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Course Objectives

I This professor is very excited today. Happy to have a captive audience to talk about his research

I Graph Neural Networks (GNNs) are exciting tools with broad applicability and interesting properties

These are, therefore, the two objectives of this course

Develop the ability to use Graph Neural
Networks in practical applications

Understand the fundamental properties
of Graph Neural Networks

I Identify situations where GNNs have potential. Formulate problems with GNNs. Develop solutions.
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Are These Course Goals Relevant?

I Definitely! ⇒ GNNs are the tool of choicefor performing machine learning on graphs

⇒ Authorship attribution ⇒ Identify author of anonymous text. See [Segarra et al ’14]

⇒ Recommendation systems ⇒ Predict product ratings of different customers. See [Ruiz et al ’18]

⇒ Resource allocation in wireless communication networks See [Eisen-Ribeiro ’19]

⇒ Learning Decentralized Controllers in Collaborative Autonomy. See [Tolstaya et al ’19]
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Go Call Your Mother

I My mom would always ask me about my first day of

school. All good mothers are equal.

I I would hate it if you don’t have anything interesting to

tell your moms when you call them later tonight

I Thus, allow me to use the next half hour to tell you some

interesting things for this conversation
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Machine Learning on Graphs

(I) The why ⇒ Graphs appear in scores of settings. ⇒ They are pervasive models of structure

(II) The how ⇒ We should use a neural network ⇒ Fully connected neural networks do not scale

⇒ Convolutions (in time or graphs) are the key to scalable machine learning

(III) Convolutional filters in Euclidean space and convolutional filters on graphs

(IV) Convolutional neural networks and Graph (convolutional) neural networks
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Machine Learning on Graphs: The Why
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Why Are Graphs so Common in Information Processing?

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution
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Identify the author of a text of unknown provenance

Segarra et al ’16,, arxiv.org/abs/1805.00165

Recommendation Systems

Predict the rating a customer would give to a product

Ruiz et al ’18,, arxiv.org/abs/1903.12575

I In both cases there exists a graph that contains meaningful information about the problem to solve
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Authorship Attribution with Word Adjacency Networks (WANs)

I Nodes represent different function words and edges how often words appear close to each other

⇒ A proxy for the different ways in which different authors use the English language grammar

William Shakespeare
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Christopher Marlowe

a
about
after
against
all
along

amongamongstan
and

anotheranyas
asid

eataw
ayba

rbe
ca

us
e

be
fo

re

be
yo

nd

bo
thbu

tbyca
ncl
os

e

co
ns

eq
ue

nt
ly

da
re

de
sp

ite

do
w

n

du
e

ea
ch

ei
th

er
en

ou
gh

ev
er

y
ex

ce
pt

fe
w

fo
r

fr
om

he
ap

s
he

nc
e

ho
w

ev
er

ifinsp
ite

in
si

de
in

to
it

its

lik
e

litt
le

lots

many

may

might

more

most

much

must

near

neither

next

no
none
nor
nothing
of
on
once
one
opposite or

other our
out

outside part past plenty regarding
round saving

shall

should

since

so som
e

such

than

that

the them

them
selves

then
thence

therefore

these
they
this
those
through
throughout
till

to
tow

ard
tow

ards
under

underneath
unless

until
unto

up
upon

us
used

what

when

where

whether

which

while

who

whom

whose

will
with
within
would
yet

I WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/10.1353/shq.2016.0024
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Recommendation System with Collaborative Filtering

I Nodes represent different customers and edges their average similarity in product ratings

⇒ The graph informs the completion of ratings when some are unknown and are to be predicted

Variation Diagram for Original (sampled) ratings Variation Diagram for Reconstructed (predicted) ratings

I Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal

Ruiz-Gama-Marques-Ribeiro, Invariance-Preserving Localized Activation Functions for Graph Neural Networks, arxiv.org/abs/1903.12575

A. Ribeiro Graph Neural Networks 9
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Graphs in Multiagent Physical Systems

I Graphs are more than data structures ⇒ They are models of physical systems with multiple agents

Decentralized Control of Autonomous Systems

Coordinate a team of agents without central coordination

Tolstaya et al ’19,, arxiv.org/abs/1903.10527

Wireless Communications Networks

Manage interference when allocating bandwidth and power

Eisen-Ribeiro ’19,, arxiv.org/abs/1909.01865

I The graph is the source of the problem ⇒ Challenge is that goals are global but information is local
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Machine Learning on Graphs: The How
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Neural Networks and Convolutional Neural Networks

I There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this

I Generic NNs do not scale to large dimensions ⇒ Convolutional Neural Networks (CNNs) do scale
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Convolutional Neural Networks and Graph Neural Networks

I CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs

I Generalize convolutions to graphs ⇒ Compose graph filter banks with pointwise nonlinearities

I Stack in layers to create a graph (convolutional) Neural Network (GNN)

A. Ribeiro Graph Neural Networks 13



Convolutions in Time, in Space, and on Graphs

I How do we generalize convolutions in time and space to operate on graphs?

⇒ Even though we do not often think of them as such, convolutions are operations on graphs
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Time and Space are Representable by Graphs

I We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph
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I Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space
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Convolutions in Time and Space

I Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑
k=0

hk Skx

A. Ribeiro Graph Neural Networks 16



Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are customers. Signal values are product ratings. Edges are cosine similarities of past scores
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges
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Arbitrary Graphs and Arbitrary Graph Signals

I Time and Space are pervasive and important, but still a (very) limited class of signals

I Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph
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I Nodes are transceivers. Signal values are QoS requirements. Edges are wireless channels strength
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Convolutions on Graphs

I We’ve already seen that convolutions in time and space are polynomials on adjacency matrices

Description of time with a directed line graph Description of images (space) with a grid graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑
k=0

hk Skx
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Convolutions on Graphs

I For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
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I Filter with coefficients hk ⇒ Output z = h0 S0x + h1 S1x + h2 S2x + h3 S3x + . . . =
∞∑
k=0

hk Skx

I Graph convolutions share the locality of conventional convolutions. Recovered as particular case
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Convolutional Neural Networks and Graph Neural Networks

I CNNs and GNNe are minor variations of linear convolutional filters

⇒ Compose filters with pointwise nonlinearities and compose these compositions into several layers
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Neural Networks (NNs)

I A neural network composes a cascade of layers

I Each of which are themselves compositions of

linear maps with pointwise nonlinearities

I Does not scale to large dimensional signals x
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Convolutional Neural Networks (CNNs)

I A convolutional NN composes a cascade of layers

I Each of which are themselves compositions of

convolutions with pointwise nonlinearities

I Scales well. The Deep Learning workhorse

I A CNNs are minor variation of convolutional filters

⇒ Just add nonlinearity and compose

⇒ They scale because convolutions scale
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When we Think of Time Signals as Supported on a Line Graph

I Those convolutions are polynomials on the

adjacency matrix of a line graph
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I Just another way of writing convolutions and

Just another way of writing CNNs

I But one that lends itself to generalization
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Graph Neural Networks (GNNs)

I The graph can be any arbitrary graph

I The polynomial on the matrix representation S

becomes a graph convolutional filter
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Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165
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Graph Neural Networks (GNNs)

I A graph NN composes a cascade of layers

I Each of which are themselves compositions of

graph convolutions with pointwise nonlinearities

I A NN with linear maps restricted to convolutions

I Recovers a CNN if S describes a line graph
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Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165
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Graph Neural Networks (GNNs)

I There is growing evidence of scalability.

I A GNN is a minor variation of a graph filter

⇒ Just add nonlinearity and compose

I Both are scalable because they leverage the

signal structure codified by the graph
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Gama-Marques-Leus-Ribeiro, Convolutional Neural Network Architectures for Signals Supported on Graphs, TSP 2019, arxiv.org/abs/1805.00165
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The Road Ahead
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Course Objectives Revisited

We said there were two objectives in this course but there is obviously a third one

Develop the ability to use Graph Neural
Networks in practical applications

Understand the fundamental properties
of Graph Neural Networks

Define Graph Neural Network
Architectures
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Lectures

I I told you a lot about architectures today in the form of convolutions. Just to give you a taste.

⇒ Don’t worry if you didn’t understand. Will revisit graph filters and graph neural networks

⇒ We will also study graph recurrent neural networks

I Can’t use blindly ⇒ GNNs have properties that explain why they work. And why they don’t

⇒ Permutation Equivariance. Stability to deformations. Transferability

Ruiz-Gama-Ribeiro, Graph Neural Networks: Architectures, Stability and Transferability, PIEEE 2020, arxiv.org/pdf/2008.01767
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Labs

I Labs will focus on building practical skills

Lab 1: Statistical and Empirical Risk Minimization. Just a warmup

Lab 2: Recommendation Systems
Huang-Marques-Ribeiro, Rating Prediction via Graph Signal Processing, TSP 2018, DOI: 10.1109/TSP.2018.2864654

Lab 3: Learning Controllers in Distributed Collaborative Intelligent Systems
Tolstaya-Gama-Paulos-Pappas-Kumar-Ribeiro, Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks,

arxiv.org/pdf/1903.10527

Lab 4: Learning Resource Allocations in Wireless Communication Networks
Eisen-Ribeiro, Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks, arxiv.org/pdf/1909.01865

Lab 5: Multirobot Path Planning
Li-Gama-Ribeiro-Prorok, Graph Neural Networks for Decentralized Multi-Robot Path Planning, arxiv.org/pdf/1912.06095
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So Long and Thanks for All the Fish

Looking forward toWorking with You!
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