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● Welcome to Penn’s course on Graph Neural Networks.  

● For those of you that don’t know me, my name is Alejandro Ribeiro. I am Professor of 
Electrical and Systems Engineering and I will be in charge of teaching this class.  

● If you need to reach me, send me an email at aribeiro@seas.upenn.edu.  

● And if you want to know more about my teaching and research, visit my lab’s webpage 
at alelab.seas.upenn.edu.  
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● If you allow me to begin on a personal note, let me tell you that I have never been more 
excited on my first day of school than I am today. Graph neural networks are a core 
component of my research program and you can’t get this professor happier than giving 
him a captive audience to talk about his research. But you should be excited too!  

● GNNs are tools with broad applicability and very interesting properties. There is a lot that 
can be done with them and a lot to learn about them.  

● These are therefore the two objectives that I expect we can accomplish together in this 
course.  

● You will learn how to use GNNs in practical applications. That is, you will develop the 
ability to formulate machine learning problems on graphs using Graph neural networks. 
You will learn to train them. And You will learn to evaluate them. 

● But you will also learn that you cannot use them blindly. You will learn the fundamental 
principles that explain their good empirical performance. This knowledge will allow you to 
identify cases where GNN are applicable or not. 

● Combining these two abilities, at the end of this course you will be able to identify 
situations where there is potential in the use of GNNs.  



● You will be further able to formulate problems using GNNs to enable the realization of 
their potential.  

● And you will build on your practical experience to develop their solutions. 
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● This is a terse statement of goals. But is it a relevant statement of goals?  

● Well yeah. Most definitely! The reason to care about GNNs and about learning to 
identify, formulate, and solve problems with GNNs is that GNNs are the tool of choice for 
machine learning on graphs. And graphs are very common. I could spend several 
minutes describing problems in which graphs appear, but let me give you four examples 
that I have personally investigated. 

● Graphs appear in authorship attribution problems where we want to identify the author of 
a text of unknown provenance. They appear because a graph can be used as a simple 
proxy for grammar. 

● Graphs also appear in recommendations systems where the interest is to predict product 
ratings. And they appear here because a graph can describe similarities in customer 
preferences. 

● A more organic example of a graph is the allocation of resources in a wireless 
communication network. It is not just that a graph appears. A graph represents a network 
and the network is itself the object of interest. 

● A fourth and very exciting problem is the decentralized control of an autonomous 
system. In this case, graphs provide a description of the interactions between agents as 
well as the restrictions on the exchange of information. 
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● We will spend several weeks talking about machine learning on graphs and graph neural 
networks.  

● But let me share something with you about my mom.  

● On every first day of school she would ask me about my day. As I imagine all good 
mothers do. 



● I would therefore hate it if you don't have anything interesting to tell your respective 
mothers when you give them a call later tonight.   

● Thus, allow me to use the next half hour to tell you some interesting things about 
machine learning on graphs, graph convolutions, and graph neural networks. 
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● There are, to be concrete, four matters that I want to cover briefly today and that I think 
will be interesting for you and your moms. 

● The first one, is the question of why. Namely, why are we interested in machine learning 
on graphs. 

● I have already told you that this is because graphs appear in scores of problems. I gave 
you four concrete examples.  

● But I want to elaborate on the notion of structure and on how graphs are used to model 
the structure of signals. 

● The second one, is the question of how. How do we do machine learning on graphs? 

● The obvious answer is that we should use a neural network. Not a graph neural network. 
Just a neural network.  

● The drawback of this obvious answer is that fully connected neural networks do not 
scale beyond signals with a small number of entries. We will not dwell on why this 
happens. But I want you to end the day aware of this fact. 

● A related truth is that the way to achieve scalability is to use convolutions. Whether they 
be in time or graphs. This has to do with leveraging symmetries induced by structure, 
something that convolutions attain by construction. Again, we are not going to dwell on 
this. But I want you to end the day aware of this truth. 

● The third item that I want to cover today, is the definition of convolutional filters in 
Euclidean space and convolutional filters on graphs. Both of these are very simple to 
understand. I would be negligent if I didn’t explain them to you in our first lecture. 

● The fourth matter I want to discuss is the definition of convolutional neural networks and 
graph neural networks. As in the case of filters, both of these are also very simple to 
understand. I would be equally negligent if I didn’t explain them to you in our first lecture. 
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● Let us dwell on the whys of machine learning on graphs. Why is it interesting? Why do 
we care? At the risk of being repetitive, we care because graphs are pervasive in 
information processing. 
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● This is perhaps then an appropriate reformulation of the question of why.  Why is it that 
graphs are so pervasive in signal and information processing? Well, the reason why 
these models are so common is because graphs are generic models of signal structure, 
and this structure that the graph codifies can help learning in many practical situations.  

● To exemplify the meaning of this statement, suppose we are interested in an authorship 
attribution problem where the goal is to identify the author of a text of unknown 
provenance. 

● Or perhaps we are interested in a recommendation system where the goal is to predict 
the rating that a customer would give to a certain product.  

● In both cases, and although this is not immediately apparent, there exist graphs that 
contain information that is meaningful about the problem that we want to solve.   
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● To further dwell on this statement, let’s take a closer look at authorship attribution. This is 
a problem we can tackle with word adjacency networks.  

● These word adjacency networks are graphs in which nodes represent different function 
words and edges represent how often a given author utilizes each pair of words 
together.  

● The critical point to be highlighted here is that function words are those that don't carry 
meaning. They are words like prepositions or conjunctions, the words we use to put 
other words together. It is therefore not difficult to accept that they may serve as a good 
proxy for the different ways in which different authors leverage or exploit the grammar of 
the English language in their writing. 

● For example, the figure on the left is the word adjacency network built from the cannon 
of William Shakespeare plays.  



● The figure on the right is a word adjacency network built from the canon of Christopher 
Marlowe. The first thing we notice is that both of these word adjacency networks look a 
lot like each other. This is not surprising. Both of these are English playwrights of the 
same period, after all.  

● However, if we squint more closely, we can see that there are sufficient differences in 
these two networks to tell the writing styles of Shakespeare and Marlowe apart. This is 
not only a fun fact but it enables us to objectively ascertain their collaboration in the 
writing of Henry the sixth.  

● But this is not the point I want to illustrate today. The point that I want to drive is that 
even though it didn't look like that a priory, it turns out that a graph plays an enabling role 
in authorship attribution problems.  
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● The other problem we highlighted was a recommendation system. The particular 
approach we advocate is collaborative filtering.  

● In collaborative filtering, we build a graph in which nodes represent different customers 
and edges are similarity scores between pairs of users that we build from the rating 
histories of customers.  

● These user similarity graphs are the basis for predicting ratings in situations where a 
certain product has been rated by some customers but has not been rated by others.  

● The diagram on the left represents original ratings in which some customers have rated 
the product, but some others have not. This figure is not a graph but a variation diagram, 
in which edge strengths are proportional to the product of the user similarity score and 
the difference between their ratings for the given product. The abundance of strong 
edges highlights the presence of large rating dissimilarities between customers that 
typically tend to give similar scores. This large variability is not an inherent property of 
the signal. It is a consequence of the fact that the product has not yet been rated by 
certain customers.  

● We can therefore make rating predictions by eliminating large variability. We do that in 
the figure on the right. 

● This figure shows a reduction in the variation energy pre and post prediction and the 
signal that it represents can be seen to provide good rating estimates. But, again, the 



point here is not to discuss the merits of collaborative filtering. I am trying to illustrate 
that even though it didn't look like that a priory, it turns out that a graph plays an enabling 
role in rating predictions. 
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● In recommendation systems and authorship attribution, graphs represent a data 
structure. But graphs are more than data structures. 

● In several applications, graphs are an inherent part of the system. This is the case of 
physical systems with multiple agents in which graphs model the locality of interactions 
between agents. 

● To give an example, this video illustrates the decentralized control of an autonomous 
system where the goal is to coordinate a team of drones without relying on central 
coordination. The graph appears the moment we forgo central coordination and opt for 
decentralized control. When we do that, physical proximity becomes an integral part of 
the system because it determines the information that is available to particular agents. 
This physical proximity, which is inherent, indeed, central, to decentralized control, is 
modeled by a graph. 

● Another example of a multiagent physical systems is a wireless communication network. 
The goal here is to manage interference when allocating bandwidth and power. 
Interference is affected by the radio propagation environment which determines how 
much of the transmitted power makes it to several intended and unintended receivers. 
This interference is inherent to wireless networks and is modeled with an interference 
graph. 

● An important observation to make in both of these examples is that it's not only the 
graph instrumental in finding a solution, the graph is itself the source of the problem. The 
reason why decentralized control and wireless resource allocation are challenging is 
because the graph creates a tension between the acquisition of local information and the 
achievement of goals that are inherently global. This is a feature shared by all multiagent 
physical systems.  

Slide 11 

● We have seen four interesting examples of machine learning on graphs. Two of which 
involve graphs as data structures and two that involve graphs as models of multiagent 
physical systems. This answers the question of why we want to do machine learning on 
graphs. And leads to the question of how to do machine learning on graphs.  
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● The answer to the question of how is pretty easy: We should use a neural network. We 
should do this, because we have overwhelming empirical and theoretical evidence for 
the value of neural networks. Understanding this evidence is one of the objectives of this 
course. But before we are ready to do that, there is a dealbreaker challenge potentially 
lurking in the shadows. 

● That challenge is the fact that we want to run a neural network over a structure like this 
graph  

● But we have become good at running neural networks over images that look like this 
other graph. 

● Generic neural networks, or fully connected neural networks to be more precise, do not 
scale as we grow the dimensionality of the input signal. If we have a signal made up of a 
small number of components, a generic neural network suffices for its processing. 
However, if we have a signal with a large number of components, which in the case of 
graphs means a signal supported on a large graph, a generic neural network will not 
work.  

● Do we know how to overcome this issue? Well, in the case of images and signals in 
time, we know that convolutional neural networks succeed at scaling. That’s what I 
meant when I said that we are good at running neural networks on images. We can 
make them scale. 
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● That we know how to scale is good news. Alas, we can process images with 
convolutional neural networks, but we cannot process graphs or graph signals. But if we 
look deeper at CNNs, an intellectual roadmap arises.  

● CNNs are made up of layers, each of which is a composition of a convolutional filter 
bank with a pointwise nonlinearity. In this definition, the notion of layer and the notion of 
pointwise nonlinearity is not specific to images. They can easily be generalized to 
arbitrary graphs. It is the notion of a convolutional filter bank that we do not know how to 
generalize to graphs. Out of these observations we find our roadmap. 

● If we generalize convolutions to graphs, we can easily create graph filter banks  



● Which we can easily combine with pointwise nonlinearities.  

● And which we can easily stack in layers to create a graph neural network. 

● This yields the GNN architecture that we will use to process graphs and graphs signals. 

● Which we hope will be as successful and scalable as CNNs are for the processing of 
images and time signals. 
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● Our intellectual path towards scalable machine learning on graphs begins from the 
construction of generalisations of the convolution operator to signals supported on 
graphs.  

● We will build this generalization by observing that even though we do not often think of 
them as such, convolutions are operations on graphs.  
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● In order to express convolutions as operations on graphs, begin by observing that we 
can always describe discrete time and space using graphs that support either time or 
space signals.  

● Indeed, consider a time signal x with components x_i, and associate individual 
components with individual nodes of a directed line graph. A directed line graph is a 
good description of the proximity and causality of time, and it is therefore also a good 
description for the underlying structure of the signal x.  

● Likewise, consider an image defined as a signal x with components x_{ij} and associate 
each of these components with a node of a grid graph. The grid graph is a good 
description of the local structure of the plane, and it is therefore also a good description 
of the underlying structure of the signal x.  
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● That we can describe time and space using graphs is an almost trivial observation, but 
one that nonetheless has interesting conclusions. Out of this, the one that is germane to 
our current discussion is that we can use line and grid graphs to write convolutions as 
polynomials on their respective adjacency matrices.  



● Let us begin with the case of a signal supported in time and suppose that we want to 
implement a convolutional filter with coefficients h_k. We know that the output of such a 
filter is a weighted linear combination of shifted versions of the input signal x. 

● The first term of the convolution sum is just the signal x scaled by coefficient h_0.  

● The second term of the convolution sum is a shifted version of the signal x, scaled by 
coefficient h_1. But we can obtain this shifted version of x by multiplication with the 
adjacency matrix S of the line graph.  

● The third element of the convolution sum is a twice-shifted version of the signal x scaled 
by coefficient h_2. But we can obtain this twice-shifted version of x through multiplication 
by the square of the adjacency matrix S of the line graph.  

● The next term is a thrice-shifted version of the signal x scaled by coefficient h_3. Which 
we obtain by multiplying the original signal x by the adjacency matrix of the line graph 
three times.  

● We keep adding terms to the convolution sum until the order of the filter so that in the 
end we write the convolution as a premultiplication of the signal x by a polynomial on the 
adjacency matrix of the line graph modulated by coefficients h_k. This illustrates that we 
can write the convolution in time as a polynomial on the shift operator of the directed line 
graph.  

● Pretty much the same holds true for images, except that now the polynomial is on the 
adjacency matrix of the grid graph. This is true because we can write a spatial filter as a 
linear combination of diffused versions of the input signal. And we can obtain these 
diffused versions by multiplying the original signal x by subsequent powers of the 
adjacency matrix of the grid graph. 

● We begin by adding the signal modulated by coefficient h_0  

● And we further add a diffused version of the signal x modulated by coefficient h_1. This 
diffused version of x can be obtained by multiplying the input x with the adjacency matrix 
S of the grid graph.  

● The next entry of the convolution sum is a diffusion of the diffused signal, scaled by 
coefficient h_2. Which we can obtain through a second multiplication with the adjacency 
matrix S.  



● The fourth term of the convolution sum is a diffusion of the diffusion of the diffused 
signal, scaled by coefficient h_3. We can obtain this thrice-diffused signal by multiplying 
x with the third power of S.  

● We keep adding terms to this sum as required by the order of the filter. We end up with 
the convolution expressed as a premultiplication of the signal x by a polynomial on the 
adjacency matrix of the grid graph modulated by coefficients h_k.  
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● Pervasive and important though they are, time and space signals constitute a rather 
limited class. 

● Their interpretation as graph signals, however, hints that we can use graphs as generic 
descriptors of signal structure.  

● In which signal values  

● Are associated to nodes of a graph  

● And edges of the graph express an expectation of similarity between signal components.  

● (Empty) 

● For instance, nodes can represent customers. Signal values, product ratings. And edges 
are cosine similarities between past scores. This provides an appropriate description of 
the types of signals that appear in recommendation systems. 

● Alternatively, nodes can be drones. Signal values, their velocities. And edges can 
represent sensing and communication ranges. This is an appropriate description of a 
decentralized autonomous system.  

● Or we can have nodes representing transceivers. Signal values representing quality of 
service requirements. And edges representing wireless channel strength. This is an 
appropriate description of a wireless communication system. Graphs can therefore 
provide a significant expansion of the class of signals that we can process. But we have 
seen this already.  
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● Our concern here is on how to design convolutional processing of graphs signals. In 
doing so, we start from the observation that at least in two cases, we already know what 
to do. 

● If we are given a graph signal supported on a line graph  

● We know how to build  

● A polynomial 

● On that adjacency matrix  

● That represents  

● The time convolution.  

● If we are given a signal supported on a grid graph,  

● We know how to build  

● A polynomial 

● On this other adjacency matrix  

● That represents  

● The convolution of signals in space. But it is not only that we know how to build these 
polynomials. These polynomials are the same.  

● (Empty) 
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● We can therefore proceed by analogy. If we are given a signal supported on a certain 
graph, we define a graph convolutional filter to process such a signal, as a polynomial on 
a matrix representation of the graph that supports the signal.  

● To illustrate this idea, consider it a signal supported on the graph shown on the left and 
suppose that we want to run a convolutional graph filter with coefficients h_k. The output 



of this convolutional graph filter is defined as a summation of diffused versions of the 
input signal x, scaled by respective coefficients.  

● We begin by adding the signal x itself modulated by coefficient h_0. 

● We then add a diffused version of the signal x modulated by coefficient h_1 

● A  twice-diffused version of x modulated by coefficient h_2  

● A thrice-diffused version of the input x scaled by coefficient h_3. And so on.  

● In the end, the graph convolution is expressed as a premultiplication of the signal x with 
a polynomial on a matrix representation of this graph modulated by coefficients h_k. 

● What happens if we change the graph? This yields a different graph signal supported on 
a different graph, but the expression for the graph convolutional filter is the same.  

● We begin by adding the signal itself.  

● We then add a diffused version of the signal x modulated by a different coefficient.  

● We further add a  twice-diffused version of the signal x  

● And a thrice-diffused version of the signal x. And whatever number of times are required 
by the convolutional filter order.  

● In the end, we have the same expression as before in which the signal x is premultiplied 
by a polynomial on the matrix representation of the graph S modulated by coefficients 
h_k. It goes without saying that the expressions for the convolutions are the same in 
both graphs but the resulting convolutions can be quite different. This is, of course, 
because the graphs, represented by S, can be quite different.  

● As highlighted by our illustrations, multiplication of a graph signal with a matrix 
representation of the graph on which it is supported is a local operation. This is a feature 
that graph convolutions share with conventional convolutions in time and space, and that 
underlies their practical value. As we will see throughout the next few weeks. 
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● To enable machine learning on graphs, we constructed an intellectual roadmap that 
began with a generalisation of convolutions to graphs and continued with a 



generalisation of convolutional neural networks to graph neural networks. We have 
completed the first part of the roadmap.  

● The second part of the roadmap is easier because CNNs and GNNs are minor variations 
of linear convolutional filters.  

● We just need to add pointwise nonlinearities and compositions of several layers. 
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● Before we define convolutional versions, we define plain, or fully connected neural 
networks. A neural network is a composition of a cascade of layers.  

● Each of which is itself the composition of a linear map H with a pointwise nonlinearity 
\sigma. The first layer takes a signal x as an input and it processes that with a linear 
function and a pointwise nonlinearity to produce an intermediate output. Intermediate 
layers, like layer two in the diagram, take the output of the previous layer as an input and 
again, they process that with a linear function and a pointwise nonlinearity to produce 
another intermediate output. This  compositional process is repeated until the last layer 
where the output of the layer is declared to be the output of the neural network.  

● Neural networks are generic information processing architectures in the sense that they 
can be applied to any type of signal x. However, as it often happens with generic 
architectures, it does not scale well with the dimensionality of the input signal.  
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● To design a scalable architecture, we resort to convolutions. A convolutional neural 
network is thus defined as a neural network in which the linear maps that are used at 
each layer are required to be convolutional filters. We then end up with an architecture 
that again composes a cascade of layers, but these layers are now different.  

● They are a composition of a convolutional filter with a pointwise nonlinearity.  

● Convolutional neural networks are the workhorse of deep learning. This provides ample 
empirical evidence that they do scale well with the dimensionality of the input signal x. 

● Empirical evidence aside, the scalability of a CNN is suspected because a CNN is a 
minor variation of a convolutional filter.  

● We just add nonlinearities and compositions. 



● And we know that convolutions scale well. We have more than a century of evidence 
that this is true. But of course, we do pay a price. The price we pay is that this is not a 
generic architecture anymore. It is an architecture that is restricted to the processing of 
signals in time, if we use time convolutional filters. Or to the processing of images, if we 
use spatial convolutional filters. And as we have said before, time signals and images 
are pervasive and important, but nevertheless a limited class. To build a more generic 
architecture, we resort to the use of graph convolutions.  
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● We have seen already that the key to defining graph convolutions is to think of time 
signals as signals that are supported on a line graph. When we do that in a CNN, all of 
the convolutions that appear in different layers become polynomials on the adjacency 
matrix of the line graph. We end up with the architecture we show in this diagram in 
which we compose layers, each of which is a composition of a linear transformation with 
a pointwise nonlinearity. But the linear maps are now defined through polynomials on the 
adjacency matrix of the line graph. 

● That is, this architecture replaces the convolutions we have in the CNN  

● By polynomials on the adjacency matrix of the line graph.  

● But this is not a substitution. This is just a different way of writing convolutions and 
CNNs,  

● But one that lends itself to generalization to arbitrary graphs.  
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● This brings us to the introduction of graph neural networks. We simply get this 
alternative representation of CNNs and we let the matrix S be the representation of an 
arbitrary graph.  

● The convolutional filters are now arbitrary graph convolutional filters, which depend on 
the specific graph. The most remarkable fact about this modification is that it is not a 
modification. It’s just the same thing. A graph neural network is just a convolutional 
neural network with a different graph. This not modification, however, does make a lot of 
difference in practice. Because we have now extended the reach of scalable neural 
networks to signals that are supported on arbitrary graphs. 
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● This is then how a graph neural network looks like. It is the composition of a cascade of 
layers. 

● Each of which is itself also a composition of a graph convolution with a pointwise 
nonlinearity. The graph convolution is a polynomial on a matrix representation of a 
certain given graph.  

● We can therefore think of a GNN as a neural network in which the linear transformations 
that are used at each layer are restricted to be graph convolutional filters.  

● As per this definition, we can also think of graph neural networks as generalisations of 
convolutional neural networks in the sense that CNNs can be recovered from GNNs if 
we particularize the graph to a line graph. 
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● Although the matter is not as settled as in the case of CNNs, there is growing evidence 
for the scalability of GNNs.  

● But empirical evidence aside, the reason why GNNs are promising is because GNNs are 
minor variations of graph filters. In the exact same sense in which convolutional neural 
networks are minor variations of convolutional filters.  

● We just add nonlinearities and layer compositions. 

● As we will explore in this course, both of them, graph convolutional filters and graph 
neural networks, are expected to scale because they leverage the signal structure that is 
codified by the underlying graph. 
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● We are reaching the end of lecture 1. Let’s close with a summary of the road ahead. 
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● When we began the lecture I told you that there were two goals for this course. 

● To learn how to use Graph Neural Networks 



● And to understand their fundamental properties 

● But there is obviously a third goal. You could call it Goal Zero. 

● Which is to define GNNs. Or to define GNN architectures to use the lingo. 
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● In today’s lecture I told you a lot about architectures. I defined convolutions in time and 
convolutions on graphs. And I explained how these convolutions can be used to 
construct CNNs and GNNs, which are the basis for scalable machine learning. This was 
just to give you a taste. As I said, for you to have something interesting to tell your 
mothers. 

● If you didn’t understand today’s lecture, do not worry. We will revisit graph filters and 
graph neural networks. We will take it more slowly to explain them better. 

● We will also introduce other related architectures. Notably, graph recurrent neural 
networks. 

● In future lectures I will also dive on the fundamental properties of GNNs. This is because 
I oppose the blind use of tools. Using tools we don’t understand, leads to unpleasant 
results more often than not. In the particular case of GNNs there are concrete properties 
that explain why they work. More importantly, these properties separate problems where 
GNNs are warranted and expected to work. From cases where GNNs are either 
unwarranted or expected to fail. 

● These properties are permutation equivariance.  

● Stability to deformations. 

● And transferability across scales 

● Here you have a recent paper if you want to start reading ahead.  
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● In parallel with lectures, we will have five labs focused on building practical skills. By 
which I mean developing the ability to set up and train GNNs for solving practical 
problems. 



● Lab 1 is about Statistical and Empirical Risk Minimization. This is Just a warmup to get 
you used to the programming environment. It is focused on the notion of learning 
parameterizations and on how they are necessary in machine learning. 

  
● Lab 2 illustrates the use of GNNs in recommendation systems. We will learn to predict 

ratings with fully connected neural networks, graph filters, and GNNs. To understand the 
differences between them. This will be a motivating example for the introduction of 
fundamental properties of GNNs. 

● Lab 3 considers the Learning of Controllers in Distributed Collaborative Intelligent 
Systems. It is our first approach to the use of GNNs in multiagent physical systems. It 
will illustrate the role of GNNs in learning policies that have a natural distributed 
implementation.   

  
● Lab 4 is concerned with Learning Resource Allocations in Wireless Communication 

Networks. The goal of this lab will be to illustrate situations in which the graph itself is an 
input to the GNN. 

● Lab 5 is a sort of capstone project. We will solve a path planning problem in a multirobot 
system in which robots are given local maps of their environment and have to 
collaborate to learn trajectories to target destinations. 

● Here you have respective references if you want to start reading ahead.  
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● This is all for today. I am looking forward to working with you. And don’t forget to give 
your mom a call! 


