergence means and there are important technical details.

Further notice that although we motivated SGD by saying that stochastic
gradients ∇̂L(H) are approximations of (deterministic) gradients ∇L(H),
this is not the reason why SGD converges. The SGD method in (16)
converges because the expected value of stochastic gradients is a gradient.

Another important point is that if the cost is convex there are no local
minima. Thus, if SGD, or gradient descent for that matter, converges to

12



a local minimum we can claim that this is also a global minimum. The
linear model with quadratic loss in (12) is convex, but this is not true
in general. Notably, the cost is not convex for neural networks or their
convolutional versions. We will nevertheless use SGD and assume that
whatever we obtain as an output is the loss minimizer.

Finally, let us be aware that SGD is finicky. You need to try different
step sizes and different batch sizes before you encounter ones that start
reducing your average cost. It is not a great algorithm. But it is the one
we have.

4.1 Stochastic gradient descent for linear model. Consider the ERM
problem with linear parametrization and quadratic cost in (12). Particu-
larize (15) and (16) to this example.

4.2 Stochastic gradient descent implementation. Write a function that
takes a training set T as input and implements the SGD algorithm you
developed in Question 4.1.

Use the same parameters of Question 3.1 to test that your SGD method is
returning a matrix H∗ that is close to the one you know is optimal. Plot
the average loss L(Ht) for the trajectory of your SGD implementation.

4.3 Stochastic gradient descent implementation in pytorch. Pytorch
is a software that uses automatic differentiation to compute (stochastic)
gradients. Reimplement your SGD method using the Pythorch function
backward to compute gradients.

13



5 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Question 1.1 Classifier expression.

Question 1.1 Classifier expression.

Question 1.2 Do not report.

Question 1.3 Do not report.

Question 1.4 Do not report.

Question 2.1 Classifier expression.

Question 2.2 Written paragraph.

Question 3.1 Classifier expression. Loss over training set.
Loss over test set.

Question 3.2 Classifier expression. Loss over training set.
Loss over test set.

Question 3.3 Classifier expression. Loss over training set.
Loss over test set.

Question 3.4 Written paragraph.

Question 4.1 Stochastic gradient expression. SGD recur-
sion expression.

Question 4.2 Average loss plot.

Question 4.3 Average loss plot.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 16% of your
final grade.

14


	Statistical Risk Minimization
	Empirical Risk Minimization
	Learning Parametrizations
	Stochastic Gradient Descent
	Report

